Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Podobné dokumenty
11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a a N. n=1

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

(3n + 1) 3n Příklady pro samostatnou práci

Masarykova univerzita Přírodovědecká fakulta

Přednáška 7, 14. listopadu 2014

6. Posloupnosti a jejich limity, řady

DUM č. 19 v sadě. 13. Ma-1 Příprava k maturitě a PZ algebra, logika, teorie množin, funkce, posloupnosti, řady, kombinatorika, pravděpodobnost

1 Nekonečné řady s nezápornými členy

Posloupnosti a číselné řady. n + 1. n n n n. n n n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b b n) = 1 b

M - Posloupnosti VARIACE

Vlastnosti posloupností

5. Posloupnosti a řady

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b.

Posloupnosti a řady. Obsah

Mocninné řady - sbírka příkladů

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:

ŘADY Jiří Bouchala a Petr Vodstrčil

8.2.7 Geometrická posloupnost

POSLOUPNOSTI A ŘADY,

Matematická analýza I

Matematická analýza III - funkční posloupnosti a. Ing. Leopold Vrána

Univerzita Karlova v Praze Pedagogická fakulta

8.3.1 Pojem limita posloupnosti

Verze z 17. května 2018.

n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1

Řešení písemné zkoušky z Matematické analýzy 1a ZS ,

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

Řady s nezápornými členy

ZS 2018/19 Po 10:40 T5

{} n n = 1 1. ŘADY Posloupnosti

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.

P. Girg. 23. listopadu 2012

Řešení písemné zkoušky z Matematické analýzy 1a ZS ,

Analytická geometrie

p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků:

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

Univerzita Karlova v Praze Pedagogická fakulta

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:

ZÁPADOČESKÁ UNIVERZITA V PLZNI

Posloupnosti na střední škole Bakalářská práce

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Základní elementární funkce.

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

9. Číselné posloupnosti a řady

1.2. MOCNINA A ODMOCNINA

8. Elementární funkce

I. TAYLORŮV POLYNOM ( 1

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

1 Základní pojmy a vlastnosti

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

O Jensenově nerovnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Řešení písemné zkoušky z Matematické analýzy 1a ZS ,

Petr Šedivý Šedivá matematika

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

VIII. Primitivní funkce a Riemannův integrál

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N?

ZÁKLADNÍ SUMAČNÍ TECHNIKY

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

I. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018

Lineární zobrazení. 90 ve směru od z k x a symbolem h otočení kolem osy z o. 2 n

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

1 Základní matematické pojmy Logika Množiny a jejich zobrazení... 7

6 Stabilita lineárních diskrétních regulačních obvodů

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019

Základní věta integrálního počtu (Newton Leibnizova) nám umožní výpočet určitých integrálů. Poznáte základní vlastnosti určitých integrálů.

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

Zimní semestr akademického roku 2015/ listopadu 2015

Opakovací test. Posloupnosti A, B

Posloupnosti. a a. 5) V aritmetické posloupnosti je dáno: a

Definice obecné mocniny

Číselné řady. 1 m 1. 1 n a. m=2. n=1

6. FUNKCE A POSLOUPNOSTI

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

VIII. Primitivní funkce a Riemannův integrál

Content. 1. Úvodní opakování Mocnina a logaritmus. a R. n N n > 1

Transkript:

Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých součtů. Existuje-li vlstí limit lim s = s, řekeme, že řd koverguje má součet s. Neexistuje-li vlstí limit lim s, řekeme, že řd diverguje. Divergetí řdy dále dělíme tři přípdy: Je-li lim s =, řekeme, že řd diverguje k + píšeme = +, je-li lim s =, řekeme, že řd diverguje k píšeme =, jestliže lim s eexistuje, řekeme, že řd osciluje. Příkld. Určete, kdy koverguje geometrická řd q, kde, q R\{0} zjistěte její součet. Řešeí:. Nechť q =, pk s = tedy lim s = + pro > 0 lim s = pro < 0. Řd je tedy divergetí diverguje k + ( ) pro > 0( < 0).

2. Nechť q =, pk s = 0 pro sudé s = pro liché, tedy lim s eexistuje. Řd osciluje. 3. Nechť q =. Pro q < je s = + q + q 2 +... + q s q = q + q 2 +... + q s s q = s ( q) = q = ( q ) řd koverguje má součet Pro q > je řd diverguje k ±. s = q q. lim s q q = q,. q lim s q q = q ±, Pro q < limit lim s eexistuje, řd tedy osciluje. Defiice.2 Řd se zývá omezeá, je-li posloupost {s } omezeá. Vět. Kovergetí řd je omezeá. Důkz Viz. vět z prvího semestru, má-li posloupost vlstí limitu, pk je omezeá. Pozámk. Obráceé tvrzeí epltí. Npř. řd ( ) je divergetí (osciluje), le je omezeá. Vět.2 Nechť jsou řdy b kovergetí. Pk je kovergetí i řd (λ + γb ) pltí, (λ + γb ) = λ + γ b. 2

Důkz Důsledek věty o ritmetice limit. Pozámk.2 Kovergetí řdy tvoří vektorový prostor. Vět.3 (utá podmík kovergece) Je-li kovergetí, pk lim = 0. Důkz Sporem. Je-li lim 0, pk pro kždé ε > 0 kždé 0 N existuje m > 0 tkové, že m > ε, tedy s m s m > ε proto ei posloupost {s } Cuchyovská, tedy ei i kovergetí. Pozámk.3 Obráceě vět epltí. Příkld.2 Vyšetřete kovergeci hrmoické řdy. Řešeí: 2 i= i = + 2 + 3 + 4 +... 2 = = +. 2 i + 2 2 = i + 2 + + 2 + 2 +... + 2 i + 2 2 i + 2 2... + ( ) 2 Posloupost částečých součtů této řdy je rostoucí, jelikož = > 0, tedy limit lim s existuje. Jelikož je s 2 +, je tto limit rov +. Tedy 2 hrmoická řd diverguje k +. Vět.4 Nechť p N, pk řdy, =p+ součsě buď kovergují ebo divergují. Důkz Ozčme s = i= i ŝ = i=p+ i, pk s = p i= i+ŝ jelikož p i= i R, tk lim s R lim ŝ R lim s = ± lim ŝ ±. Pozámk.4 Z předcházející věty plye, že kovergeci, resp. divergeci řdy emá vliv chováí koečého počtu jejích čleů. 3

. Řdy s ezáporými čley Je-li 0 pro všech N, pk řdu zveme řdou s ezáporými čley. Vět.5 Buď řd, 0 N, pk součet této řdy existuje. Je-li eomezeá, je = +. Je-li omezeá, je = sup{s }. Důkz Přímý dusledek věty z prvího semestru rostoucí posloupost má limitu, která je vlstí (rov sup{ }), je-li tto posloupost omezeá je rov +, je-li posloupost { } eomezeá... Kritéri kovergece Vět.6 (srovávcí kritérium) Nechť N, 0 b, pk pltí: Jestliže koverguje řd b, tk koverguje i řd. Jestliže diverguje řd, tk diverguje i řd b. Důkz Ozčme s = i= i ŝ = i= b, pk s ŝ. Jelikož jsou poslouposti {s } {ŝ } eklesjící, tk mjí limitu. Nvíc pltí lim s lim ŝ. Pozámk.5 Předpokld b emusí pltit pro všech, le stčí, by pltil > 0 pro ějké 0 N. Příkld.3 Rozhoděte o kovergeci řdy Řešeí: Jelikož 2 < ( ) < ( ) 2, tk i= i = + 2 i=2 i < + 2 i=2 vět o erovostech limitách v prvím semestru. 2 i(i ) < + i=2 (i ) = + 2 i= i 2 4

tedy se stčí změřit kovergeci řdy =2 i= Řd i(i + ) ( i(i + ) i= i= ( ) i i + i= i= = ( ) ( i ) i +. (+) + 2 + 3 +... + 2 3... ) + ( ) =. + koverguje tedy koverguje i řd (+) Vět.7 (limití srovávcí kritérium) Nechť 0 b > 0 N. Jestliže lim b (0, ), pk obě řdy buď kovergují, ebo obě divergují. Důkz Ozčme lim b = A > 0, pk existuje 0 N tkové, že A 2 b 2A, > 0. Tedy A b 2 2A, > 0 dál je využijeme věty.6.2.. 2 Příkld.4 Rozhoděte o kovergeci řd: ) 2+3, 2 b) c) si π. Řešeí: 2+3 ) lim 2 +cos, 3 +3 2 +8 l = 3 (0, ). Jelikož hrmoická řd příkld.2), tk diverguje i řd 2+3 2. diverguje (viz b) lim +cos 3 +3 2 +8 l 2 příkld.3), tk koverguje i řd = (0, ). Jelikož řd +cos. 3 +3 2 +8 l 2 koverguje (viz 5

c) lim si π = π (0, ), tk řd si π diverguje. Vět.8 (Odmociové kritérium - Cuchyovo) Nechť N je 0. ) i) Jestliže existuje q < N : q, pk řd koerguje. ii) Je-li pro ekoečě moho čleů poslouposti { }, tk řd diverguje. b) Existuje-li limit lim = q R, pk: Důkz i) Je-li q <, tk řd koverguje. ii) Je-li q >, tk řd diverguje. ) i) Je-li q < N : q, pk q pro všech N jelikož geometrická řd q koverguje (viz. příkld.), tk koverguje i řd dle věty.6. ii) Je-li pro ekoečě moho čleů poslouposti { }, tk lim 0 tedy řd diverguje (viz. vět.3). b) Existuje-li limit lim = q R, pk: i) Je-li q <, zvolme ε > 0 tk, by pltilo q + ε <. Pk existuje 0 N tkové, že < q + ε pro všech > 0. Dále postupujeme stejě jko v části ) i). ii) Je-li q >, tk existuje 0 N tkové, že > > 0. Dále viz. ) ii). Příkld.5 Rozhoděte o kovergeci řd: ), (3+ ) b) ( 2 π rccos ) 2. Řešeí: 6

) lim proto řd koverguje. (3 + ) 3 + = 3 <, b) lim tedy řd koverguje. ( 2 π rccos ) 2 e l( 2 π rccos ) = e lim L H = e lim 2 π rccos 2 π / 2 2 2 ( 2 π rccos l( 2 π rccos ) = e 2 π <, Vět.9 (Podílové kritérium - d Alembertovo) Nechť 0. i) Jeli + q < pro všech N, pk řd koverguje. Pltí-li pro všech N erovost +, tk řd diverguje. ii) Existuje-li limit lim + Důkz = q, pk: je-li q <, tk řd koverguje, je-li q >, tk řd diverguje. i) Jelikož + q <, tk + q, tedy idukcí dokážeme, že q. Jelikož q je kovergetí geometrická řd ( q < ), tk řd koverguje dle věty.6. Je-li +, tk + jelikož řd diverguje 2, tk diverguje i řd. ii) Je-li lim + = q <, tk existuje ε > 0 0 N tkové, že + < q+ε < pro všech > 0. Ozčme ˆq = q+ε postupujme dále jko v prví části důkzu, tedy dosteme + ˆq pro všech > 0 proto 0 +k 0 ˆq k k N. Jelikož je k=0 0 +k ˆq k kovergetí geometrická řd, tk je i = 0 kovergetí dle věty.6 tedy je kovergetí i řd dle věty.4. 2 > 0, jelikož výrz 2 má smysl z předpokldu věty, že + 7 )

Je-li lim + = q >, tk existuje ε > 0 0 N tkové, že < q ε < + pro všech > 0, tedy > 0 > 0. Dále postupujeme jko v předchozích částech důkzu. Příkld.6 Rozhoděte o kovergeci řd: ) (2 7)2,! b).! Řešeí: ) + lim tedy řd koverguje. (2 5)2 + (+)! (2 7)2! (2 5)2 (2 7) 4 0 2 2 7 = 0 <, b) + lim tedy řd diverguje. (+) + (+)!! ( + ) ( + = e >, ) Pozámk.6 V situci, kdy lim + =, kritérium mlčí. Tto situce může stt jk pro kovergetí řdu (viz. příkld.3), tk pro divergetí řdu (viz. příkld.2). Vět.0 (Rbeovo kritérium) Nechť 0 N. i) Je-li lim + >, tk řd koverguje. ii) Je-li lim + <, tk řd diverguje. Důkz 8

i) Nechť lim + >, pk existuje ε > 0 0 tkové, že + > + ε pro všech > 0. Dosteme tedy: > + ε, + Tedy s = ( + ) > + + ε +, ( + ) + > ε +, ε ( ( + ) + ) > +. i = + i= i < + i=2 i=2 ε ((i ) i i i ) = + ε ( 2 2 + 2 2 3 3 +... + ( ) ) = + ε ( ) + ε. Jelikož posloupost {s } je eklesjící omezeá, je tké kovergetí. Proto řd koverguje. ii) Je-li lim + <, tk existuje 0 N tkové, že + < pro všech > 0. Pk < + i= 0 + i= 0 + + < + < ( + ) +. Dostáváme ( 0 +) 0 + < ( 0 +2) 0 +2 <... < tedy > ( 0+) 0 +. Proto i > i ( 0 + ) 0 + = ( 0 + ) 0 + i. i= 0 + Z divergece hrmoické řdy (viz. příkld.2) věty.6 plye divergece řdy = 0 + tedy i divergece řdy (dle věty.4). 9

Pozámk.7 Někdy se Rbeovo kritérium uvádí ve tvru 3 lim + >... řd koverguje, lim + <... řd diverguje. Příkld.7 Rozhoděte o kovergeci řdy: kde > 0. Řešeí: + lim +! ( + )( + 2)...( + ), (! (+)(+2)...(+) (+)! (+)(+2)...(+)(++) + + + ) + =. Je-li tedy >, tk řd koverguje, pro (0, ) řd diverguje. Pro = dosteme řdu, což je hrmoická řd bez prvího čleu + tedy řd divergetí. Pozmeejme, že v této úloze by ám epomohlo d Alembertovo kritérium, jelikož lim + =. Vět. (Itegrálí kritérium) Nechť je fukce f erostoucí, ezáporá defiová itervlu [, ). Pokud = f() N, pk řd koverguje právě tehdy, když f(x)dx <. Důkz 3 zde uvedeo bez předpokldů, které jsou le stejé, jko ve výše uvedeé verzi tohoto kritéri 0

f je erostoucí, tedy f( ) f(x) f() x [, ]. Dále dosteme f( ) = f( )dx k f( ) =2 lim k = k f() k =2 k f(x)dx f(x)dx f(x)dx k k f() lim f(x)dx k f() f(x)dx k f() =2 k f() =2 =2 f()dx = f() k lim f() k =2 f() =. =2 Z prví erovosti dosteme: < (kovergetí) f(x)dx <. Z druhé erovosti dosteme: f(x)dx < =2 < tedy koverguje i řd. Příkld.8 Rozhoděte o kovergeci řdy: + α, kde α. Řešeí: Zvedeme fukci f(x) =, pk fukce f splňuje pro α > 0 podmíky x α věty.. Dosteme [ ] x f(x)dx = x α α x α dx = α x α α tedy f(x)dx = pro α > f(x)dx = pro α (0, ). α Jelikož řd diverguje pro α = (jde o hrmoickou řdu viz. příkld x α.2) pro α 0 je lim 0 4, tk dostáváme, že řd x α koverguje pro x α α > diverguje pro α. 4 ei splě utá podmík kovergece viz. vět.3

.2 Řdy s obecými čley Vět.2 (Bolzo-Cuchyov podmík) Řd koverguje právě tehdy, když ε > 0 0 N > 0 p N : s +p s = p i= +i < ε. Důkz Jde o přímý důsledek defiice Bolzo-Cuchyovi věty pro poslouposti. Vět.3 Je-li řd kovergetí, tk je kovergetí i řd. Důkz Je-li řd, tk dle předchozí věty.2 pltí: ε > 0 0 N > 0 p N : p i= +i p i= +i < ε. Tedy i řd splňuje BC podmíku je tké kovergetí. Defiice.3 Řekeme, že řd koverguje bsolutě, jestliže koverguje řd. Jestliže řd koverguje, le řd diverguje, říkáme, že řd koverguje reltivě. Příkld.9 Rozhoděte o kovergeci řd: ) ( ) +, 2 b) ( ) +. Řešeí: ) Jelikož řd i řd ( ) + 2 b) ( )+ 2 = = ( )+ 2 koverguje (příkld.3), tk koverguje (dle věty.3) tedy řd koverguje bsolutě. je hrmoická řd, o které víme, že je divergetí. Musíme tedy zkoumt kovergeci přímo řdy ( ) +. s 2 = 2 i= ( ) + = 2 + 3 4 +... + 2 2 = 2 + 3 4 + 5 6 +... + 2 ( ) < i(i + ). i= 2

je kovergetí (viz. příkld.3) tedy je limit lim 2 (+) i= Řd koečá proto je koečá i limit lim s 2. Ozčme lim s 2 = A R, pk lim s 2+ s 2 +lim = A tedy je lim 2+ s = A je kovergetí, tj. řd koverguje reltivě. ( ) + ( ) + Vět.4 (Leibizovo kritérium) Nechť pro všech N pltí: I. 0, II. +, III. lim = 0. Pk řd ( )+ koverguje. Důkz s 2+2 = s 2 + ( 2+ 2+2 ) s 2, tedy je posloupost {s 2 } eklesjící. Jelikož i(i+) s 2 = 2 + 3... 2 2 + 2 2 = ( 2 3 ) ( 4 5 )... ( 2 2 2 ) 2, je víc posloupost {s 2 } omezeá tedy kovergetí. Ozčme lim s 2 = A R, pk lim s 2+ s 2 + lim 2+ = A, tedy je posloupost {s } kovergetí proto řd ( )+ koverguje. Příkld.0 Vrťme se k řdě ( ) + I. > 0, II. > + III. lim = 0, tedy řd. Využijeme-li Leibizovo kritérium, tk ( ) + koverguje. Lemm.5 Mějme poslouposti { } {b } čísl, p N, < p. Ozčme β k = k i= b i. Pk k=+ k b k = k=+ β k ( k k+ ) + β p p+ β +. (.) 3

Důkz k b k = k (β k β k ) = k β k k β k k=+ = = k=+ k=+ k=+ k=+ p k β k k+ β k = k=+ ( k β k + β p+ β p + k= k=+ k=+ β k ( k k+ ) + p+ β p + β. ) k+ β k Vět.6 (Abelovo-Dirichletovo kritérium) Nechť { } je mootoí posloupost pltí jed z ásledujících podmíek:. (Dirichlet) lim = 0 řd b má omezeé částečé součty. 2. (Abel) Řd b je kovergetí posloupost { } je omezeá. Pk je řd b kovergetí. Důkz. Použijeme B-C podmíku (vět.2) předchozí lemm. Stejě jko v přechozím lemmtu používáme zčeí β k = k i= b i. Jelikož má řd b omezeé částečé součty, tk existuje M R tkové, že β k < M pro všech k N. BÚNO předpokládáme, že { } je erostoucí. k b k = β k ( k k+ ) + p+ β p + β k=+ k=+ β k ( k k+ ) + p+ β p + β = k=+ k=+ k=+ k=+ β k ( k k+ ) + p+ β p + β M( k k+ ) + p+ β p + + β M( k k+ ) + p+ M + + M = M( + p+ + p+ + + ) = 2M +. 4

Jelikož lim = 0, pk pro kždé ε > 0 0 N tkové, že > 0 pltí < ε. Tedy pro 0 < < p pltí: k b k < 2Mε, k=+ proto je řd b kovergetí (dle věty.2). 2. Řd b je kovergetí, ozčme tedy její součet β = b. Z rovosti p k=+ ( k k+ ) = + p+ dosteme rovost Pk k=+ k b k = = k=+ k=+ 0 = k=+ β( k k+ ) + β p+ β +. β k ( k k+ ) + p+ β p + β (β k β)( k k+ ) + p+ (β p β) + (β β) (β k β) ( k k+ ) + p+(β p β) + (β β) (β k β) ( k k+ ) + p+ β p β + + β β. k=+ k=+ Jelikož je řd b kovergetí, tk pro ε > 0 existuje 0 N tkové, že β β k < ε pro všech k > 0. Jelikož je posloupost { } omezeá, tk existuje M R tkové, že < M. Tedy pro, p > 0 dosteme k b k (β k β) ( k k+ ) + p+ β p β + + β β k=+ k=+ < ε( k k+ ) + ε p+ + ε + k=+ ε( + p+ + p+ + + ) 2ε( p+ + + ) < 4εM. Proto řd b koverguje (dle věty.2). 5

Příkld. Nechť > 0, { } je erostoucí lim = 0. Ukžme, že pro x R \ {2πk} k Z řdy si(x) cos(x) kovergují. Nejdříve ukážeme, že řdy si(x) cos(x) mjí pro x 2πk omezeé částečé součty. Mějme geometrickou řdu s kvocietem e ix = cos(x) + i si(x). Pk s = i= eikx ix eix = e, tedy e ix s = eix eix e ix = eix eix 2 e ix e ix = 2 e ix ( e ix )( e ix ) 4 2 e ix e ix ] = 2 eix +e ix = 2 cos(x). 2 2 Je-li x 2kπ, tk s <. Jelikož s cos(x) = k= cos(kx) + k= si(kx), tk k= cos(kx) s k= si(kx) s, tedy řdy si(x) cos(x) mjí pro x 2πl omezeé částečé součty. Dále už je stčí plikovt Dirichletovo kritérium. Speciálě řdy si(x), cos(x) pro x 2πk kovergují, le ejsou bsolutě kovergetí..2. Přerováváí řd Defiice.4 Nechť je řd {k } je permutce možiy N ({k } je prostá posloupost přirozeých čísel, v íž se kždé přirozeé číslo vyskytuje). Pk říkáme, že k vzikl přerováím řdy. Vět.7 Nechť řd koverguje bsolutě. Pk koverguje bsolutě i řd k, která vzikl přerováím této řdy jejich součet je stejý (tj. = k ). Důkz Mějme ε > 0, pk existuje 0 N tkové, že + + +... + p < ε pro kždé p > 0 (viz. vět.2). Jelikož {k } je permutce možiy N, tk existuje ˆ 0 N tkové, že {, 2,..., 0 } {k, k 2,..., kˆ0 }. Je-li ˆp > ˆ > ˆ 0 ozčme p = mx{kˆ, kˆ+,..., kˆp }, pk kˆ + kˆ + +... + kˆp 0 + + 0 +2 +... + p < ε, tedy je řd k bsolutě kovergetí. Nyí dokážeme, že = k. Nechť > mx{ 0, ˆ 0 } ozčme s = i= i ŝ = i= k i. pk s ŝ = + 2 +... + ( k + k2 +... + k ) 0 + + 0 +2 +... + q < ε, 6

kde q = mx{, k,..., k }. Tedy lim s ŝ = 0 proto s ŝ = k. Ozčme + = mx{0, } = mx{0, }. Pk = + = + +. Je-li ekoečá řd, tk můžeme uvžovt dvě ekoečé řdy s ezáporými čley +. Lemm.8 Nechť řd koverguje reltivě, pk obě řdy divergují k +. + Důkz Jelikož + jsou řdy s ezáporými koeficiety, tk kždá z těchto řd buď koverguje, ebo diverguje k +. Kdyby obě kovergovly, pk by kovergovl i řd = (+ + ) (vět.2) tedy by řd kovergovl bsolutě. Pokud by řd + kovergovl řd divergovl k +, pk by + s + = A R s = +. Tedy pro kždé ε > 0 kždé K R by existovlo 0 N tkové, že A ε < s + < A + ε s > K > 0. Tedy s = s + s < A K + ε, > 0. Proto by s (s + s ) =. Tedy by řd divergovl. Stejě by se ukázlo, že pro kovergetí řdu emůže stt, by řd + divergovl k + řd kovergovl. Proto obě řdy + divergují k +. Vět.9 (Riemov) Nechť řd koverguje reltivě echť s R. Pk existuje tkové přerováí k řdy, že = s tkové přerováí p řdy, že řd p osciluje. Důkz Nechť je s R. Ozčme ejmeší N tkové, že i= + i > s (jelikož + =, tk tkové existuje). Ozčme m ejmeší m N tkové, 7

že i= + i m i= i < s. Dále pro k = 2, 3,... ozčme k ejmeší k N tkové, že k mk i= i= + k m k i= > s m k ejmeší m k N tkové, že k < s. Tto kostrukce ám vytvoří řdu i= + k + + +... + + ( +... + m ) + + + +... + + 2 ( m + +...) +..., která vzikl přerováím řdy. Ozčme ŝ součet tkto přerové řdy, pk částečý součet ŝ +m +...+ k se od s liší mximálě o + k částečý součet s +m +...+m k se od s liší mximálě o m k. Podobě částečý součet ŝ, kde + m +... + k < < + m +... + m k se od s liší mximálě o mx{ + k, m k } obdobě pro + m +... + m k < < + m +... + k+ je s s mx{ + k+, m k }. Jelikož řd koverguje, tk lim = 0 proto je lim ŝ = s. Ukžme, že lze řdu přerovt tk, by k =. Stčí třeb zvolit ásledující přerováí. N je ejmeší tkové, že + +...+ + >. 2 > je ejmeší 2 tkové, že + +...+ + + + + + +...+ + 2 > 2, 3 > 2 je ejmeší tkové, že + +...+ + + + + ++...+ + 2 2 + + 2 ++...+ + 3 > 3 tk dál. Dále postupujeme jko v předchozí části důkzu. Pro přerováváí do oscilující řdy stčí, by bylo ejmeší tkové, že + +... + + >, m ejmeší tkové, že + +... + + ( +... + m ) <, 2 > ejmeší tkové, že + +...+ + ( +...+ m )+ + + +...+ 2 2 > tk dále. 8