6 Stabilita lineárních diskrétních regulačních obvodů

Rozměr: px
Začít zobrazení ze stránky:

Download "6 Stabilita lineárních diskrétních regulačních obvodů"

Transkript

1 6 Stbilit lieárích diskrétích regulčích obvodů Pro diskrétí systémy pltí stejá defiice stbility jko pro systémy spojité. Systém je stbilí, když se po odezěí vstupího sigálu vrátí zpět do rovovážého stvu. BIBO (BOUDED IPUT BOUDED OUTPUT) stbilit systém je stbilí, když omezeý vstupí sigál dosteme omezeý výstupí sigál. Stbilit je zákldí chrkteristickou vlstostí systémů, tz. ezávisí vstupech i výstupech. Z hledisk stbility rozlišujeme regulčí obvod (symptoticky) stbilí, mezi stbility estbilí (obr. 6. ). Obrázek zobrzuje stvy spojitého systému. Vždy se vyžduje, by regulčí obvod byl z všech okolostí stbilí. Obr. 6. Průběh regulové veličiy stbilí, estbilí mezi stbility 6. Stbilit spojitých diskrétích systémů Mezi stbilitou spojitých diskrétích systémů existuje spojitost. Pro ázorost je vhodé připomeout utou postčující podmíku stbility spojitých systémů (v ásledující kpitole) ásledě vázt s utou postčující podmíkou stbility systémů diskrétích. 6.. Stbilit spojitých systémů Při vyšetřováí stbility se vychází z tzv. chrkteristického mohočleu, který vystupuje ve jmeovteli všech zákldí přeosů regulčího obvodu. Pro spojité regulčí obvody je utá postčující podmík stbility (PP) formulová tkto: Regulčí obvod je (symptoticky) stbilí právě tehdy, když všechy kořey s i chrkteristické rovice mjí záporé reálé části, tedy leží-li v levé komplexí poloroviě. + Go ( s) = () s = s + s + = (6. ) Re s i ; i =,..., (6. ) Stbilí oblst komplexí roviy s je vyzče obr. 6..

2 Obr. 6. Oblst stbility spojitých regulčích obvodů Kotrol stbility regulčího obvodu spočívá v určeí rozložeí kořeů chrkteristické rovice v komplexí roviě kořeů (tb. 6. ). Pokud lze kořey vyčíslit, použijeme utou postčující podmíku stbility. Jik je uto použít prvidl, která umoží rozhodout o stbilitě bez přímého výpočtu kořeů, tyto prvidl se zývjí kritéri stbility [Blátě, ; Švrc, Šed, Vítečková, 7]. Tto kritéri budou, pospá v kpitolách Stbilit diskrétích systémů Při vyšetřováí stbility diskrétích systémů se vychází opět z chrkteristického mohočleu, resp. chrkteristické rovice (. 4), která vystupuje ve jmeovteli všech zákldích přeosů regulčího obvodu. Pro diskrétí regulčí obvody je utá postčující podmík stbility formulová tkto: Diskrétí regulčí obvod je (symptoticky) stbilí právě tehdy, když velikost všech kořeů chrkteristického mohočleu bude meší ež. z i < ; i =,..., (6. ) Z uté postčující podmíky plye, že stbilí oblst u diskrétích regulčích obvodů bude uvitř jedotkové kružice v oblsti komplexí proměé z.

3 Obr. 6. Oblst stbility diskrétích regulčích obvodů V tb. 6. jsou vypsáy stvy rozložeí kořeů chrkteristické rovice, které mohou stt při posuzováí stbility u spojitých diskrétích systémů. Tb. 6. Rozložeí kořeů chrkteristického mohočleu v komplexí roviě u spojitých diskrétích systémů Rozložeí kořeů chrkteristického mohočleu v komplexí roviě V roviě s u spojitých systémů. v levé poloroviě. v prvé poloroviě. záporé reálé ose 4. kldé reálé ose 5. komplexě sdružeé v levé poloroviě 6. imgiárí ose 7. komplexě sdružeé v prvé poloroviě 8. - V roviě z u diskrétích systémů uvitř jedotkové kružice vě jedotkové kružice v itervlu (,) kldé reálé ose vě jedotkové kružice komplexě sdružeé uvitř jedotkové kružice mimo itervl (;) jedotkové kružici komplexě sdružeé vě jedotkové kružice mimo ;+ itervl ( ) v počátku je pólů z = V čsové oblsti stbilí (symptoticky) estbilí stbilí ekmitvý (periodický) estbilí ekmitvý (periodický) kmitvý tlumeý mezi stbility kmitvý etlumeý ustáleí z kroků

4 6. Bilieárí trsformce U spojitých systémů bylo možo pro určováí stbility využít tzv. lgebrická kritéri stbility kmitočtová kritéri stbility. Hlví výhodou těchto kritérií je, že dovolují určit stbilitu přímo z koeficietů chrkteristické rovice, iž by bylo třeb určovt kořey této rovice. Pro určeí stbility diskrétích systémů se zvádí tzv. bilieárí trsformce. Bilieárí trsformce je defiová vzthem w + z + z = ebo w = (6. 4) w z Tto trsformce zobrzí jedotkovou kružici z komplexí roviy z imgiárí osu v komplexí roviě w. Vitřek jedotkové kružice z komplexí roviy z se převádí levou poloroviu v komplexí roviě w. Obr Bilieárí trsformce Pomocí bilieárí trsformce hrdíme v chrkteristické rovici proměou z z proměou w. ( w) = ( z) w + z = w (6. 5) Po této úprvě dosteme tzv. trsformovou chrkteristickou rovici ( w) =, pro kterou pltí utá postčující podmík spojitých regulčích obvodů, tj. Re w i < pro i =,...,. yí můžeme pro chrkteristický mohočle použít kritéri stbility jko pro spojité systémy. Správost převodu jedotkové kružice z komplexí roviy z levou poloroviu v komplexí roviě w je možo prokázt jedoduchým důkzem: w + pokud vyjdeme z prvidl, že z =, w dále pltí podmík stbility diskrétích systémů, tz. z <, dle předešlých bodů tedy pltí, že w + < w,

5 yí tedy můžeme dokázt obr. 6. 5, že podmík w + < w pltí pro levou poloroviu komplexí roviy w (obr. 6. 5). Obr Důkz pltosti bilieárí trsformce 6. Algebrická kritéri stbility Kritéri stbility umožňují rozhodout o stbilitě systému bez výpočtů kořeů chrkteristické rovice. evýhodou těchto kritérií je, že ejdou plikovt systémy s doprvím zpožděím. 6.. Routhovo-Schurovo kritérium stbility Toto kritérium, jk již bylo zmíěo, vychází z chrkteristické rovice, resp. chrkteristického mohočleu, který je možo získt ze jmeovtele kždého zákldího přeosu. Uvžujeme chrkteristický mohočle po bilieárí trsformci ve tvru ( w) = w + w w + (6. 6) U všech kritérií je uto zkotrolovt Stodolovu utou podmíku stbility, která zí: Všechy koeficiety chrkteristické rovice musí existovt musí mít stejé zméko, tj. i > ; i =,,...,. Je-li chrkteristický mohočle stupě, utá Stodolov podmík přechází v utou postčující podmíku stbility. Postup při kotrole stbility: koeficiety chrkteristického mohočleu ( w), resp. chrkteristické rovice píšeme vedle sebe od ejvyšší mociy, kždý sudý koeficiet podtrheme, kždý sudý koeficiet ásobíme podílem prvích dvou koeficietů výsledek píšeme o řádek íže posuutý o jedu pozici vlevo, ovou řdu koeficietů odečteme od předcházející řdy, díky této úprvě vypde jede koeficiet, pokud jsou všechy koeficiety v ové řdě kldé, opkujeme stejý postup, pokud během výpočtu rzíme ulový ebo záporý koeficiet, můžeme říct, že diskrétí regulčí obvod je estbilí, pokud dojdeme při výpočtu ž ke stvu, kdy zůstou pouze tři kldé koeficiety, můžeme říci, že chrkteristická rovice má všechy kořey ve stbilí oblsti, tj. diskrétí regulčí obvod je stbilí.

6 Příkld 6. Vyšetřete stbilitu diskrétího regulčího obvodu, je-li dá jeho chrkteristický 4 w = w + 4w + w + 5w +. mohočle po bilieárí trsformci, ve tvru ( ) Řešeí: Vypíšeme koeficiety chrkteristického mohočleu od ejvyšší mociy podtrheme kždý sudý koeficiet: 4 5. Určíme podíl prvích dvou koeficietů: =. 4 yí můžeme provést smotou kotrolu stbility. Došli jsme ž ke stvu, kdy zůstou pouze tři koeficiety, protože jsme během výpočtu erzili žádý záporý koeficiet koeficiety redukového mohočleu jsou kldé, můžeme říci, že regulčí obvod je stbilí. 6.. Hurwitzovo kritérium stbility Hurwitzovo kritérium stbility opět vychází z chrkteristického mohočleu, resp. chrkteristické rovice (6. 6). Uvžujeme chrkteristický mohočle po bilieárí trsformci. Opět je uto kotrolovt Stodolovu podmíku stbility. Z koeficietů chrkteristického mohočleu sestvíme tzv. Hurwitzovu mtici (6. 7). 5 L 4 L H = L (6. 7) M M M M M L Hurwitzov mtice H bude stejého řádu, jko je stupeň chrkteristického mohočleu. Z Hurwitzovy mtice sestvíme Hurwitzův determit z tohoto budeme určovt subdetermity, které jsou rovy hlvím rohovým miorům mtice H. Hlví rohové subdetermity tedy budou:

7 H H ž = = H ; = H ; (6. 8) Regulčí obvod je (symptoticky) stbilí právě tehdy, když všechy hlví rohové subdetermity jsou kldé. Pokud je ěkterý ze subdetermitů ulový ebo záporý, regulčí obvod je estbilí. Jestliže je koeficiet chrkteristické rovice = všechy rohové subdetermity jsou kldé, regulčí obvod je ekmitvé mezi stbility, tz. chrkteristická rovice má ulový koře. Pokud H =, regulčí obvod je kmitvé mezi stbility, tz. chrkteristická rovice má dvojici ryze imgiárích kořeů. 6.4 Kmitočtová kritéri stbility Pro kotrolu stbility diskrétích regulčích obvodů použijeme je jedo kmitočtové kritérium stbility Michjlovovo kritérium stbility. Toto kritérium stbility umožňuje rozhodout o stbilitě zákldě průběhu Michjlovov hodogrfu Michjlovovo kritérium stbility Vycházíme opět z trsformového chrkteristického mohočleu (6. 9), resp. trsformové chrkteristické rovice. ( w) w w + = (6. 9) Při využití tohoto kritéri vyhodocujeme stbilitu dle průběhu kocového bodu Michjlovovy fukce ( jω) v komplexí roviě při měící se frekveci ω v rozshu ž. Michjlovovu fukci ( jω) získáme doszeím w = jω (6. ) do trsformového chrkteristického mohočleu ( w). Z chrkteristické fukce ( jω) fukce. vyjádříme reálou imgiárí část Michjlovovy 4 { ( jω) } = ( ω) = ω + 4ω... 4 { ( jω) } = ( ω) = ω( ω +...) Re P kořey ω ω,... (6. ) P, P Im Q kořey ω ω,... (6. ) 5ω Q, Q doszeím měící se frekvece vykreslíme Michjlovovův hodogrf. Jestliže tedy leží všechy kořey chrkteristické rovice v levé poloroviě komplexí roviy, potom pltí pro frekveci ω měící se v rozshu od do π Δ rg ( jω) = (6. ) ω Michjlovovo kritérium stbility tedy zí: Regulčí obvod je stbilí právě tehdy, když Michjlovovův hodogrf bude zčít kldé reálé poloose komplexí roviy proti směru hodiových ručiček projde postupě tolik kvdrty, kolikátého stupě je chrkteristický mohočle uzvřeého regulčího obvodu. obr jsou zobrzey Michjlovovy hodogrfy pro regulčí obvody stbilí, estbilí mezi stbility.

8 Obr Michjlovovův hodogrf pro = ) stbilí systém, b) kmitvé mezi stbility, c) ekmitvé mezi stbility, d) estbilí systém V přípdě Michjlovov kritéri můžeme tké využít jeho lytickou formulci. Určíme Michjlovovu fukci její reálou (6. ) imgiárí část (6. ) vypočítáme kořey reálé imgiárí části. Poté můžeme říci, že regulčí obvod je stbilí pokud pltí podmík ω Q < ωp < ωq < ωp = (6. 4) tj. kořey imgiárí reálé části se vzájemě střídjí. Tto podmík pltí pro systémy bez doprvího zpožděí. 6.5 Řešeé příkldy Příkld 6. Vyšetřete stbilitu regulčího obvodu, který je dá diskrétím přeosem řízeí G wy ( z) =. z + z + Řešeí: Určíme chrkteristický mohočle, resp. při položeí rovo ule chrkteristickou rovici. z = z + z + ( ) Provedeme bilieárí trsformci, tz. z z dosdíme trsformový chrkteristický mohočle. w = z w+ ( ) ( ) ( w) ( w) = = w z= w + w + w w ( w ) ( w + w + ) + ( w ) + ( w ) ( w ) Výrz položíme rove získáme chrkteristickou rovici. ( w + w + ) + ( w ) + ( w ) ( w ) ( w) = ( w + w + ) + ( w ) + ( w ) = = w + z = získáme w

9 Provedeme úprvu získáme tvr w ( + + ) + w( 4 ) + ( + ) = Dále postupujeme stejě jko při kotrole stbility dymických systémů. Protože modifikový chrkteristický mohočle je. stupě je Stodolov podmík utou postčující podmíkou stbility. Aby systém byl stbilí, musí tedy pltit:. podmík: + + > >. podmík: 4 > >. podmík: + > > obr je zobrze stbilí oblst šrfová ohričeá tučými črmi dle vypočteých podmíek. Obr Zobrzeí podmíek stbility pro příkld 6. KMS ozčuje kmitvou mez stbility, MS ozčuje ekmitvou mez stbility. Příkld 6. Vyšetřete stbilitu regulčího obvodu pomocí Hurwitzov kritéri stbility, který je z,5z +,5 G wy z = [Blátě, ]. z,6z +,z,68 dá diskrétím přeosem řízeí ( ) Řešeí: Určíme chrkteristický mohočle, resp. při položeí rovo ule chrkteristickou rovici: ( z) = z,6z +,z, 68 z,6z +,z,68 = Provedeme bilieárí trsformci, tz. z z dosdíme trsformovou chrkteristickou rovici.,6 +,,68 = w + z = získáme w

10 Po úprvě získáme trsformovou chrkteristickou rovici ve tvru,w +,454w +,56w +,8 = Provedeme kotrolu Stodolovy podmíky stbility, která zí: Všechy koeficiety chrkteristické rovice musí existovt musí mít stejé zméko. Tuto kotrolu provádíme pro trsformovou chrkteristickou rovici. yí využijeme Hurwitzov kritéri kotroly stbility.,454,8 H = =,696,84 =,6 >,,56 Hurwitzův determit je kldý, tz. diskrétí regulčí obvod je stbilí. Příkld 6.4 Vyšetřete stbilitu regulčího obvodu pomocí Michjlovov kritéri stbility, jehož z = z,6z +,z,. chrkteristický mohočle je ( ) 68 Řešeí: w + Provedeme bilieárí trsformci, tz. z z dosdíme z = získáme w trsformovou chrkteristickou rovici.,6 +,,68 = Po úprvě získáme trsformovou chrkteristickou rovici ve tvru,w +,454w +,56w +,8 = V chrkteristickém mohočleu provedeme substituci w = jω získáme Michjlovovu fukci. Provedeme rozkld reálou imgiárí část chrkteristické rovice. ( jω) =,( jω) +,454( jω) +,56 jω +, 8 Provedeme rozkld reálou imgiárí část chrkteristické rovice. ω =,8,454ω P ( ) ( ω) = ω(,56,ω ) Q yí určíme kořey reálé imgiárí části. ω =,8,454ω = ω ω P P Q Q Q ( ) ω =, ( ω) = ω(,56,ω ) = =,47 = Alyticky určíme stbilitu dle rovice = ω Q < ωp < ωq < ωp. = <, <,47 Podmík stbility je splě tudíž diskrétí regulčí obvod je stbilí. yí můžeme vypočítt hodoty reálé imgiárí části pro měící se frekveci ω.

11 Tb. 6. Vypočteé hodoty reálých imgiárích částí Michjlovovy fukce z příkldu 6.4 ω Re Im,8 π / 6,45,6484 π /,6888,445 π / -,7 -,5954 7π / -5,5 -,54 π / -7, ,5 π / 4 -,658-9,8 5π / 6 -,85-4,955 π -, -6,957 yí vykreslíme dle vypočteých hodot Michjlovovův hodogrf. Obr Michjlovovův hodogrf pro příkld 6.4 Dle defiice stbility podle Michjlovov hodogrfu, můžeme říci, že diskrétí regulčí obvod je stbilí.

y regulovaná veličina w žádaná hodnota regulované veličiny e regulační odchylka y R akční veličina u řídicí veličina v poruchová veličina w(t) e(t)

y regulovaná veličina w žádaná hodnota regulované veličiny e regulační odchylka y R akční veličina u řídicí veličina v poruchová veličina w(t) e(t) Cvičeí 6 - REGULAČNÍ OBVOD České vysoké učeí techické v Prze Fkult iformčích techologií Ktedr číslicového ávrhu Doc.Ig. Kteři Hyiová, Cc. Kteři Hyiová 6.. 6.cvičeí - tbilit regulčího obvodu 6.. tbilit

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a } Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle

Více

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ STEJNOMĚRNÁ KONVERGENCE Ztím ebylo v těchto textech věováo příliš pozorosti kovergeci fukcí, t jko limit poslouposti ebo součet řdy. Jik byl kovergece poslouposti fukcí ebo řdy brá jko bodová kovergece.

Více

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:

Více

Vlastnosti posloupností

Vlastnosti posloupností Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti

Více

Řídicí technika. Obsah. Laplaceova transformace. Akademický rok 2019/2020. Připravil: Radim Farana

Řídicí technika. Obsah. Laplaceova transformace. Akademický rok 2019/2020. Připravil: Radim Farana kdemický rok 9/ Připrvil: Rdim Fr Řídicí techik Oh (L-trformce) předtvuje velmi účiý átroj při popiu, lýze ytéze pojitých lieárích ytémů řízeí. Účelem trformce je převét ložitý prolém z protoru origiálů

Více

p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků:

p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků: ATA P Determity otivčí příkld: Řešte soustvu rovic o dvou ezámých: x + x = b x + x = b Permutce z prvků: Je dá moži = {,,, }, kde N Kždá uspořádá -tice [ k, k, k ] vytvořeá z všech prvků možiy se zývá

Více

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte: 6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece

Více

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI 6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.. ČÍSELNÉ POSLOUPNOSTI V této kpitole se dozvíte: jk defiujeme posloupost reálých ebo komplexích čísel; defiici vlstí evlstí limity poslouposti; defiici pojmů souvisejících

Více

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+ Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

Posloupnosti a řady. Obsah

Posloupnosti a řady. Obsah Poslouposti řdy Poslouposti řdy Obsh. Poslouposti... 8. Úvod do posloupostí... 8. Aritmetická geometrická posloupost... 9. Limit poslouposti... 9. Řdy... 0. Nekoečá geometrická řd... 0 Strák 7 Poslouposti

Více

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých

Více

Základní elementární funkce.

Základní elementární funkce. 6. předášk Zákldí elemetárí fukce. Defiice: Elemetárími fukcemi zveme všech fukce, které jsou vtvoře koečým počtem zákldích opercí ze zákldích elemetárích fukcí. Zákldí operce s fukcemi jsou:. Sčítáí dvou

Více

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů .8. Mohočley, sčítáí odčítáí mohočleů Předpokldy: 7 Mohočle = zvláští typ výrzů. Jk je pozáme? Mohočley obshují pouze přirozeé mociy ezámých (jedé ebo více) kostty. Př. : Rozhodi, které z ásledujících

Více

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b.

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b. KPITOL 8: určitý itegrál Riemův itegrál [M-8:P8.] motivce: výpočet oshu plochy pod grfem fukce 8. Úvod ejdříve je pro < ) řekeme, že moži D, je děleím itervlu,, jestliže je koečá, D. Prvky děleí D {x,

Více

1.2. MOCNINA A ODMOCNINA

1.2. MOCNINA A ODMOCNINA .. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit

Více

9. Racionální lomená funkce

9. Racionální lomená funkce @ 9. Rcioálí loeá fukce Defiice: Nechť P je poloická fukce -tého stupě... ) ( P kde R... A echť Q je poloická fukce -tého stupě... ) ( Q kde R... Rcioálí loeá fukce R je dá podíle ) ( ) ( ) ( Q P R pro

Více

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor . LINEÁRNÍ LGEBR Vektorový prostor.. Defiice Nechť V e moži které sou defiováy operce sčítáí + : t. zobrzeí V V V ásobeí i : t zobrzeí R V V. Možiu V zýváme vektorovým prostorem, sou-li splěy ásleduící

Více

KKKKKKKKKKKKKK. (i = 1,..., m; j = 1,..., n) jsou reálná čísla a x j jsou neznámé, se nazývá soustava m lineárních rovnic o

KKKKKKKKKKKKKK. (i = 1,..., m; j = 1,..., n) jsou reálná čísla a x j jsou neznámé, se nazývá soustava m lineárních rovnic o SOUSTAVY LINEÁRNÍCH ROVNIC Zákldí pojmy Defiice Soustv rovic m m m b b b m kde ij bi (i m; j jsou reálá čísl j jsou ezámé se zývá soustv m lieárích rovic o ezámých stručě soustv lieárích rovic Čísl ij

Více

8. Elementární funkce

8. Elementární funkce Moderí techologie ve studiu plikové fzik CZ.1.07/2.2.00/07.0018 8. Elemetárí fukce Historie přírodích věd potvrzuje, že většiu reálě eistujících dějů lze reprezetovt mtemtickými model, které jsou popsá

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 09 T á D P č P č ů ú P ů ě S á :. úor 09 : 004 : 0 M. M. M. á : 9, % ě č M.. P ů ě ž ó : 0 ž ž ó : 0 ó : -7,5 ž ó : -,8 ó : 4,4 Zopkujte si zákldí iformce ke zkoušce: Test

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 : 9. břez 08 D : 897 P P P : 0 M. M. M. :, % S : 0 : 0 : -7,5 M. P : -, : 0, Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY T BŘEZNA 9 D : 8. břez 9 Mx. možé skóre: Počet řešitelů testu: Mx. dosžeé skóre: Počet úloh: Mi. možé skóre: -7,5 Průměrá vyechost:, %Správé Mi. dosžeé skóre: -, odpovědi jsou

Více

Analytická geometrie

Analytická geometrie 7..06 Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti sttických mometů souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme že jste

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T ÚNORA 08 :. úor 08 D : 96 P P P : 0 M. M. : 0 : 0 M. :,4 % S : -7,5 M. P : -,8 : 4,5 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90 miut

Více

8.2.6 Geometrická posloupnost

8.2.6 Geometrická posloupnost 8.. Geometricá posloupost Předpoldy: 80, 80, 80, 807 Pedgogicá pozám: V hodiě rozdělím třídu dvě supiy ždá z ich dělá jede z prvích dvou příldů. Př. : Poločs rozpdu (dob z terou se rozpde polovi existujícího

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

Kuželosečky jako algebraické křivky 2. stupně

Kuželosečky jako algebraické křivky 2. stupně Kuželosečk Pretrické iplicití vjádřeí kuželoseček P. Pech: Kuželosečk, JU České Budějovice 4, 59s Kuželosečk jko lgerické křivk. stupě Kuželosečk je oži odů v roviě, jejichž souřdice (, ) vhovují v ějké

Více

M - Posloupnosti VARIACE

M - Posloupnosti VARIACE M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,

Více

1 Základy Z-transformace. pro aplikace v oblasti

1 Základy Z-transformace. pro aplikace v oblasti Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi

Více

DUM č. 19 v sadě. 13. Ma-1 Příprava k maturitě a PZ algebra, logika, teorie množin, funkce, posloupnosti, řady, kombinatorika, pravděpodobnost

DUM č. 19 v sadě. 13. Ma-1 Příprava k maturitě a PZ algebra, logika, teorie množin, funkce, posloupnosti, řady, kombinatorika, pravděpodobnost projekt GML Bro Doces DUM č. 9 v sdě. M- Příprv k mturitě PZ lgebr, logik, teorie moži, fukce, poslouposti, řdy, kombitorik, prvděpodobost Autor: Jrmil Šimečková Dtum:.0.0 Ročík: mturití ročíky Aotce DUMu:

Více

ZPG Křivky. Hermitova interpolace. Fergusonovy křivky (3) Cíl Po prostudování této kapitoly budete umět

ZPG Křivky. Hermitova interpolace. Fergusonovy křivky (3) Cíl Po prostudování této kapitoly budete umět ZPG Křivk. Hermitov iterpolce. Fergusoov křivk (). KŘIVKY A PLOCHY Cíl Po prostudováí této kpitol budete umět defiovt iterpolčí proximčí křivk pro dé bod defiovt ploch z dých prvků plikovt křivk ploch

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava Okruhy z učiv sředoškolské memiky pro příprvu ke sudiu Fkulě ezpečosího ižeýrsví VŠB TU Osrv I Úprvy lgerických výrzů, zlomky, rozkld kvdrického rojčleu, mociy se záporým epoeem, mociy s rcioálím epoeem,

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY T BŘEZNA 09 D : 30. břez 09 M. možé skóre: 30 Počet řešitelů testu: 85 M. dosžeé skóre: 30 Počet úloh: 30 Mi. možé skóre: -7,5 Průměrá vyechost: 9, % Mi. dosžeé skóre: -,8 Správé

Více

Příklady k přednášce 12 - Frekvenční metody

Příklady k přednášce 12 - Frekvenční metody Příklady k předášce 1 - Frekvečí metody Michael Šebek Automatické řízeí 018 8-3-18 Frekvečí charakteristika OL a mez stability CL Pro esoudělý OL přeos Ls () platí: 1) Je-li s C pól CL, pak 1 + Ls () =

Více

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl Středí průmyslová škol sdělovcí techiky Pská 3 Prh Jroslv Reichl, 00 Jroslv Reichl OBSAH Poslouposti, Jroslv Reichl, 00 Poslouposti jejich vlstosti 3 Pojem posloupost 3 Připomeutí fukcí 3 Defiice poslouposti

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e M t i c e v e s t ř e d o š k o l s k é m t e m t i c e P t r i k K v e c k ý M e d e l o v o g y m á z i u m v O p v ě S t u d i j í m t e r i á l - M t i c e v e s t ř e d o š k o l s k é m t e m t i

Více

Technická kybernetika. Obsah. Laplaceova transformace. Akademický rok 2017/2018. Připravil: Radim Farana

Technická kybernetika. Obsah. Laplaceova transformace. Akademický rok 2017/2018. Připravil: Radim Farana 8..8 kdemický rok 7/8 Připrvil: Rdim Fr Techická kyereik Lplceov rformce Oh Lplceov rformce Lplceov rformce Lplceov rformce L-rformce převuje velmi účiý ároj při popiu, lýze yéze pojiých lieárích yémů

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY MOCNINNÉ ŘADY - ŘEŠENÉ PŘÍKLADY BAKALÁŘSKÁ PRÁCE Kteři Bábíčková Přírodovědá studi, Mtemtická studi Vedoucí

Více

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace Aalýza a zpracováí sigálů 4. Diskrétí systémy,výpočet impulsí odezvy, kovoluce, korelace Diskrétí systémy Diskrétí sytém - zpracovává časově diskrétí vstupí sigál ] a produkuje časově diskrétí výstupí

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T DUBNA 08 : 8. dub 08 D : 884 P P P S M. M. M. : 0 : 5,5 % : 0 : 7,8 : -7,5 M.. P : -6,0 : 9,7 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí

Více

8.3.1 Pojem limita posloupnosti

8.3.1 Pojem limita posloupnosti .3. Pojem limit poslouposti Předpokldy: 30, 0 Pedgogická pozámk: Limit poslouposti eí pro studety sdo strvitelým pojmem. Hlvím problémem je podle mých zkušeostí edorozuměí s tím, zd mezi posloupostí její

Více

Matematická analýza III - funkční posloupnosti a. Ing. Leopold Vrána

Matematická analýza III - funkční posloupnosti a. Ing. Leopold Vrána Mtemtická lýz III - fukčí poslouposti řdy Ig. Leopold Vrá Obsh Předmluv 5 Část. Mocié řdy 7 Kpitol. Kovergece mocié řdy 9 Kpitol. Součtová fukce mocié řdy 7 Část. Fukčí poslouposti 3 Kpitol 3. Kovergece

Více

Posloupnosti ( 1) ( ) 1. Různým způsobem (rekurentně i jinak) zadané posloupnosti. 2. Aritmetická posloupnost

Posloupnosti ( 1) ( ) 1. Různým způsobem (rekurentně i jinak) zadané posloupnosti. 2. Aritmetická posloupnost Poloupoti Růzým způobem (rekuretě i jik zdé poloupoti Urči prvích pět čleů poloupoti, ve které, + Urči prvích pět čleů poloupoti, je-li dáo:, + + Urči prvích pět čleů poloupoti, je-li dáo: 0,, Urči prvích

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pedgogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM / CIFRIK Zdáí: Vyšetřete všem probrým prostředky polyom Vyprcováí: Rcoálí kořey Podle věty: Nechť p Q je koře polyomu q

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

Verze z 17. května 2018.

Verze z 17. května 2018. Verze z 7. květ 8. Úvodí pozámk Tto sbírk byl sepsá se záměrem vytvořit sezm výpočetích postupů triků pro řešeí úloh, které se probírjí ve druhém semestru kurzu mtemtické lýzy. Sezm, v ěmž s devdesátiprocetí

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

Řešení písemné zkoušky z Matematické analýzy 1a ZS ,

Řešení písemné zkoušky z Matematické analýzy 1a ZS , Řešeí písemé zkoušky z Mtemtické lýzy ZS008-09,9009 Příkld : Spočtěte itu poslouposti 3 + + + 4 + 50 + 00 + 0 0 3 + + Řešeí:Ozčíme : +, b : 4 + 50 + 00 Zlomek,tvořící + 0 0,rozšířímevýrzem ++,čežvytkemeejvyššímociu

Více

Základní věta integrálního počtu (Newton Leibnizova) nám umožní výpočet určitých integrálů. Poznáte základní vlastnosti určitých integrálů.

Základní věta integrálního počtu (Newton Leibnizova) nám umožní výpočet určitých integrálů. Poznáte základní vlastnosti určitých integrálů. Mtemtik II Výpočet vlstosti určitého itegrálu Výpočet vlstosti určitého itegrálu Cíle Zákldí vět itegrálího počtu (Newto Leiizov) ám umoží výpočet určitých itegrálů Pozáte zákldí vlstosti určitých itegrálů

Více

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n /9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x

Více

MATEMATIKA PRO EKONOMY

MATEMATIKA PRO EKONOMY VYSOKÁ ŠKOLA POLYECHNICKÁ JIHLAVA Ktedr mtemtik MAEMAIKA PRO EKONOMY Rdek Stolí 8 Recezovl: doc RNDr Ev Věčková CSc Mgr Adre Kubišová Z jzkovou věcou správost obshu díl odpovídá utor et eprošel jzkovou

Více

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ VEKTOROVÁ LGEBR NLYTICKÁ GEOMETRIE V ROVINĚ Délk úsečk, střed úsečk,, B Délk úsečk B : B C, BC Střed úsečk : B S s, s souřdice středu: s, s Vektor Vektor = oži všech souhlsě orietových rovoěžých úseček

Více

Řídicí technika. Obsah. Stabilita. Stabilita spojitých lineárních systémů

Řídicí technika. Obsah. Stabilita. Stabilita spojitých lineárních systémů 3..7 Akdemický rok 7/8 Připrvil: Rdim Frn Řídicí technik Stbilit systémů Obsh Stbilit spojitých lineárních systémů Hurwitzovo kritérium stbility Michjlovovo kritérium stbility Nyquistovo kritérium stbility

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

Technická kybernetika. Regulační obvod. Obsah

Technická kybernetika. Regulační obvod. Obsah Akdemický rok 6/7 Připrvil: Rdim Frn echnická kybernetik Anlogové číslicové regulátory Stbilit spojitých lineárních systémů Obsh Zákldní přenosy regulčního obvodu. Anlogové regulátory. Číslicové regulátory.

Více

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

Opakovací test. Posloupnosti A, B

Opakovací test. Posloupnosti A, B VY INOVACE_MAT_189 Opkovcí test Poslouposti A, B Mgr. Rdk Mlázovská Období vytvořeí: prosiec 01 Ročík: čtvrtý Temtická oblst: mtemtické vzděláváí Předmět: mtemtik, příprv k mturitě, příprv VŠ, opkováí,

Více

2.4. Rovnováhy v mezifází

2.4. Rovnováhy v mezifází 2.4. Rovováhy v mezfází Mezfázím se rozumí teká vrstv (tloušťk řádově odpovídá molekulárím dmezím) rozhrí dvou fází, která se svým složeím lší od složeí stýkjících se fází. Je-l styčá ploch fází mlá, lze

Více

Analytická geometrie

Analytická geometrie Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

Řešení písemné zkoušky z Matematické analýzy 1a ZS ,

Řešení písemné zkoušky z Matematické analýzy 1a ZS , Řešeí písemé zkoušky z Mtemtické lýzy ZS008-09,9..009 Příkld : Spočtěte limitu poslouposti lim + ) 7 + 8 5 + ) 4 4 +) 5). Ozčme : + 7 +, b 8 : 5 +) 4 4 +) 5,zjímáástedy lim b. Máme 7 8 + 7 + + 7 ) + 8

Více

Úlohy domácího kola kategorie A

Úlohy domácího kola kategorie A 5. ročík Mtemtické olympiády Úlohy domácího kol ktegorie. Je-li S obsh trojúhelíku o strách, b, c T obsh trojúhelíku o strách +b, b + c, c +, pk pltí T 4S. Dokžte zjistěte, kdy ste rovost. Řešeí. Vyjádřeí

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

právě jedna správná. Zakroužkujte ji! ax + ay bx by ax ay bx + by d) a b 4) Řešením nerovnice x 3x e) nemá řešení

právě jedna správná. Zakroužkujte ji! ax + ay bx by ax ay bx + by d) a b 4) Řešením nerovnice x 3x e) nemá řešení FSI VUT v Brě zdáí č.. str. MATEMATIKA 0 Příjmeí jméo: Z uvedeých odpovědí je vždy právě jed správá. Zkroužkujte ji! ) Pro všechy přípusté hodoty pltí: + y y b) y + y c) + b b + y b by y b + by d) b +

Více

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic.

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic. temtk I část I Determty mtc řádu Determty mtc řádu Cíle Cílem ktoly je zvládutí řešeí ermtů čtvercových mtc Defce Determtem (řádu ) čtvercové mtce řádu jejímž rvky j jsou reálá (oř komlexí) čísl zýváme

Více

23. Mechanické vlnění

23. Mechanické vlnění 3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze

Více

Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic.

Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic. Mtemtik I část I Cíle Cílem kpitoly je zvedeí výzčýh pojmů pro mtie jejihž zlost je utá mimo jié pro řešeí soustv lieáríh rovi Předpokládé zlosti Předpokldem dorého zvládutí látky je zejmé zlost opere

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku

Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku Stveí sttik.ročík klářského studi osá stveí kostruke osé stveí kostruke ýpočet rekí ýpočet vitříh sil přímého osíku osá stveí kostruke slouží k přeosu ztížeí ojektu do horiového msívu ěmž je ojekt zlože.

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FKULT INFORMČNÍCH TECHNOLOGIÍ ÚSTV INFORMČNÍCH SYSTÉMŮ FCULTY OF INFORMTION TECHNOLOGY DEPRTMENT OF INFORMTION SYSTEMS VÝPOČET LGEBRICKÝCH ROVNIC

Více

množina všech reálných čísel

množina všech reálných čísel /6 FUNKCE Základí pojmy: Fukce sudá a lichá, Iverzí fukce Nepřímá úměrost, Mociá fukce, Epoeciálí fukce a rovice Logaritmus, logaritmická fukce a rovice Opakováí: Defiice fukce, graf fukce Defiičí obor,

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

ZÁKLADNÍ SUMAČNÍ TECHNIKY

ZÁKLADNÍ SUMAČNÍ TECHNIKY Zápdočeská uiverzit v Plzi Fkult pedgogická Bklářská práce ZÁKLADNÍ SUMAČNÍ TECHNIKY Diel Tyr Plzeň Prohlšuji, že jsem tuto práci vyprcovl smosttě s použitím uvedeé litertury zdrojů iformcí. V Plzi,..

Více

Iterační metody řešení soustav lineárních rovnic

Iterační metody řešení soustav lineárních rovnic Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro

Více

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji

Více

POSLOUPNOSTI A ŘADY,

POSLOUPNOSTI A ŘADY, POSLOUPNOSTI A ŘADY, ÚVOD DO INTEGRÁLNÍHO POČTU Obsh Poslouposti řdy. Poslouposti reálých čísel................................ Aritmetická geometrická posloupost........................ 4.3 Nekoečé číselé

Více

Nové symboly pro čísla

Nové symboly pro čísla Nové symboly pro čísl V pitole Ituitiví ombitori jsme řešili tyto dv typy příldů. Stále se v ich opují součiy přirozeých čísel, t j jdou z sebou, ědy ž do, ědy sočí dříve. Proto si zvedeme dv ové symboly

Více

Spojitost funkce v bodě, spojitost funkce v intervalu

Spojitost funkce v bodě, spojitost funkce v intervalu 10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

CHEMICKÁ KINETIKA. Tuto rovnici lze po zavedení okamžitých molárních koncentrací C a rozsahu reakce x vyjádřeného pomocí koncentrací přepsat na

CHEMICKÁ KINETIKA. Tuto rovnici lze po zavedení okamžitých molárních koncentrací C a rozsahu reakce x vyjádřeného pomocí koncentrací přepsat na HEMIKÁ KINETIK hemická kietik je část fyzikálí chemie zbývjící se způsobem rychlostí, kterými chemické rekce procházejí mezi počátečím koečým stvem. To jí odlišuje od chemické termodymiky, která studuje

Více

jsou reálná a m, n jsou čísla přirozená.

jsou reálná a m, n jsou čísla přirozená. .7.5 Racioálí a polomické fukce Předpoklad: 704 Pedagogická pozámka: Při opisováí defiic racioálí a polomické fukce si ěkteří studeti stěžovali, že je to příliš těžké. Ve skutečosti je sstém, kterým jsou

Více

právě jedna správná. Zakroužkujte ji! a) a b) a c) x b) 6 x c) 5) Rovnice y = je rovnicí a) elipsy b) paraboly c) přímky d) kružnice e) hyperboly

právě jedna správná. Zakroužkujte ji! a) a b) a c) x b) 6 x c) 5) Rovnice y = je rovnicí a) elipsy b) paraboly c) přímky d) kružnice e) hyperboly FSI VUT v Brě zdáí č.. str. MATEMATIKA 009 Příjmeí jméo: Z uvedeých odpovědí je vždy právě jed správá. Zkroužkujte ji! ) Je-li > 0, pk c) e) ) Je-li > 0, pk : 6 6 c) 6 e) ) Nerovice < má řešeí < > c)

Více