PříkladykecvičenízMMA ZS2013/14



Podobné dokumenty
I. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =

I. TAYLORŮV POLYNOM ( 1

ŘADY Jiří Bouchala a Petr Vodstrčil

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

1 Základní pojmy a vlastnosti

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a a N. n=1

3. Lineární diferenciální rovnice úvod do teorie

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:

5. Posloupnosti a řady

ZS 2018/19 Po 10:40 T5

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

11. přednáška 16. prosince Úvod do komplexní analýzy.

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N?

Kapitola 4 Euklidovské prostory

Matematická analýza I

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

1 Základní matematické pojmy Logika Množiny a jejich zobrazení... 7

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

1. Číselné obory, dělitelnost, výrazy

Zkoušková písemná práce č. 1 z předmětu 01MAB3

Masarykova univerzita Přírodovědecká fakulta

6. Posloupnosti a jejich limity, řady

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

Přednáška 7, 14. listopadu 2014

1 Uzavřená Gaussova rovina a její topologie

12. N á h o d n ý v ý b ě r

Posloupnosti a číselné řady. n + 1. n n n n. n n n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b b n) = 1 b

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

Matematika I, část II

Mocninné řady - sbírka příkladů

Zimní semestr akademického roku 2015/ listopadu 2015

Kapitola 5 - Matice (nad tělesem)

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019

Komplexní čísla. Definice komplexních čísel

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

(3n + 1) 3n Příklady pro samostatnou práci

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =

1 Trochu o kritériích dělitelnosti

= + nazýváme tečnou ke grafu funkce f

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické

Diskrétní matematika

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

1.2. NORMA A SKALÁRNÍ SOUČIN

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0

P. Girg. 23. listopadu 2012

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),

1.3. POLYNOMY. V této kapitole se dozvíte:

5. Lineární diferenciální rovnice n-tého řádu

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

Spojitost a limita funkcí jedné reálné proměnné

3. ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI. 3.1 Základní elementární funkce. Nejprve uvedeme základní elementární funkce: KONSTANTNÍ FUNKCE

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

Definice obecné mocniny

5 Křivkové a plošné integrály

1 Základy Z-transformace. pro aplikace v oblasti

1. Přirozená topologie v R n

Derivace součinu a podílu

8.2.1 Aritmetická posloupnost

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg České Budějovice

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n

OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA MATEMATICKÁ ANALÝZA 1. Doc. RNDr. Jaroslav Hančl, CSc. Jan Šustek

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ

1 Nekonečné řady s nezápornými členy

Přednáška 7: Soustavy lineárních rovnic

8.2.1 Aritmetická posloupnost I

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

NMAF061, ZS Zápočtová písemná práce skupina A 16. listopad dx

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

GEOMETRIE I. Pavel Burda

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

2.4. INVERZNÍ MATICE

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 1. října 2019

3. cvičení - LS 2017

Číselné řady. 1 m 1. 1 n a. m=2. n=1

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1

3. cvičení - LS 2017

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Náhodný výběr 1. Náhodný výběr

2. Náhodná veličina. je konečná nebo spočetná množina;

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

Iterační metody řešení soustav lineárních rovnic

UNIVERZITA PALACKÉHO V OLOMOUCI

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Petr Šedivý Šedivá matematika

množina všech reálných čísel

Transkript:

PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo. Budeme používat ěkteré zkratky: MP pro metrický prostor(-y), NLP pro ormovaý prostor(-y), UP pro prostor se skalárím součiem(uitárí prostor), TP pro topologický prostor apod. Později zavedeme ještě další zkratky. Cvičeí : Pokud je metrika ρ a NLP X defiováa příslušou ormou, má speciálí vlastosti:provšecha x, y, z Xavšecha α Tplatí ρ(x, y)=ρ(x+z, y+ z), ρ(αx, αy)= α ρ(x, y). Proč?ZáteějakoumetrikuaLP,kterátutovlastostemá?Má-limetrikaaLP tyto dvě vlastosti, je geerováa ějakou ormou? Cvičeí2:Vlastostiormy kopírují vlastostiabsolutíhodotya R.Uvědomtesi trojúhelíkovouerovostproormu,resp.jejíčásti,pokudjizapisujetev obsažějším tvaru x y x ± y x + y, Tuto složeou erovost budeme často používat. ze které plye spojitost ormy. Lze dokázat, že všechy ormy a LP -tic reálých(komplexích) čísel jsou ekvivaletí! Cvičeí 3: Připomeňte zavedeí skalárího součiu a LP X! Vlastosti budeme obvykle zapisovat ve tvaru: (x, x) 0,(x, x)=0,právěkdyž x=0, (αx+βy, z)=α(x, z)+β(y, z), (x, y)=(y, x),resp.(x, y)=(y, x), přičemžposledívztahužívámevpřípadě,žepracujemealpad C.Normua Xpak defiujemevztahem x = (x, x)apoužívámezkratkuup. Cvičeí 4: Dokažte, že a UP platí tzv. Schwarzova erovost (x, y) x y! Cvičeí 5: Pro ormu a(komplexím) UP dokažte pomocí Schwarzovy erovosti trojúhelíkovou erovost!

2 Cvičeí 6: Dokažte, že orma geerovaá skalárím součiem a UP splňuje podmíku: provšecha x, y Xje x+y 2 + x y 2 =2 ( x 2 + y 2) ; (tzv. rovoběžíkové pravidlo; ukažte, že teto ázev má své opodstatěí). Existuje ormovaý lieárí prostor(nlp), ve kterém orma tuto podmíku esplňuje? Jestliže orma a NLP X (ad R) splňuje rovoběžíkové pravidlo, lze odpovídající skalárí souči defiovat takto: položíme p(x, y):= 4( x+y 2 x y 2) ; fukce pa X Xjejižhledaýmskalárímsoučiem.Ukažte,žeobecěpřes defiici součiu(x, y):=(/2) ( x+y 2 x 2 y 2) cestaevede.vpřípadě,žepracujeme sprostorem Xad C,je p(ix, y)= p(x, iy)ahledaýskalárísoučimátvar (x, y):= p(x, y) ip(ix, y). Důkaz odpovídajícího tvrzeí vyžaduje trochu práce. Cvičeí 7: Systém B všech otevřeých moži metrického prostoru (X, ρ) má tyto vlastosti: (a), X B, (b) sjedoceí libovolého podsystému systému B je prvkem B, a (c) průik koečého podsystému systému B je prvkem B. Všimětesi,žeprolibovoloudvojicibodů x, y X, x y,lzealézt U x, U y Btak, že x U x, y U y a U x U y = (systém Boddělujebodyprostoru X). Cvičeí 8: Libovolý systém B podmoži možiy X s vlastostmi(a),(b),(c) z předcházejícího cvičeí se azývá topologie(a X). Topologii a X velmi často začíme τ a dvojici(x, τ) azýváme topologický prostor. Prvky systému τ jsou otevřeé možiy (X, τ)apomocíichlzezavéstv(x, τ)řadupojmů,kterézátezteoriemp(pozor,vše efuguje zcelaaalogickyjakovmp!). Cvičeí9:Triviálímitopologiemia Xjsouapř.systémy τ = {, X}ebosystém τ 2 = P(X)všechpodmožimožiy X.Kteréfukcea(X, τ )eboa(x, τ 2 )jsou spojité?je-li#(x) 2, τ eoddělujebody X.(Problémmožostivytvořittopologii metrikou ebudeme blíže zkoumat.) Cvičeí 0: Ověřte všechy vlastosti stadardí metriky a prostoru C([ a, b]). Totéž proveďtepro C([ a, b])sitegrálímetrikou. Cvičeí : Rozmyslete si vlastosti itegrálí metriky a prostoru R([, b]) všech riemaovsky itegrovatelých fukcí a itervalu[ a, b]. Jak pracujeme s třídami skoro všude spojitých fukcí?

Cvičeí 2: Prostor m je tvoře všemi omezeými posloupostmi, prostor c všemi kovergetímiposloupostmi,prostor c 0 všemiposloupostmikovergetímik0aprostor s 0 všemiposloupostmi,kterémajípouzekoečýpočeteulovýchčleů.vevšechlze zavéstprox={x k } =: {x k}ormuvztahem x :=sup{ x k ; k N } (Můžeme pracovat s posloupostmi reálých ebo komplexích čísel.) Jestliže X Y začívztah Xjelieárímpodprostorem Y,jezřejmě s 0 c 0 c m s, kde sjelpvšechposloupostíčísel(z RebozC). Cvičeí 3: Normu v prostoru všech -tic reálých(ebo komplexích) čísel lze pro p zavéstpředpisem ( x p := x k p) /p. Ukažte, že je x :=max { x k ; k {,..., } } = lim p x p. Tytoprostoryzačíváme l p (jetedy l m). Cvičeí 4: Aalogicky zavádíme pro p prostory posloupostí: Na lieárím prostoru l p všechposloupostíx={x k },proěžje x k p < defiujeme ( x p := x k p) /p. Připoužitítohotoozačeíjerozuméklást l = mzaalogickýchdůvodůjakove Cvičeí 7. Cvičeí5:Zaveďtea R Rezáporoufukci σ(x, y)předpisem σ(x, y)= x y + x y! Všimětesi,žejeomezeáaukažte,že σjemetrika R!Pozámka:Fukce palpx s vlastostmi () p(x) 0, (2) p(0)=0, (3) p(x)=p( x) (4) p(x+y) p(x)+p(y) (5) pro t k t apro x k x je p(t k x k tx) 0 3 jeparaormaa X.Zkoumejte p(x y)!

4 Cvičeí6:Zobecětepředchozíúlohuadokažte,žeje-li ρ=ρ(x, y)metrikaamp X, je také ρ(x, y) σ(x, y)= +ρ(x, y) (omezeá) metrika a X. To ám dává možost zavést omezeou metriku a jakémkoli MP.Přitomsetatometrikaodpůvodílišíje epodstatě ktétokostrukcise ještě vrátíme. Cvičeí 7: Je poměrě vžité užíváí stadardího ozačeí pro prostory všech posloupostí reálých, resp. komplexích čísel, které pak uvažujeme jako prostory ad R, resp. C. Tetoprostorlzeopatřitmatrikou ρapř.tak,žeprovšecha x, y Xpoložíme Teto prostor budeme začit s. ρ(x, y):= 2 k x k y k + x k y k Cvičeí8:Ukažte,ževsplatí:je-li x k x 0 v saα k α 0 v T,pak α k x k α 0 x 0. Cvičeí9:VtomtocvičeízobecímeSchwarzovuerovosta R m :prokaždáčísla p, q (0, )splňujícípodmíku p+q= p q,eboli p + q =, akaždédvabody[ x,..., x m ],[ y,..., y m ]zr m platíhölderovaerovost m ( m ) /p ( m ) /q x k y k x k p y k q. Cvičeí20:Prokaždé p,<p<,aprokaždoudvojicibodů x=[ x,..., x m ], y=[ y,..., y m ]zr m platíerovostmikowskiho(českymikowského) ( m x k + y k p) /p ( m x k p) /p ( m + y k p) /p. JakýjejejívýzamvkotextuMP? Cvičeí2:DokažteHölderovuaMikovskihoerovostproprostoryposloupostí l p (tj. obdobé erovosti pro ekoečé řady)! Cvičeí 22: Připomeňte defiici otevřeé a uzavřeé koule a sféry v kotextu MP. V diskrétím MP jedotková sféra obsahuje libovolě moho disjuktích otevřeých jedotkovýchkoulí. Cvičeí 23: Připomeňte si defiici diametru možiy. Proč je součástí defiice část, vymezujícíspeciálědiam( )?Všimětesivztahůmezi poloměrem a průměrem koule v diskrétím prostoru!

Cvičeí24:JakpopisujemevzájemývztahboduamožiyvMP?Připomeňtesi defiici vitřího, vějšího a hraičího bodu možiy! Jak se defiuje hromadý bod možiy? Cvičeí 25: Jak defiujeme spojitost a limitu fukce, defiovaé a MP? Proč emůžeme defiovat limitu fukce vzhledem k možiě v jejím izolovaém bodě? Cvičeí26:Defiicevzdáleostimoži M, NvMP(P, ρ)je(m, N ) dist(m, N):=if{ρ(x, y); x M, y N}. Často zjedodušujeme, zde apř. píšeme dist(x, A) místo dist({x}, A) a mluvíme o vzdáleosti bodu od možiy. Cvičeí27:Ozačme d A (x)proeprázdoumožiu A (P, ρ)vzdáleostbodu xod možiy A. Dokažte erovost da (x) d A (y) ρ(x, y). Je-li x A,je d A (x)=0.lzetototvrzeíobrátit,tj.plyezd A (x)=0,že x A? Cvičeí28:NajdětedvědisjuktímožiyvRsulovouvzdáleostí!Jepro r >0 vzdáleost B(x, r)ak(x, r)vždy0?jepro r >0vzdáleost B(x, r)as(x, r)vždy0? Jepro r >0vzdáleost S(x, r)ak(x, r)vždy0? Cvičeí29:Lzevolit M, Neprázdéuzavřeév R sdist(m, N)=0disjuktí? Cvičeí30:Jevzdáleost d A (x)boduodmožiyspojitáfukce?lzejiějakvyužít, apř.kpopisuuzávěru Amožiy A? Cvičeí3:Normy a 2 (jdepouzeoozačeí,ikolio p-čkové ormy!)a LP Xtakové,žeexistujíkladékostaty C, Daprovšecha x Xplatí C x x 2 D x se azývají ekvivaletí ormy a X. Uveďte příklady! Je to symetrický vztah? Cvičeí 32: Na prostoru C([ a, b]) lze defiovat supremovou a itegrálí ormu. Zkoumejte vztahy mezi imi. Jsou tyto ormy ekvivaletí? Cvičeí33:Jsouormy, 2 a a R m ekvivaletí?colzeřícioormách p proobecé p? Cvičeí34:ZamysleteseadmožostmivytvářeídalšíchMP.Jsou-li(P, ρ)a(q, σ) dvamp,lzezavéstějakpřirozeěmetrikua P Q? Cvičeí35:Je-li(P, ρ)mpadefiujeme-li σ(x, y)= ρ(x, y) +ρ(x, y), je σ(x, y) ρ(x, y).neí-li(p, ρ)omezeý,elzealéztkladékostaty C, Dtak,aby provšecha x, y (P, ρ)(proč?). Cσ(x, y) ρ(x, y) Dσ(x, y) 5

6 Cvičeí 36: Metriky z předcházejícího příkladu jsou i jiak odlišé: je-li ρ geerováa ormou, σ tuto vlastost emá. Cvičeí37:Říkáme,žemetriky ρaσjsouaprostoru Pekvivaletí,platí-liprokaždou posloupostbodů x Pakaždé x Pekvivalece limx = xv(p, ρ) limx = xv(p, σ). Ukažte,žeprometrikyzeCvičeíje (/2)ρ(x, y) σ(x, y) ρ(x, y) provšecha x (P, ρ)ata y (P, ρ),proěžje ρ(x, y) <. Cvičeí38:Eukleidovskýprostor R 2 a Cjsouizometrickyizomorfí.Cosipodtím představíte? Cvičeí39:Ozačíme-li C := {z = x+iy C; y = 0},je C izometrickýsr. Podroběji,(metrický)podprostor C smetrikouidukovaouz(c, ρ)jeizometrický s R. Cvičeí 40: Je-li T prosté zobrazeí možiy P do metrického prostoru (Q, σ), lze jedodušezpvytvořitmptak,aby Tbylaizometrie(P, ρ)a(t(p), σ);stačídefiovat a P metriku ρ předpisem ρ(x, y):= σ(t(x), T(y)), x, y P. Totojejedazcest,pomocíížlzedefiovatdalšíMP. Cvičeí4:Naprostoru R = R {, }defiujmezobrazeído R T(x):= x + x, x R, aklademe T(x):= ±,je-li x=±. Tjeprostézobrazeí R aiterval[,]. Za(Q, σ)zvolme[,]smetrikouidukovaouzr adefiujmeprovšecha x, y R ρ(x, y)= T(x) T(y). Takjsmezískalidvojiciizometrickýchprostorůaopatřili R metrikou. Cvičeí42:LzezkaždéposloupostibodůMP(R, ρ),kde ρjemetrika,defiovaá vecvičeí39,vybratposloupostkovergetív(r, ρ)? Cvičeí43:Ozačme K půlkružici {[x, y] R 2 ; x 2 +(y ) 2 =, y }ajejí body promítětezbodu[0,]a R.Použijtepopsaousituacikdefiicizobrazeí ametrikya R sobdobýmivlastostmi,jakémá ρzpředcházejícíchdvoucvičeí!

Cvičeí44:Ozačme Kkružici {[x, y] R 2 ; x 2 +(y ) 2 = }ajejíbody promítěte zbodu[0,2]a R # := R { }.Postupujtejakovpředchozímcvičeíapoužijte popsaousituacikdefiicizobrazeíametriky ρa R # sobdobouvlastostí,jakou mělvziklýmp(r, ρ)zecvičeí40(resp.39)! Cvičeí45:JsouMP(R, ρ)a(r #, ρ)úplé,tj.kovergujevichkaždáposloupost, splňujícíbolzao-cauchyhopodmíku( cauchyovská posloupost)?uvědomtesi,že prostézobrazeí g:= T,kde T(x):= x + x, x R, zobrazuje ěkteré cauchyovské poslouposti bodů itervalu(0, ) a poslouposti bodů z R, které cauchyovské ejsou! Cvičeí46:Možiy QiR \ QjsouhustévR.Majírůzou velikost (mohutost)? Cvičeí47: Pohrajtesi trochushustýmipodmožiamivr: (a)existujídvědisjuktípodmožiy R \ QhustévR? (b)existujíprokaždé Ndisjuktípodmožiy M,..., M R \ QhustévR? (c)existujeekoečěmohodisjuktíchpodmoži R \ QhustýchvR? (d)nechť M Rjespočetá.Jepak R \ MhustávR? Zkuste formulovat podobé problémky a pak je řešte! Tímto způsobem přistupujte ikdalšímpojmům,sekterýmisebudemevrámciteoriempsezamovat! Cvičeí48:Ukažte,žemožia MjeřídkávMP(P, ρ)(tj. ( M ) =,právěkdyžje (P \ M)=P. ) 7 Cvičeí 49: Uvědomte si: komplemet husté možiy emusí být řídká možia, komplemet řídké možiy emusí být hustá možia. Rozmyslete si, že přidáím jedoduché vlastostibudoutytopřechodykekomplemetům dobřefugovat.např.komplemet uzavřeé řídké možiy je hustá možia. Cvičeí50:Jesjedoceí M M 2 dvouřídkýchmoži M, M 2 (P, ρ)opětřídká možia?jesjedoceíkoečéhopočtuřídkýchmoživ(p, ρ)opětřídkámožia? Cvičeí 5: Je sjedoceí spočeté možiy řídkých moži v(p, ρ) opět řídká možia? Cvičeí 52: Kolik růzých hustých(řídkých) moži umíte alézt v diskrétím prostoru ze Cvičeí 40? Kdy je diskrétí prostor separabilí? Kdy je diskrétí prostor totálě omezeý? Cvičeí 53: Ilustrujte metodu kategorií a důkazu existece iracioálího čísla! Cvičeí54:( )Dokažtemetodoukategoriíexistecifukce f C([ a, b]),kteráeí mootóíajakémkoliitervalu[ c, d] [ a, b].vizpomocýtext. Cvičeí55:( )Dokažtemetodoukategoriíexistecifukce f C([ a, b]),kteráemáv žádém bodě koečou jedostraou derivaci. Viz pomocý text.

8 Cvičeí56:( )Eulervjedézesvýchpracívyšelzezáméhovzorceprosoučetgeometrické řady z k =, z <, z k=0 adosadilza zvýraze it =cos t+isi t, t (0,2π).Úpravamidostalrovost cos kt+i sikt= k=0 k=0 ( cos t) isi t = 2 + i sit 2 2cost a porováím a úpravou reálých částí výrazů a obou straách této rovosti dostal rovost cos kt= 2. Itegrací a vhodým dosazeím posléze obdržel π t 2 =sit+ si2t 2 + si3t 3 +. (Eu) Uvědomte si všechy ekorektosti postupu.(fukci budeme dále chápat jako 2π-periodickou fukci espojitou v lichých ásobcích π, která se auluje ve všech bodech espojitosti.) Cvičeí57:Ukažte,ževzhledemkeskalárímusoučiu(f, g)= 2π 0 f(t)g(t)dtjesystém {e ikt }, k Z,ortogoálí! Cvičeí58:Ukažte,ževzhledemkeskalárímusoučiu(f, g)= 2π 0 f(t)g(t)dtjesystém {, si kt, cos kt}, k N, ortogoálí! Použijte vzorce, zámé ze středoškolské látky Cvičeí 59: Předpokládejte, že 2cosa cos b=cos(a+b)+cos(a b), 2cosa si b=si(a+b) si(a b), 2si a si b=cos(a+b) cos(a b). f(t)= a 0 2 + + ( ak cos kt+b k si kt ) ažeřadavpravokovergujestejoměrě.určete a k, b k, k N 0 pomocí f! Cvičeí60:Pročástečýsoučet s (f, x)fourierovyřadyspojité2π-periodickéfukce fodvoďtepro x=0 s (f,0)= π 2π 0 ( f(t) 2 + ) cos kt dt.

9 Cvičeí 6: Následující vyjádřeí Dirichletova jádra budeme budeme potřebovat ( D (t)= 2 + ) cos kt = si(+/2)t 2si t/2 (vyjádřeísesimásmyslpouzepro x R\2πZ,alerovostukazuje,ževtěchtobodech má D odstraitelé espojitosti). Rovost dokažte ze vzorce ( si k+ ) ( t si k ) ( t t=2cos ktsi 2 2 2) dosazeím,2,..., ;vziklérovosti sečtěte aupravte. Cvičeí62:Odhaděteormulieáríhofukcioálu L f= s (f,0)aprostoruspojitých2π-periodickýchfukcí C 2π (R)!Je { L =sup π π π } f(t) D (t)dt ; f π π π D (t) dt= π D. Vtomtoodhaduplatíveskutečostirovost;odůvoděte!Nyíormu D odhademe zdola:zerovosti si(t/2) t/2, t (0, ),plye π D = si( + /2)t π 2sit/2 dt si((+/2)t) dt t. π V posledím itegrálu v předcházejícím vztahu proveďte substituci u =( + /2)t a odhaděte(jedotlivé kroky zdůvoděte): 0 (+/2)π 0 siu u (+/2) du > kπ (k )π π kπ 0 siu u du si udu= 2 π k. Zdivergeceharmoickéřadydostáváme L =π D + pro,takže ormy L ejsoustejěomezeé. Cvičeí 63: Ověřte předpoklady Baach-Steihausovy věty a odůvoděte závěr: Existuje f C 2π (R),jejížFourierovařadaalespoňvjedombodědiverguje(PaulduBois- Reymod,873).Platídokocevíce:VC 2π (R)existuje(hustá)možiafukcí,jejichž Fourierova řada diverguje a husté podmožiě R. Cvičeí64:Vraťtesekevzorci(Eu)aukažte,žejdeoFourierovuřadu(espojité)fukce alevéstraěrovosti,aževbodechespojitostikovergujek0 ( = ( f(π+)+f(π ) ) /2 ). Cvičeí 65: Dokázali jsme Weierstrassovu aproximačí větu postupem, který užíval Ladau. Důkaz si můžete zopakovat v textu, k ěmuž je přístup z obsahu prosicových cvičeí.

0 Cvičeí 66: V souvislosti s Weierstrassovou větou jsme se sezámili s větou, kterou Korovkidokázalvr.953:Nechť L : C([ a, b]) C([ a, b]), N,jsouezáporélieárí operátorytakové,žeposloupost {L f}kovergujestejoměrěa[ a, b]kfukci fpro f =,Id,Id 2.Potomposloupost {L f}kovergujestejoměrěa[ a, b]kfukci f prokaždoufukci f C([ a, b]). Cvičeí67:Bersteir.92dokázal B f fa[0,]prokaždou f C([0,]). B f: x k=0 ( k ) ( ) f x k ( x) k, k x [0,]. Zdefiicejezřejmé,žeoperátory B : f B fjsoua C([0,])lieárí,ezáporéa zobrazují teto prostor do prostoru polyomů. Cvičeí68:Ukažtevásledujícíchcvičeích,žeposloupost {B f}stejoměrěkovergujeaitervalu[0,]kfukci fprotřifukce f=,id,aid 2.Ozačme f k =Id k, k=0,,2. Cvičeí69:Rovost B f 0 = f 0 provšecha Nplyezbiomickévěty. Cvičeí70:Uvažmedále,žepro k je ( ) k = k k k=0! ( k)! k! = ( )! ( k)!(k )! = Pro f dostaemepomocípředchozírovosti ( ) k B f (x)= x k ( x) k = x k j=0 ( ). k ( ) x k ( x) k = k ( ) = x x j ( x) ( ) j = x =f (x), j takžeprovšecha Nje B f = f. Cvičeí7:Dálespočtemepro k ( k ) ( 2 = k) k ( ) k a po úpravě dostaeme: k ( k ) = k = k Podosazeí f 2 obdržímeprovšecha x [0,] B f 2 (x)= ( ) + k ( ) ( = k ( k ) ( 2 x k) k ( x) k k=0 ( ) ; k ) ( ) 2. k 2 x [0,],

a pak jedoduchou úpravou postupě dostaeme B f 2 (x)= ( = ) ( ) 2 x k ( x) k + k 2 k=2 ( )x 2 + x ( = ( ) x k ( x) k = k ) f 2 (x)+ f (x); Cvičeí72:Je-li M R m možiavšechbodů,jejichžsouřadicejsoudiadickyracioálíčísla(jsoutvaru k/2 l, k Z, l N),určete M, M, M! Cvičeí73:Jsouprostory R=R, R m, m Nseparabilí?Jeprostor sseparabilí? Cvičeí74:Nechť ρjediskrétímetrikaaitervalu(0,).jeiterval(0,)smetrikou ρ separabilí MP? Cvičeí75:Jsouprostory m(= l ), c, c 0 separabilí? Cvičeí76:Jeprostor C([ a, b])separabilí? Cvičeí77:( )Kroměelemetáríhodůkazu(vizapř.pomocýtextčipředáška)vyplývá separabilita C([ a, b]) i z Weierstrassovy aproximačí věty. Jak věta zí?(dokážeme ji a cvičeí). Cvičeí78: Defiujte ε-siť možiy M! Najděte apř. v prostoru C([ a, b])příklad možiy, která je omezeá a přitom eí totálě omezeá! Cvičeí79:Jeprostor m(= l ), c, c 0 úplý? Cvičeí80:Naprostoru C([0,])defiujmeprokaždé Noperátory A tak,žepro každoufukci x C([0,])položíme ( k ( k A x = x ) ) a A xjelieárífukceaitervalu[(k )/, k/],kde,2,...,.zjistěte,zda platí kde Ijeidetickýoperátora C([0,]). Cvičeí8:Jeprostor C([ a, b])úplý? (a) A (x) x, x C([0,]), (b) A I C([0,]) 0, Cvičeí 82: Záte Weierstrassovu větu o polyomiálí aproximaci fukcí z prostoru C([0,])?Záteideualespoňjedohojejíhodůkazu? Cvičeí 83: Je souči dvou separabilích metrických prostorů separabilí metrický prostor? Cvičeí 84: Je souči dvou úplých metrických prostorů úplý metrický prostor?

2 Cvičeí85:Jezobrazeí T:(P, ρ) (P, ρ),prokteréplatí ρ(t(x), T(y)) < ρ(x, y), x, y P, kotraktivía(p, ρ)? Cvičeí 86( ): Pro posloupost x + = 2 ( x + a x ) s a > 0 jsme alezli(velmi dávo) její limitu(připomeňte si!). Souvisí teto příklad ějak s kotraktivitou zobrazeí? Šlo by teto příklad zobecit a případ -té odmociy? Cvičeí 87: Připomeňme si Catorovu větu v kotextu R i obecého metrického prostoru:nechť(p, ρ)jeúplýmetrickýprostoraechť {A } =jeerostoucíposloupost eprázdýchuzavřeýchmoživprostoru P,tj. A + A, N.Nechťdáleje diam(a ) 0. ( ) Potomexistujeprávějedebod x P takový,že {x}= = A. Ukažte, že předpoklad( ) je pro platost věty podstatý. Postřehete ějaký rozdíl protiklasické jedorozměré větě?ukažte,žeidalšípředpokladycatorovyvěty jsoupodstaté,tj.žepovyecháímootoieebouzavřeosti A taktomodifikovaé tvrzeí eplatí! Cvičeí 88: Připomeňte si Arzalà-Ascoliho větu! Jsou fukce z uzavřeé jedotkové koulevprostoru C([ a, b])stejěspojité? Cvičeí89:Nechťje F systémvšechfukcízprostoru C([ a, b]),kterémajía(a, b) všudevlastíderivaciaplatíproi f (x) < π, x (a, b).jsoufukcezf stejě spojité? Cvičeí 90: Na předášce jste si dokázali reálou verzi Stoe-Weierstrassovy věty: Nechť X (P, ρ)jekompaktíaechť A(X)jealgebrareálýchfukcíspojitýcha X.Odděluje-lialgebra A(X)body Xaobsahuje-liikostatífukci,jecl(A(X))=C(X). K í se váží ásledující cvičeí. Cvičeí9:Jeprostor C([ a, b])všechspojitýchfukcíaitervalu[ a, b]současěalgebrou?oddělujetatoalgebrabodyitervalu[ a, b]? Cvičeí92:Takéalgebra P([ a, b])všech(restrikcí)polyomůa[ a, b]oddělujebody [ a, b],jevšakvlastípodalgebrou C([ a, b]).cotvrdívtomtokotextuweierstrassova větaojejímuzávěrucl(p([ a, b]))vevztahukalgebře C([ a, b])? Cvičeí93:SystémvšechfukcízP([ a, b]),kteréseaulujívbodě(a+b)/2,odděluje body[ a, b],avšaktatoalgebraeobsahujevšechykostatífukcea[ a, b]. Cvičeí94:SystémvšechfukcízC([ a, b]),kteréseaulujívbodě(a+b)/2,odděluje body[ a, b],ajetoalgebra A.Cojeuzávěremtétoalgebry?

Cvičeí95:Systém BvšechfukcízC([ a, b]),kteréseaulujívedvourůzýchbodech x, y [ a, b],jealgebrakteráeoddělujebodyitervalu[ a, b].cojejejímuzávěrem? [Uzávěrcl(B)systému BobsahujepouzetyfukcezC([ a, b]),kteréležívb.] Cvičeí 96: Systém P všech polyomů z B obsahuje pouze jediou kostatí fukci f 0,alecl(P)=B,alejetoopětalgebra. Cvičeí 97: K čemu jsme použili pojem tzv. ε-přibližého řešeí difereciálí rovice 3 y = f(x, y)? ( ) Připomeňme,žeje-lifukce fvrovici( )spojitávoblasti G R 2 a ψjespojitáfukce aitervalu I R,prokterou[ t, ψ(t)] Gprovšecha t I,pakpokudplatípro ε >0 avšecha t I \ K ψ (t) f(t, ψ(t)) ε, ( ) kde K I je koečá možia, azýváme fukci ψ ε-přibližým řešeím rovice( ).