PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo. Budeme používat ěkteré zkratky: MP pro metrický prostor(-y), NLP pro ormovaý prostor(-y), UP pro prostor se skalárím součiem(uitárí prostor), TP pro topologický prostor apod. Později zavedeme ještě další zkratky. Cvičeí : Pokud je metrika ρ a NLP X defiováa příslušou ormou, má speciálí vlastosti:provšecha x, y, z Xavšecha α Tplatí ρ(x, y)=ρ(x+z, y+ z), ρ(αx, αy)= α ρ(x, y). Proč?ZáteějakoumetrikuaLP,kterátutovlastostemá?Má-limetrikaaLP tyto dvě vlastosti, je geerováa ějakou ormou? Cvičeí2:Vlastostiormy kopírují vlastostiabsolutíhodotya R.Uvědomtesi trojúhelíkovouerovostproormu,resp.jejíčásti,pokudjizapisujetev obsažějším tvaru x y x ± y x + y, Tuto složeou erovost budeme často používat. ze které plye spojitost ormy. Lze dokázat, že všechy ormy a LP -tic reálých(komplexích) čísel jsou ekvivaletí! Cvičeí 3: Připomeňte zavedeí skalárího součiu a LP X! Vlastosti budeme obvykle zapisovat ve tvaru: (x, x) 0,(x, x)=0,právěkdyž x=0, (αx+βy, z)=α(x, z)+β(y, z), (x, y)=(y, x),resp.(x, y)=(y, x), přičemžposledívztahužívámevpřípadě,žepracujemealpad C.Normua Xpak defiujemevztahem x = (x, x)apoužívámezkratkuup. Cvičeí 4: Dokažte, že a UP platí tzv. Schwarzova erovost (x, y) x y! Cvičeí 5: Pro ormu a(komplexím) UP dokažte pomocí Schwarzovy erovosti trojúhelíkovou erovost!
2 Cvičeí 6: Dokažte, že orma geerovaá skalárím součiem a UP splňuje podmíku: provšecha x, y Xje x+y 2 + x y 2 =2 ( x 2 + y 2) ; (tzv. rovoběžíkové pravidlo; ukažte, že teto ázev má své opodstatěí). Existuje ormovaý lieárí prostor(nlp), ve kterém orma tuto podmíku esplňuje? Jestliže orma a NLP X (ad R) splňuje rovoběžíkové pravidlo, lze odpovídající skalárí souči defiovat takto: položíme p(x, y):= 4( x+y 2 x y 2) ; fukce pa X Xjejižhledaýmskalárímsoučiem.Ukažte,žeobecěpřes defiici součiu(x, y):=(/2) ( x+y 2 x 2 y 2) cestaevede.vpřípadě,žepracujeme sprostorem Xad C,je p(ix, y)= p(x, iy)ahledaýskalárísoučimátvar (x, y):= p(x, y) ip(ix, y). Důkaz odpovídajícího tvrzeí vyžaduje trochu práce. Cvičeí 7: Systém B všech otevřeých moži metrického prostoru (X, ρ) má tyto vlastosti: (a), X B, (b) sjedoceí libovolého podsystému systému B je prvkem B, a (c) průik koečého podsystému systému B je prvkem B. Všimětesi,žeprolibovoloudvojicibodů x, y X, x y,lzealézt U x, U y Btak, že x U x, y U y a U x U y = (systém Boddělujebodyprostoru X). Cvičeí 8: Libovolý systém B podmoži možiy X s vlastostmi(a),(b),(c) z předcházejícího cvičeí se azývá topologie(a X). Topologii a X velmi často začíme τ a dvojici(x, τ) azýváme topologický prostor. Prvky systému τ jsou otevřeé možiy (X, τ)apomocíichlzezavéstv(x, τ)řadupojmů,kterézátezteoriemp(pozor,vše efuguje zcelaaalogickyjakovmp!). Cvičeí9:Triviálímitopologiemia Xjsouapř.systémy τ = {, X}ebosystém τ 2 = P(X)všechpodmožimožiy X.Kteréfukcea(X, τ )eboa(x, τ 2 )jsou spojité?je-li#(x) 2, τ eoddělujebody X.(Problémmožostivytvořittopologii metrikou ebudeme blíže zkoumat.) Cvičeí 0: Ověřte všechy vlastosti stadardí metriky a prostoru C([ a, b]). Totéž proveďtepro C([ a, b])sitegrálímetrikou. Cvičeí : Rozmyslete si vlastosti itegrálí metriky a prostoru R([, b]) všech riemaovsky itegrovatelých fukcí a itervalu[ a, b]. Jak pracujeme s třídami skoro všude spojitých fukcí?
Cvičeí 2: Prostor m je tvoře všemi omezeými posloupostmi, prostor c všemi kovergetímiposloupostmi,prostor c 0 všemiposloupostmikovergetímik0aprostor s 0 všemiposloupostmi,kterémajípouzekoečýpočeteulovýchčleů.vevšechlze zavéstprox={x k } =: {x k}ormuvztahem x :=sup{ x k ; k N } (Můžeme pracovat s posloupostmi reálých ebo komplexích čísel.) Jestliže X Y začívztah Xjelieárímpodprostorem Y,jezřejmě s 0 c 0 c m s, kde sjelpvšechposloupostíčísel(z RebozC). Cvičeí 3: Normu v prostoru všech -tic reálých(ebo komplexích) čísel lze pro p zavéstpředpisem ( x p := x k p) /p. Ukažte, že je x :=max { x k ; k {,..., } } = lim p x p. Tytoprostoryzačíváme l p (jetedy l m). Cvičeí 4: Aalogicky zavádíme pro p prostory posloupostí: Na lieárím prostoru l p všechposloupostíx={x k },proěžje x k p < defiujeme ( x p := x k p) /p. Připoužitítohotoozačeíjerozuméklást l = mzaalogickýchdůvodůjakove Cvičeí 7. Cvičeí5:Zaveďtea R Rezáporoufukci σ(x, y)předpisem σ(x, y)= x y + x y! Všimětesi,žejeomezeáaukažte,že σjemetrika R!Pozámka:Fukce palpx s vlastostmi () p(x) 0, (2) p(0)=0, (3) p(x)=p( x) (4) p(x+y) p(x)+p(y) (5) pro t k t apro x k x je p(t k x k tx) 0 3 jeparaormaa X.Zkoumejte p(x y)!
4 Cvičeí6:Zobecětepředchozíúlohuadokažte,žeje-li ρ=ρ(x, y)metrikaamp X, je také ρ(x, y) σ(x, y)= +ρ(x, y) (omezeá) metrika a X. To ám dává možost zavést omezeou metriku a jakémkoli MP.Přitomsetatometrikaodpůvodílišíje epodstatě ktétokostrukcise ještě vrátíme. Cvičeí 7: Je poměrě vžité užíváí stadardího ozačeí pro prostory všech posloupostí reálých, resp. komplexích čísel, které pak uvažujeme jako prostory ad R, resp. C. Tetoprostorlzeopatřitmatrikou ρapř.tak,žeprovšecha x, y Xpoložíme Teto prostor budeme začit s. ρ(x, y):= 2 k x k y k + x k y k Cvičeí8:Ukažte,ževsplatí:je-li x k x 0 v saα k α 0 v T,pak α k x k α 0 x 0. Cvičeí9:VtomtocvičeízobecímeSchwarzovuerovosta R m :prokaždáčísla p, q (0, )splňujícípodmíku p+q= p q,eboli p + q =, akaždédvabody[ x,..., x m ],[ y,..., y m ]zr m platíhölderovaerovost m ( m ) /p ( m ) /q x k y k x k p y k q. Cvičeí20:Prokaždé p,<p<,aprokaždoudvojicibodů x=[ x,..., x m ], y=[ y,..., y m ]zr m platíerovostmikowskiho(českymikowského) ( m x k + y k p) /p ( m x k p) /p ( m + y k p) /p. JakýjejejívýzamvkotextuMP? Cvičeí2:DokažteHölderovuaMikovskihoerovostproprostoryposloupostí l p (tj. obdobé erovosti pro ekoečé řady)! Cvičeí 22: Připomeňte defiici otevřeé a uzavřeé koule a sféry v kotextu MP. V diskrétím MP jedotková sféra obsahuje libovolě moho disjuktích otevřeých jedotkovýchkoulí. Cvičeí 23: Připomeňte si defiici diametru možiy. Proč je součástí defiice část, vymezujícíspeciálědiam( )?Všimětesivztahůmezi poloměrem a průměrem koule v diskrétím prostoru!
Cvičeí24:JakpopisujemevzájemývztahboduamožiyvMP?Připomeňtesi defiici vitřího, vějšího a hraičího bodu možiy! Jak se defiuje hromadý bod možiy? Cvičeí 25: Jak defiujeme spojitost a limitu fukce, defiovaé a MP? Proč emůžeme defiovat limitu fukce vzhledem k možiě v jejím izolovaém bodě? Cvičeí26:Defiicevzdáleostimoži M, NvMP(P, ρ)je(m, N ) dist(m, N):=if{ρ(x, y); x M, y N}. Často zjedodušujeme, zde apř. píšeme dist(x, A) místo dist({x}, A) a mluvíme o vzdáleosti bodu od možiy. Cvičeí27:Ozačme d A (x)proeprázdoumožiu A (P, ρ)vzdáleostbodu xod možiy A. Dokažte erovost da (x) d A (y) ρ(x, y). Je-li x A,je d A (x)=0.lzetototvrzeíobrátit,tj.plyezd A (x)=0,že x A? Cvičeí28:NajdětedvědisjuktímožiyvRsulovouvzdáleostí!Jepro r >0 vzdáleost B(x, r)ak(x, r)vždy0?jepro r >0vzdáleost B(x, r)as(x, r)vždy0? Jepro r >0vzdáleost S(x, r)ak(x, r)vždy0? Cvičeí29:Lzevolit M, Neprázdéuzavřeév R sdist(m, N)=0disjuktí? Cvičeí30:Jevzdáleost d A (x)boduodmožiyspojitáfukce?lzejiějakvyužít, apř.kpopisuuzávěru Amožiy A? Cvičeí3:Normy a 2 (jdepouzeoozačeí,ikolio p-čkové ormy!)a LP Xtakové,žeexistujíkladékostaty C, Daprovšecha x Xplatí C x x 2 D x se azývají ekvivaletí ormy a X. Uveďte příklady! Je to symetrický vztah? Cvičeí 32: Na prostoru C([ a, b]) lze defiovat supremovou a itegrálí ormu. Zkoumejte vztahy mezi imi. Jsou tyto ormy ekvivaletí? Cvičeí33:Jsouormy, 2 a a R m ekvivaletí?colzeřícioormách p proobecé p? Cvičeí34:ZamysleteseadmožostmivytvářeídalšíchMP.Jsou-li(P, ρ)a(q, σ) dvamp,lzezavéstějakpřirozeěmetrikua P Q? Cvičeí35:Je-li(P, ρ)mpadefiujeme-li σ(x, y)= ρ(x, y) +ρ(x, y), je σ(x, y) ρ(x, y).neí-li(p, ρ)omezeý,elzealéztkladékostaty C, Dtak,aby provšecha x, y (P, ρ)(proč?). Cσ(x, y) ρ(x, y) Dσ(x, y) 5
6 Cvičeí 36: Metriky z předcházejícího příkladu jsou i jiak odlišé: je-li ρ geerováa ormou, σ tuto vlastost emá. Cvičeí37:Říkáme,žemetriky ρaσjsouaprostoru Pekvivaletí,platí-liprokaždou posloupostbodů x Pakaždé x Pekvivalece limx = xv(p, ρ) limx = xv(p, σ). Ukažte,žeprometrikyzeCvičeíje (/2)ρ(x, y) σ(x, y) ρ(x, y) provšecha x (P, ρ)ata y (P, ρ),proěžje ρ(x, y) <. Cvičeí38:Eukleidovskýprostor R 2 a Cjsouizometrickyizomorfí.Cosipodtím představíte? Cvičeí39:Ozačíme-li C := {z = x+iy C; y = 0},je C izometrickýsr. Podroběji,(metrický)podprostor C smetrikouidukovaouz(c, ρ)jeizometrický s R. Cvičeí 40: Je-li T prosté zobrazeí možiy P do metrického prostoru (Q, σ), lze jedodušezpvytvořitmptak,aby Tbylaizometrie(P, ρ)a(t(p), σ);stačídefiovat a P metriku ρ předpisem ρ(x, y):= σ(t(x), T(y)), x, y P. Totojejedazcest,pomocíížlzedefiovatdalšíMP. Cvičeí4:Naprostoru R = R {, }defiujmezobrazeído R T(x):= x + x, x R, aklademe T(x):= ±,je-li x=±. Tjeprostézobrazeí R aiterval[,]. Za(Q, σ)zvolme[,]smetrikouidukovaouzr adefiujmeprovšecha x, y R ρ(x, y)= T(x) T(y). Takjsmezískalidvojiciizometrickýchprostorůaopatřili R metrikou. Cvičeí42:LzezkaždéposloupostibodůMP(R, ρ),kde ρjemetrika,defiovaá vecvičeí39,vybratposloupostkovergetív(r, ρ)? Cvičeí43:Ozačme K půlkružici {[x, y] R 2 ; x 2 +(y ) 2 =, y }ajejí body promítětezbodu[0,]a R.Použijtepopsaousituacikdefiicizobrazeí ametrikya R sobdobýmivlastostmi,jakémá ρzpředcházejícíchdvoucvičeí!
Cvičeí44:Ozačme Kkružici {[x, y] R 2 ; x 2 +(y ) 2 = }ajejíbody promítěte zbodu[0,2]a R # := R { }.Postupujtejakovpředchozímcvičeíapoužijte popsaousituacikdefiicizobrazeíametriky ρa R # sobdobouvlastostí,jakou mělvziklýmp(r, ρ)zecvičeí40(resp.39)! Cvičeí45:JsouMP(R, ρ)a(r #, ρ)úplé,tj.kovergujevichkaždáposloupost, splňujícíbolzao-cauchyhopodmíku( cauchyovská posloupost)?uvědomtesi,že prostézobrazeí g:= T,kde T(x):= x + x, x R, zobrazuje ěkteré cauchyovské poslouposti bodů itervalu(0, ) a poslouposti bodů z R, které cauchyovské ejsou! Cvičeí46:Možiy QiR \ QjsouhustévR.Majírůzou velikost (mohutost)? Cvičeí47: Pohrajtesi trochushustýmipodmožiamivr: (a)existujídvědisjuktípodmožiy R \ QhustévR? (b)existujíprokaždé Ndisjuktípodmožiy M,..., M R \ QhustévR? (c)existujeekoečěmohodisjuktíchpodmoži R \ QhustýchvR? (d)nechť M Rjespočetá.Jepak R \ MhustávR? Zkuste formulovat podobé problémky a pak je řešte! Tímto způsobem přistupujte ikdalšímpojmům,sekterýmisebudemevrámciteoriempsezamovat! Cvičeí48:Ukažte,žemožia MjeřídkávMP(P, ρ)(tj. ( M ) =,právěkdyžje (P \ M)=P. ) 7 Cvičeí 49: Uvědomte si: komplemet husté možiy emusí být řídká možia, komplemet řídké možiy emusí být hustá možia. Rozmyslete si, že přidáím jedoduché vlastostibudoutytopřechodykekomplemetům dobřefugovat.např.komplemet uzavřeé řídké možiy je hustá možia. Cvičeí50:Jesjedoceí M M 2 dvouřídkýchmoži M, M 2 (P, ρ)opětřídká možia?jesjedoceíkoečéhopočtuřídkýchmoživ(p, ρ)opětřídkámožia? Cvičeí 5: Je sjedoceí spočeté možiy řídkých moži v(p, ρ) opět řídká možia? Cvičeí 52: Kolik růzých hustých(řídkých) moži umíte alézt v diskrétím prostoru ze Cvičeí 40? Kdy je diskrétí prostor separabilí? Kdy je diskrétí prostor totálě omezeý? Cvičeí 53: Ilustrujte metodu kategorií a důkazu existece iracioálího čísla! Cvičeí54:( )Dokažtemetodoukategoriíexistecifukce f C([ a, b]),kteráeí mootóíajakémkoliitervalu[ c, d] [ a, b].vizpomocýtext. Cvičeí55:( )Dokažtemetodoukategoriíexistecifukce f C([ a, b]),kteráemáv žádém bodě koečou jedostraou derivaci. Viz pomocý text.
8 Cvičeí56:( )Eulervjedézesvýchpracívyšelzezáméhovzorceprosoučetgeometrické řady z k =, z <, z k=0 adosadilza zvýraze it =cos t+isi t, t (0,2π).Úpravamidostalrovost cos kt+i sikt= k=0 k=0 ( cos t) isi t = 2 + i sit 2 2cost a porováím a úpravou reálých částí výrazů a obou straách této rovosti dostal rovost cos kt= 2. Itegrací a vhodým dosazeím posléze obdržel π t 2 =sit+ si2t 2 + si3t 3 +. (Eu) Uvědomte si všechy ekorektosti postupu.(fukci budeme dále chápat jako 2π-periodickou fukci espojitou v lichých ásobcích π, která se auluje ve všech bodech espojitosti.) Cvičeí57:Ukažte,ževzhledemkeskalárímusoučiu(f, g)= 2π 0 f(t)g(t)dtjesystém {e ikt }, k Z,ortogoálí! Cvičeí58:Ukažte,ževzhledemkeskalárímusoučiu(f, g)= 2π 0 f(t)g(t)dtjesystém {, si kt, cos kt}, k N, ortogoálí! Použijte vzorce, zámé ze středoškolské látky Cvičeí 59: Předpokládejte, že 2cosa cos b=cos(a+b)+cos(a b), 2cosa si b=si(a+b) si(a b), 2si a si b=cos(a+b) cos(a b). f(t)= a 0 2 + + ( ak cos kt+b k si kt ) ažeřadavpravokovergujestejoměrě.určete a k, b k, k N 0 pomocí f! Cvičeí60:Pročástečýsoučet s (f, x)fourierovyřadyspojité2π-periodickéfukce fodvoďtepro x=0 s (f,0)= π 2π 0 ( f(t) 2 + ) cos kt dt.
9 Cvičeí 6: Následující vyjádřeí Dirichletova jádra budeme budeme potřebovat ( D (t)= 2 + ) cos kt = si(+/2)t 2si t/2 (vyjádřeísesimásmyslpouzepro x R\2πZ,alerovostukazuje,ževtěchtobodech má D odstraitelé espojitosti). Rovost dokažte ze vzorce ( si k+ ) ( t si k ) ( t t=2cos ktsi 2 2 2) dosazeím,2,..., ;vziklérovosti sečtěte aupravte. Cvičeí62:Odhaděteormulieáríhofukcioálu L f= s (f,0)aprostoruspojitých2π-periodickýchfukcí C 2π (R)!Je { L =sup π π π } f(t) D (t)dt ; f π π π D (t) dt= π D. Vtomtoodhaduplatíveskutečostirovost;odůvoděte!Nyíormu D odhademe zdola:zerovosti si(t/2) t/2, t (0, ),plye π D = si( + /2)t π 2sit/2 dt si((+/2)t) dt t. π V posledím itegrálu v předcházejícím vztahu proveďte substituci u =( + /2)t a odhaděte(jedotlivé kroky zdůvoděte): 0 (+/2)π 0 siu u (+/2) du > kπ (k )π π kπ 0 siu u du si udu= 2 π k. Zdivergeceharmoickéřadydostáváme L =π D + pro,takže ormy L ejsoustejěomezeé. Cvičeí 63: Ověřte předpoklady Baach-Steihausovy věty a odůvoděte závěr: Existuje f C 2π (R),jejížFourierovařadaalespoňvjedombodědiverguje(PaulduBois- Reymod,873).Platídokocevíce:VC 2π (R)existuje(hustá)možiafukcí,jejichž Fourierova řada diverguje a husté podmožiě R. Cvičeí64:Vraťtesekevzorci(Eu)aukažte,žejdeoFourierovuřadu(espojité)fukce alevéstraěrovosti,aževbodechespojitostikovergujek0 ( = ( f(π+)+f(π ) ) /2 ). Cvičeí 65: Dokázali jsme Weierstrassovu aproximačí větu postupem, který užíval Ladau. Důkaz si můžete zopakovat v textu, k ěmuž je přístup z obsahu prosicových cvičeí.
0 Cvičeí 66: V souvislosti s Weierstrassovou větou jsme se sezámili s větou, kterou Korovkidokázalvr.953:Nechť L : C([ a, b]) C([ a, b]), N,jsouezáporélieárí operátorytakové,žeposloupost {L f}kovergujestejoměrěa[ a, b]kfukci fpro f =,Id,Id 2.Potomposloupost {L f}kovergujestejoměrěa[ a, b]kfukci f prokaždoufukci f C([ a, b]). Cvičeí67:Bersteir.92dokázal B f fa[0,]prokaždou f C([0,]). B f: x k=0 ( k ) ( ) f x k ( x) k, k x [0,]. Zdefiicejezřejmé,žeoperátory B : f B fjsoua C([0,])lieárí,ezáporéa zobrazují teto prostor do prostoru polyomů. Cvičeí68:Ukažtevásledujícíchcvičeích,žeposloupost {B f}stejoměrěkovergujeaitervalu[0,]kfukci fprotřifukce f=,id,aid 2.Ozačme f k =Id k, k=0,,2. Cvičeí69:Rovost B f 0 = f 0 provšecha Nplyezbiomickévěty. Cvičeí70:Uvažmedále,žepro k je ( ) k = k k k=0! ( k)! k! = ( )! ( k)!(k )! = Pro f dostaemepomocípředchozírovosti ( ) k B f (x)= x k ( x) k = x k j=0 ( ). k ( ) x k ( x) k = k ( ) = x x j ( x) ( ) j = x =f (x), j takžeprovšecha Nje B f = f. Cvičeí7:Dálespočtemepro k ( k ) ( 2 = k) k ( ) k a po úpravě dostaeme: k ( k ) = k = k Podosazeí f 2 obdržímeprovšecha x [0,] B f 2 (x)= ( ) + k ( ) ( = k ( k ) ( 2 x k) k ( x) k k=0 ( ) ; k ) ( ) 2. k 2 x [0,],
a pak jedoduchou úpravou postupě dostaeme B f 2 (x)= ( = ) ( ) 2 x k ( x) k + k 2 k=2 ( )x 2 + x ( = ( ) x k ( x) k = k ) f 2 (x)+ f (x); Cvičeí72:Je-li M R m možiavšechbodů,jejichžsouřadicejsoudiadickyracioálíčísla(jsoutvaru k/2 l, k Z, l N),určete M, M, M! Cvičeí73:Jsouprostory R=R, R m, m Nseparabilí?Jeprostor sseparabilí? Cvičeí74:Nechť ρjediskrétímetrikaaitervalu(0,).jeiterval(0,)smetrikou ρ separabilí MP? Cvičeí75:Jsouprostory m(= l ), c, c 0 separabilí? Cvičeí76:Jeprostor C([ a, b])separabilí? Cvičeí77:( )Kroměelemetáríhodůkazu(vizapř.pomocýtextčipředáška)vyplývá separabilita C([ a, b]) i z Weierstrassovy aproximačí věty. Jak věta zí?(dokážeme ji a cvičeí). Cvičeí78: Defiujte ε-siť možiy M! Najděte apř. v prostoru C([ a, b])příklad možiy, která je omezeá a přitom eí totálě omezeá! Cvičeí79:Jeprostor m(= l ), c, c 0 úplý? Cvičeí80:Naprostoru C([0,])defiujmeprokaždé Noperátory A tak,žepro každoufukci x C([0,])položíme ( k ( k A x = x ) ) a A xjelieárífukceaitervalu[(k )/, k/],kde,2,...,.zjistěte,zda platí kde Ijeidetickýoperátora C([0,]). Cvičeí8:Jeprostor C([ a, b])úplý? (a) A (x) x, x C([0,]), (b) A I C([0,]) 0, Cvičeí 82: Záte Weierstrassovu větu o polyomiálí aproximaci fukcí z prostoru C([0,])?Záteideualespoňjedohojejíhodůkazu? Cvičeí 83: Je souči dvou separabilích metrických prostorů separabilí metrický prostor? Cvičeí 84: Je souči dvou úplých metrických prostorů úplý metrický prostor?
2 Cvičeí85:Jezobrazeí T:(P, ρ) (P, ρ),prokteréplatí ρ(t(x), T(y)) < ρ(x, y), x, y P, kotraktivía(p, ρ)? Cvičeí 86( ): Pro posloupost x + = 2 ( x + a x ) s a > 0 jsme alezli(velmi dávo) její limitu(připomeňte si!). Souvisí teto příklad ějak s kotraktivitou zobrazeí? Šlo by teto příklad zobecit a případ -té odmociy? Cvičeí 87: Připomeňme si Catorovu větu v kotextu R i obecého metrického prostoru:nechť(p, ρ)jeúplýmetrickýprostoraechť {A } =jeerostoucíposloupost eprázdýchuzavřeýchmoživprostoru P,tj. A + A, N.Nechťdáleje diam(a ) 0. ( ) Potomexistujeprávějedebod x P takový,že {x}= = A. Ukažte, že předpoklad( ) je pro platost věty podstatý. Postřehete ějaký rozdíl protiklasické jedorozměré větě?ukažte,žeidalšípředpokladycatorovyvěty jsoupodstaté,tj.žepovyecháímootoieebouzavřeosti A taktomodifikovaé tvrzeí eplatí! Cvičeí 88: Připomeňte si Arzalà-Ascoliho větu! Jsou fukce z uzavřeé jedotkové koulevprostoru C([ a, b])stejěspojité? Cvičeí89:Nechťje F systémvšechfukcízprostoru C([ a, b]),kterémajía(a, b) všudevlastíderivaciaplatíproi f (x) < π, x (a, b).jsoufukcezf stejě spojité? Cvičeí 90: Na předášce jste si dokázali reálou verzi Stoe-Weierstrassovy věty: Nechť X (P, ρ)jekompaktíaechť A(X)jealgebrareálýchfukcíspojitýcha X.Odděluje-lialgebra A(X)body Xaobsahuje-liikostatífukci,jecl(A(X))=C(X). K í se váží ásledující cvičeí. Cvičeí9:Jeprostor C([ a, b])všechspojitýchfukcíaitervalu[ a, b]současěalgebrou?oddělujetatoalgebrabodyitervalu[ a, b]? Cvičeí92:Takéalgebra P([ a, b])všech(restrikcí)polyomůa[ a, b]oddělujebody [ a, b],jevšakvlastípodalgebrou C([ a, b]).cotvrdívtomtokotextuweierstrassova větaojejímuzávěrucl(p([ a, b]))vevztahukalgebře C([ a, b])? Cvičeí93:SystémvšechfukcízP([ a, b]),kteréseaulujívbodě(a+b)/2,odděluje body[ a, b],avšaktatoalgebraeobsahujevšechykostatífukcea[ a, b]. Cvičeí94:SystémvšechfukcízC([ a, b]),kteréseaulujívbodě(a+b)/2,odděluje body[ a, b],ajetoalgebra A.Cojeuzávěremtétoalgebry?
Cvičeí95:Systém BvšechfukcízC([ a, b]),kteréseaulujívedvourůzýchbodech x, y [ a, b],jealgebrakteráeoddělujebodyitervalu[ a, b].cojejejímuzávěrem? [Uzávěrcl(B)systému BobsahujepouzetyfukcezC([ a, b]),kteréležívb.] Cvičeí 96: Systém P všech polyomů z B obsahuje pouze jediou kostatí fukci f 0,alecl(P)=B,alejetoopětalgebra. Cvičeí 97: K čemu jsme použili pojem tzv. ε-přibližého řešeí difereciálí rovice 3 y = f(x, y)? ( ) Připomeňme,žeje-lifukce fvrovici( )spojitávoblasti G R 2 a ψjespojitáfukce aitervalu I R,prokterou[ t, ψ(t)] Gprovšecha t I,pakpokudplatípro ε >0 avšecha t I \ K ψ (t) f(t, ψ(t)) ε, ( ) kde K I je koečá možia, azýváme fukci ψ ε-přibližým řešeím rovice( ).