9. Měření závislostí ve statistice Pevná a volná závislost

Rozměr: px
Začít zobrazení ze stránky:

Download "9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost"

Transkript

1 Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé, oboustraé, příčé, zdálvé ad Pevá a volá závslost Pro pochopeí závslostí je potřebé pozat především pevou a volou závslost Závslost pevá Pevá závslost se obvykle vyskytuje u ěkterých přírodích jevů, kdy změa jedoho jevu způsobuje změu jevu druhého a to v přesě odpovídající teztě. Například délka kovové tyče je ve fukčím vztahu závslá a teplotě, v geometr plocha čtverce fukčě závsí a jeho straě a pod. Příklad: Pevá (fukčí, determstcká) závslost volý pád: s 1 gt pozorovaé hodoty Čas [s] Obr. 9.1 Pevá závslost dráhy a čase př volém pádu Pozorovaým hodotam lze přesě proložt spojtou křvku o zámé rovc. Případé odchylky od křvky jsou způsobey pouze chybam měřeí. Počet aměřeých hodot eovlvňuje přesost závěrů. Stuac lze kdykol přesě opakovat. 1

2 Poptávka po zboží [ks] Závslost volá Některé jevy mohou být a sobě závslé je volě, apř. závslost výosu plody a spotřebě hojv, závslost poptávky a ceě zboží apod. I zde se projeví závslost, avšak vztah je více č méě volý. Změa jedoho jevu podmňuje úroveň jého jevu je s určtou pravděpodobostí a rověž tezta změy druhého jevu může být růzá. Tuto závslost můžeme zkoumat je př větším možství jevů. Volá (stochastcká) závslost trží poptávka: 50 pozorovaé hodoty Cea zboží [Kč] Obr. 9. Volá závslost poptávky a cey zboží Všem pozorovaým hodotam elze proložt křvku. Odchylky od deálího průběhu závslost jsou dáy dvduálím zvláštostm jedotlvých případů. Iformace o závslost se zpřesňují s přbývajícím počtem případů. Stuac se kdy epodaří zovu přesě reprodukovat. Předmětem zájmu statstky je volá závslost, která je typcká pro socálě ekoomcké mohé jé vysoce komplkovaé jevy.

3 9.. Klasfkace statstckých závslostí Statstka se zývá především zkoumáím volé závslost. V rámc tohoto zkoumáí ale můžeme odhalt závslost pevé Podle druhu statstckých zaků, můžeme závslost člet ásledově: korelačí závslost závslost mez kvattatvím zaky (apř. vztah mez spotřebou krmva a dosahovaým přírůstkem u zvířat, mez délkou klasu pšece a počtem zr v klasu, mez výosem plody a straě jedé a spotřebou hojv), asocačí závslost závslost mez kvaltatvím alteratvím zaky (apř. vztah mez postřkem stromů a červvostí ovoce,), kotgečí závslost závslost mez kvaltatvím zaky možým (apř. ctlvost růzých druhů zvířat a ěkteré stresové poděty, vlv růzých techologí a výos jedotlvých druhů obl) Veškeré závslost můžeme rozdělt a závslost příčé a závslost zdálvé. Smysl zkoumat mají pouze závslost příčé, kde vystupuje: jede jev jako příča ezávslá proměá (X), druhý jev jako úček závslá proměá (Y). Statstka zkoumá příčé volé závslost Klasfkace statstckých závslostí číselých zaků Každá závslost číselých zaků má dva vzájemě eodděltelé atrbuty (vlastost): teztu závslost - korelace. průběh závslost - regrese, Statstka měří průběh a teztu závslost číselých zaků. Příčé závslost číselých zaků klasfkujeme z růzých hledsek: a závslost jedostraé a závslost oboustraé (vždy však vzájemé), a závslost přímočaré a křvočaré, ěkteré (zejméa přímočaré) a závslost poztví a závslost egatví (toto hledsko má pouze okrajový výzam), podle matematckých fukcí použtých a zkoumáí průběhu závslost a závslost leárí a závslost eleárí, podle počtu příč (ezávslých proměých) a závslost párové (jedoduché, s jedou ezávslou proměou) a závslost mohoásobé (s ejméě dvěma současě působícím ezávslým proměým),atd. V prax se větša úloh omezuje je a párové a leárí ebo křvočaré závslost. 3

4 Druhy korelačí závslost: Podle počtu zaků: - jedoduchá (prostá) Y = f (X) - víceásobá Y = f (X 1, X,, X ) Podle typu regresí fukce: y leárí závslost y eleárí závslost x x Podle směru regresí fukce: kladá (přímá) závslost záporá (epřímá závslost křvočará závslost y y y x x x Podle stupě závslost (korelace) zaků: ezávslost volá závslost žší stupeň vyšší stupeň pevá závslost y y y y x x x x Obr. 9.4 Příklady korelačí závslost 4

5 9.3. Korelačí aalýza Korelačí aalýza zkoumá korelačí závslost mez kvattatvím (číselým) zaky. Př zkoumáí korelačí závslost rozezáváme dva základí pojmy: Korelace = stupeň (těsost) závslost. Regrese = průběh závslost prostředctvím matematcké fukce (zpravdla přímky), změa závslé proměé podle ezávsle proměé. Př malém počtu statstckých jedotek je základem pro zkoumáí závslostí základí - datová tulka, do které zazameáváme hodoty statstckých zaků pro všechy statstcké jedotky od = 1 až po =. Základí - datová tulka a zkoumáí závslost T. 9.1 Statstcká jedotka Hodoty statstckých zaků Zak x Zak y 1 x 1 y 1 x y... x y V této podobě jde je o zázam výsledků zjšťováí za čleý statstcký soubor. Př velkém rozsahu dat je pracoví tulka epraktcká a epřehledá. Výhodější je v této stuac tzv. korelačí tulka, v které jsou uvedey četost kombací obmě hodot obou zaků. Pokud jde o ezávslé proměé je možé vykoat tříděí podle proměé x podle proměé y. T. 9. Korelačí tulka a zkoumáí závslost Zak x Zak y y 1 y. y l x l x1 x 1. l x x l x y1 y.. 5

6 Počet letokruhů Příklad: Za 10 rod máme údaje o počtu dětí v rodě (proměá x) a velkost bytu (proměá y) vyjádřeé počtem místostí. T. 9.3 Základí - datová tulka Statstcké zaky rody Roda Počet dětí v rodě (proměá x) Počet místostí (proměá y) T. 9.4 Korelačí tulka Počet dětí (proměá x) Počet místostí (proměá y) Celkem Celkem Prostředkem grafcké prezetace závslostí číselých zaků je korelačí bodový graf. Body v grafu představují jedotlvé statstcké jedotky, kterým odpovídají obměy příslušých statstckých zaků a osách x a y. Pozámka: Když se vyskyte více statstckých jedotek se stejým obměam statstckých zaků, body se v bodovém korelačím grafu překrývají. Pro lepší ázorost je možé v tomto případě použít pseudo-3d graf. Příklad: U ařezaých prke můžeme zkoumat závslost jejch tloušťky a počtu letokruhů , 0 1, 1, 4 1, 6 1, 8, 0,, 4, 6 Tloušťka prka [cm] Obr. 9.3 Korelačí bodový graf a zkoumáí závslost tloušťky prke a počtu jejch letokruhů 6

7 Korelačí aalýza má dvě základí úlohy: regresí úloha, korelačí úloha Korelačí a regresí úloha Korelačí úloha Aalytcký ástroj korelace se může použít k testováí závslost dvou číselých statstckých zaků. Korelačí úloha spočívá ve zkoumáí těsost korelačího vztahu. Závslost zameá, že hodoty jedoho zaku odpovídají přímo úměrě (kladá korelace) ebo eúměrě (záporá korelace) hodotám ve druhého zaku. Mírou korelace je koefcet, ebo dex korelace r. Má hodoty od -1 do 1, udávající, jak přesě odpovídají předpokládaé (očekávaé) hodoty, vyjádřeé regresí fukcí - spojcí tredu (tred, vývoj, směr, vyrováí měřeých velč), skutečým datům. Spojce tredu je ejspolehlvější v případě, že se hodota dexu (koefcetu) korelace - spolehlvost blíží ebo rová hodotě 1. Pokud jsou hodoty obou zaků ezávslé, bude korelace blízká ule. Idex (koefcet) korelace se vypočítá podle vztahu: r ( y ( y y( x )) y ) y 1 y kde x je x-ová souřadce datového bodu y je y-ová souřadce datového bodu je počet datových bodů Podle hodoty Idexu (koefcetu) korelace určuje míru závslost. Když bude mít Idex (koefcet) korelace hodoty: r = 0,0 0, r = 0,3 0,4 r = 0,5 0,6 r = 0,7 0,8 r = 0,9 1,0 jedá se o žádou ebo velm slou závslost jedá se o slou jedá se o průměrou závslost jedá se o slou závslost jedá se o velm slou závslost 7

8 9.4.. Regresí úloha Regresí úloha korelačí aalýzy má za cíl popsat průběh zkoumaého vztahu statstckých zaků a použít její výsledky př progózách. Jde o to, y jsme vyjádřl průběh korelačí závslost t.j. změy závsle proměé a změách ezávsle proměé. Teto vztah azýváme regrese. Regres popsujeme regresí fukcí. R = regresí koefcet = koefcet spolehlvost případé předpovědě Přesost regresí fukce je přímo závslá a rozsahu souboru. Pomocí regresí aalýzy, prodloužeím spojce tredu, se dají staovt hodoty za, ebo před zobrazeým daty. Tím se dá provést matematcká předpověď. Přesost matematckého předvídáí je úměrá velkost korelačí závslost. K určeí parametrů (koefcetů) regresí fukce se používá metoda ejmeších čtverců. 8

9 Metoda mmálích čtverců Výzam metody mmálích čtverců Metoda mmálích čtverců je uverzálí metodou staoveí (odhadu) parametrů b 0, b 1,..., b m fukce ahrazující původí aměřeé hodoty y závsle proměé Y. Zameá to, že hledáme fukc, která má součet čtverců odchylek měřeých údajů od teoretckých co ejmeší. V geometrcké představě to zameá, že hledáme takovou křvku, která co ejtěsěj přléhá k jedotlvým bodům. Fukce této křvky by měla být co ejjedodušší, y se dala sado používat k výpočtu dalších potřebých hodot. Tuto fukc azýváme regresí fukcí. Původě ezámé koefcety b j jsou parametry regresí fukce. Výběr typu fukce (tj. apř. kvadratcká, lomeá apod.) je v kompetec řeštele úlohy. Metoda mmálích čtverců aleze pak parametry ejlepší fukce předem zvoleého typu. každé pozorovaé hodotě y odpovídá hodota vypočteá y čtverec odchylky pozorovaé a vypočteé hodoty závslé proměé hodoty zavslé promeé Y pozorovaé hodoty závslé proměé y regresí fukce y hodoty ezávslé proměé X Obr. 9.7 Grafcké zázorěí metody krtéra mmálích čtverců 9

10 Metoda mmálích čtverců mmalzuje součet čtverců odchylek pozorovaých (aměřeých) hodot závsle proměé a zvoleé regresí fukce. Spočívá tedy v hledáí takové regresí fukce pro kterou bude platt vztah y y m 1 Platí pro fukce leárí eleárí, jedoduché víceásobé. Je-l rozsah souboru rove, je krtérum mmálích čtverců m ( y y ) [ y b j f j ( x )] 1 1 j 0 m. Dá se ukázat, že vyhovuje-l určtá fukce krtéru mmálích čtverců, splňuje automatcky též ( y y ) 0 (součet kladých a záporých odchylek kolem 1 regresí fukce se kompezuje). Tato podmíka však regresí fukc eurčuje jedozačě. Exstuje jedá regresí fukce zvoleého typu, která pro kokrétí data vyhovuje podmíce mmálích čtverců. Y y y X Obr. 9.8 Grafcké zázorěí krtéra mmálích čtverců 10

11 Proceta 9.5. Základí typy regresích fukcí a jejch aplkace Regresí fukce - spojce tredů může mít růzý tvar. Nejčastěj se používají fukce: leárí, expoecálí, mocá, logartmcká, polyomcká, Vyrováí leárí fukcí. Leárí spojce tredu je přzpůsobeá přímka používaá u jedoduchých leárích mož dat. Data jsou leárí, jestlže průběh jejch datových bodů přpomíá přímku. Leárí spojce tredu obvykle zobrazuje, že ěco roste ebo klesá kostatí měrou y a bx Příklad: Vyrováí vývoje výdajů a vědu z HDP leárí fukcí,5 Proceta z HDP a vědu a výzkum Slovesko EU 1,5 y = 0,03x - 44,115 R = 0, y = -0,05x + 50,645 R = 0,899 0, Roky Obr. 9.9 Porováí vývoje podílu vědy z HDP SR a EU 11

12 Počet požárů Vyrováí mocou fukcí Mocá spojce tredu je křvka používaá u dat porovávajících stoupající hodoty aměřeé v určtých tervalech. Například zrychleí auta v tervalech po 1 sekudě. Mocou spojc tredu elze vytvořt, jestlže data obsahují ulové ebo záporé hodoty. b y ax Vyrováí logartmckou fukcí Logartmcká spojce tredu je přzpůsobeá křvka používaá u dat, která rychle stoupají ebo klesají a postupě se vyrovávají. U logartmcké spojce tredu je možé použít kladé záporé hodoty. y al( x) b Vyrováí polyomckou fukcí Polyomcká spojce tredu je křvka používaá u dat, která kolísají. a edají se tedy aproxmovat jedodušší fukcí. Stupeň polyomu může být urče počtem kolísáí v datech ebo počtem zakřveí (maxm a mm) v křvce. Stupeň má obvykle jede vrchol. Stupeň 3 má obvykle jede ebo dva vrcholy. Stupeň 4 má obvykle až tř vrcholy. y a b x 6 1 b x... b6 x Příklad: Vyrováí počtu požárů za roky polyomem 0 50 Počty požárů ve stavebctví v ČR 00 y = 1,48x x + 6E+06 R = 0, Roky Obr. 9.9 Vývoj počtu požáru za roky

13 Počet požárů Úrazy Vyrováí expoecálí spojcí Expoecálí spojce tredu je křvka, která se používá v případě, že hodoty dat stoupají ebo klesají ve stále větších krocích. Tuto spojc elze vytvořt, jestlže data obsahují ulové ebo záporé hodoty. bx y ae Příklad Další graf udává statstcký soubor vytvořeý z reálě vysledovaých údajů v letecké dopravě. Počet smrtelých úrazů přpadajících a 1 mlo alétaých klometrů je vysledová v rocích 1950 až 005 Soubor byl vyrová expoecálí fukc. Koefcet spolehlvost R = je dost vysoký, y se expoecálí fukce mohla použít pro statstcké předvídáí. 50 Graf smrtelých úrazů Počty požárů ve stavebctví v ČR y = 5E+7e -0,08443x R = 0, y = 1,48x x + 6E+06 R = 0, Roky Roky Obr. 9.9 Vývoj smrtelých úrazů v letecké dopravě a 1 ml. alétaých klometrů za roky Předvídaé údaje jsou esmírě ceé formace pro strateg krzového pláováí. Tyto a obdobě vyhodoceé další vysledovaé formace se dají aplkovat a každé letště. To umožňuje přpravt odpovídající dmez místích záchraých sl a prostředků, přpravt potřebou kapactu zdravotckých a techckých zařízeí, orgazac záchraé hasčské lékařské služby, vytvořt s obraz o řídících pracích apod. 13

14 9.6. Asocačí závslost Asocačí závslost je závslost mez dvěma kvaltatvím alteratvím (dvojým) zaky: T. 9.5 Základí - datová tulka a zkoumáí asocačí závslost přítomost zaku epřítomost zaku zak A a zak B b Zak A Všeobecá asocačí tulka Zak B b β Celkem a aβ a α αb αβ α Celkem b β T. 9.6 Koefcet asocace Q a a b b Koefcet korelace Odchylka od ezávslost R a a a b b b Příklad: Soubor pracovíků podku B, rok 001, = 450 alteratví zaky: A očkováí, B oemocěí Oemocěí (B) Očkováí (A) ao b e ao a e Koefcet asocace Q a a , Koefcet asocace ukazuje vysoký stupeň účost očkováí. b b 14

15 9.7. Kotgečí závslost Kotgečí závslost mez kvaltatvím možým zaky Všeobecá kotgečí tulka T. 9.7 Zak A a a a a 1 k Celkem b b Zak B b j b l 1 1 j j k1 k kj kl 1 j l j 1l l l Celkem 1 k Čtvercová kotgece k l j k 1 j1 j 1 j1 j l j j k l j 1 j1 j Čuprovův koefcet kotgece K k 1l 1 15

16 Příklad: U 350 zákazíků byla hodocea spokojeost s poskytovaým službam vybraé frmy. T. 9.7 Kotgečí tulka a zkoumáí závslost spokojeost a využíváí služeb zákazíky Zákazíc Využíváí služeb Spokojeost Celkem se službam frmy ao e zřídka často velm často Celkem ( ) , K , 7 ( 3 1)( 1) 0,44 Z výsledku vyplývá, že exstuje průměrý vztah (závslost) mez spokojeostí se službam frmy a frekvecí jejch využíváí. 16

9. Měření závislostí ve statistice Pevná a volná závislost

9. Měření závislostí ve statistice Pevná a volná závislost Dráha [m] 9. Měřeí závislostí ve statistice Měřeí závislostí ve statistice se zabývá především zkoumáím vzájemé závislosti statistických zaků vícerozměrých souborů. Závislosti přitom mohou být apříklad

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

a další charakteristikou je četnost výběrového souboru n.

a další charakteristikou je četnost výběrového souboru n. Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě. 3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

Chyby přímých měření. Úvod

Chyby přímých měření. Úvod Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

Úvod do teorie měření

Úvod do teorie měření Uverzta Jaa Evagelsty Purkyě v Ústí ad Labem Přírodovědecká fakulta Úvod do teore měřeí Prof. Chlář emář 0 Průměr, rozptyl a směrodatá odchylka X = X = ( X X ) = = = Výpočty pomocí vzorců a pomocí statstckých

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

VY_52_INOVACE_J 05 01

VY_52_INOVACE_J 05 01 Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresí a korelačí aalýza Závslost příčá (kauzálí). Závslostí pevou se ozačuje případ, kdy výskytu jedoho jevu utě odpovídá výskyt druhé jevu (a často aopak). Z pravděpodobostího hledska jde o vztah, který

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2 Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

KVALITA REGRESNÍHO MODELU Radek Fajfr

KVALITA REGRESNÍHO MODELU Radek Fajfr UNIVERZITA PARDUBICE FAKULTA EKONOMICKO-SPRÁVNÍ KVALITA REGRESNÍHO MODELU Radek Fajfr Bakalářská práce 00 Prohlášeí Tuto prác jsem vypracoval samostatě. Veškeré lterárí pramey a formace, které jsem v

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,

Více

8 NELINEÁRNÍ REGRESNÍ MODELY

8 NELINEÁRNÍ REGRESNÍ MODELY 8 NELINEÁRNÍ REGRESNÍ MODELY 8 Tvorba eleárího regresího modelu Postup tvorby eleárího regresího modelu se dá rozčlet do těchto kroků: Návrh regresího modelu Obvykle se jako eleárí regresí model používá

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

T e c h n i c k á z p r á v a. Pokyn pro vyhodnocení nejistoty měření výsledků kvantitativních zkoušek. Technická zpráva č.

T e c h n i c k á z p r á v a. Pokyn pro vyhodnocení nejistoty měření výsledků kvantitativních zkoušek. Technická zpráva č. Evropská federace árodích asocací měřcích, zkušebích a aalytckých laboratoří Techcká zpráva č. /006 Srpe 006 Poky pro vyhodoceí ejstoty měřeí výsledků kvattatvích zkoušek T e c h c k á z p r á v a EUROLAB

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc.

Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc. Metody statstcké aalýzy doc. Ig. Dagmar Blatá, CSc. Bakoví sttut vysoká škola, a.s. Praha 0 METODY STATISTICKÉ ANALÝZY Autor: Recezet: Vydal: Tsk: Vydáí: doc. Ig. Dagmar Blatá, CSc. doc. Ig. Jří Trešl,

Více

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky). Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

Měření závislostí. Statistická závislost číselných znaků

Měření závislostí. Statistická závislost číselných znaků Měřeí závslostí Statstcká závslost číselých zaků - závslost dvou velč lze vádřt ako ech fukčí vztah vzorcem, taulkou hodot příslušé fukce eo grafck; - mez zak zkoumaých evů zšťueme estec příčé (kauzálí

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat 4. Korelace 4. Teoretcké základy korelace 4. Způsoby měřeí závslostí pro růzé typy dat Př prác se statstckým údaj se velm často setkáváme s daty, která jsou tvořea dvojcem, trojcem hodot. Složky takovýchto

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

jsou varianty znaku) b) při intervalovém třídění (hodnoty x

jsou varianty znaku) b) při intervalovém třídění (hodnoty x Výběr z eřeštelých příkladů ze zkouškových testů Jde o výběr z tpů příkladů, jejchž úspěšost řešeí u zkoušek se blíží ule. Itervalové versus bodové tříděí V tabulce je uvedeo rozděleí četostí a) př bodovém

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Téma 2 Přímková a rovinná soustava sil

Téma 2 Přímková a rovinná soustava sil Stavebí statka,.ročík bakalářského studa Téma 2 Přímková a rová soustava sl Přímková soustava sl ový svazek sl Statcký momet síly k bodu a dvojce sl v rově Obecá rová soustava sl ová soustava rovoběžých

Více

Náhodné jevy, jevové pole, pravděpodobnost

Náhodné jevy, jevové pole, pravděpodobnost S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

S1P Popisná statistika. Popisná statistika. Libor Žák

S1P Popisná statistika. Popisná statistika. Libor Žák SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk

Více

PROJEKT PARKINSON KLUBU BRNO Život je pohyb a pohyb je život Význam a zaměření projektu. Hodnotící ukazatele projektu.

PROJEKT PARKINSON KLUBU BRNO Život je pohyb a pohyb je život Význam a zaměření projektu. Hodnotící ukazatele projektu. - 1 - - - - 3 - - 4 - - 5 - PROJEKT PARKINSON KLUBU BRNO Žvot je pohyb a pohyb je žvot - 015 Výzam a zaměřeí projektu Základí deou projektu je vzdorovat egatvím tělesým a psychckým projevům Parksoově emoc,

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

11. Popisná statistika

11. Popisná statistika . Popsá statstka.. Pozámka: Př statstckém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákotost, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statstcké jedotky. Př

Více

P2: Statistické zpracování dat

P2: Statistické zpracování dat P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Statistika - vícerozměrné metody

Statistika - vícerozměrné metody Statstka - vícerozměré metody Mgr. Mart Sebera, Ph.D. Katedra kezologe Masarykova uverzta Fakulta sportovích studí Bro 0 Obsah Obsah... Sezam obrázků... 4 Sezam tabulek... 4 Úvod... 6 Pojmy... 7 Náhodé

Více

BIVŠ. Pravděpodobnost a statistika

BIVŠ. Pravděpodobnost a statistika BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz

Více

12. Neparametrické hypotézy

12. Neparametrické hypotézy . Neparametrcké hypotézy V této část se budeme zabývat specálí částí teore statstckých hypotéz tzv. eparametrckým hypotézam ebo jak řečeo eparametrckým statstckým testy. Neparametrcké se azývají proto,

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU

APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV FINANCÍ FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF FINANCES APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC Jří HŘEBÍČEK, Mchal HEJČ, Jaa SOUKOPOVÁ ECO-Maagemet,

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE Praha 8 Pavel Třasák ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

Jednoduchá lineární regrese

Jednoduchá lineární regrese Jedoduchá leárí regrese Motvace: Cíl regresí aalýz - popsat závslost hodot velč Y a hodotách velč X. Nutost vřešeí dvou problémů: a) jaký tp fukce se použje k popsu daé závslost; b) jak se staoví kokrétí

Více

Statistická analýza dat

Statistická analýza dat INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Statstcká aalýza dat Učebí texty k semář Autor: Prof. RNDr. Mla Melou, DrSc. Datum: 5.. 011 Cetrum pro rozvoj výzkumu pokročlých řídcích a sezorckých techologí CZ.1.07/.3.00/09.0031

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určté předpoklady (hypotézy) o základím souboru STATISTICKÁ HYPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

Model poptávky po železniční osobní dopravě Českých drah, a. s. na tuzemském přepravním trhu

Model poptávky po železniční osobní dopravě Českých drah, a. s. na tuzemském přepravním trhu Vědeckotechcký sorík ČD č. 3/0 Leka Zahradíková Model poptávky po železčí osoí dopravě Českých drah, a. s. a tuzemském přepravím trhu Klíčová slova: poptávka, osoí doprava, České dráhy, regresí aalýza,

Více

Výstup a n. Vstup. obrázek 1: Blokové schéma a graf paralelní soustavy

Výstup a n. Vstup. obrázek 1: Blokové schéma a graf paralelní soustavy Paralelí soustava Vstup a a Výstup a Vstup a Výstup a a obrázek : Blokové schéma a graf paralelí soustavy paralelí soustava je v bezporuchovém stavu je-l v bezporuchovém stavu prvek (tzv. adbytečé spojeí

Více

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

VŠB Technická univerzita Ostrava DISKRIMINAČNÍ ANALÝZA JAKO NÁSTROJ PRO HODNOCENÍ CHIRURGICKÝCH RIZIK

VŠB Technická univerzita Ostrava DISKRIMINAČNÍ ANALÝZA JAKO NÁSTROJ PRO HODNOCENÍ CHIRURGICKÝCH RIZIK VŠB Techcká uverzta Ostrava Fakulta elektrotechky a formatky DISKRIMINAČNÍ ANALÝZA JAKO NÁSTROJ PRO HODNOCENÍ CHIRURGICKÝCH RIZIK Dzertačí práce Studjí obor: Školtel: Doktoradka: Výpočetí a aplkovaá matematka

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

B a k a l ářská práce

B a k a l ářská práce Vysoká škola ekoomcká v Praze Fakulta maagemetu v Jdřchově Hradc B a k a l ářská práce Iveta Doležalová 007 Vysoká škola ekoomcká v Praze Fakulta maagemetu v Jdřchově Hradc Katedra maagemetu formací Katedra

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2 SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

Testování hypotéz. 3.1 Základní pojmy a obecný postup při testování

Testování hypotéz. 3.1 Základní pojmy a obecný postup při testování Lekce 3 Testováí hypotéz Vlajkovou lodí matematcké statstky jsou techky testováí hypotéz. Formulace hypotéz a jejch ověřováí jsou základím mechasmem postupu ldského pozáí. Pokud jsou formace, potřebé k

Více

9.3.5 Korelace. Předpoklady: 9304

9.3.5 Korelace. Předpoklady: 9304 935 Koelace Předpoklad: 9304 Zatím jsme se zabýval vžd pouze jedím zakem, ve statstckém výzkumu jsme však u každého jedotlvce (statstcké jedotk) sledoval zaků více Učtě spolu ěkteé zak souvsí (apříklad

Více

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné CHYBY MĚŘENÍ Opakovaé měřeí téže fyzkáí večy evede vždy k přesě stejým výsedkům. Této skutečost bychom se evyhu, kdybychom měřeí provádě s ejvětší důkadostí a precsostí aopak, čím ctvější a přesější jsou

Více

Výsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu.

Výsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu. Ig. Marta Ltschmaová Statstka I., cveí 4 JEDNODUCHÁ LINEÁRNÍ REGRESE asto chceme prozkoumat vztah mez dvma velam, kde jeda z ch, tzv. ezávsle promá x, má ovlvovat druhou, tzv. závsle promou Y. edpokládá

Více