9. Měření závislostí ve statistice Pevná a volná závislost

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost"

Transkript

1 Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé, oboustraé, příčé, zdálvé ad Pevá a volá závslost Pro pochopeí závslostí je potřebé pozat především pevou a volou závslost Závslost pevá Pevá závslost se obvykle vyskytuje u ěkterých přírodích jevů, kdy změa jedoho jevu způsobuje změu jevu druhého a to v přesě odpovídající teztě. Například délka kovové tyče je ve fukčím vztahu závslá a teplotě, v geometr plocha čtverce fukčě závsí a jeho straě a pod. Příklad: Pevá (fukčí, determstcká) závslost volý pád: s 1 gt pozorovaé hodoty Čas [s] Obr. 9.1 Pevá závslost dráhy a čase př volém pádu Pozorovaým hodotam lze přesě proložt spojtou křvku o zámé rovc. Případé odchylky od křvky jsou způsobey pouze chybam měřeí. Počet aměřeých hodot eovlvňuje přesost závěrů. Stuac lze kdykol přesě opakovat. 1

2 Poptávka po zboží [ks] Závslost volá Některé jevy mohou být a sobě závslé je volě, apř. závslost výosu plody a spotřebě hojv, závslost poptávky a ceě zboží apod. I zde se projeví závslost, avšak vztah je více č méě volý. Změa jedoho jevu podmňuje úroveň jého jevu je s určtou pravděpodobostí a rověž tezta změy druhého jevu může být růzá. Tuto závslost můžeme zkoumat je př větším možství jevů. Volá (stochastcká) závslost trží poptávka: 50 pozorovaé hodoty Cea zboží [Kč] Obr. 9. Volá závslost poptávky a cey zboží Všem pozorovaým hodotam elze proložt křvku. Odchylky od deálího průběhu závslost jsou dáy dvduálím zvláštostm jedotlvých případů. Iformace o závslost se zpřesňují s přbývajícím počtem případů. Stuac se kdy epodaří zovu přesě reprodukovat. Předmětem zájmu statstky je volá závslost, která je typcká pro socálě ekoomcké mohé jé vysoce komplkovaé jevy.

3 9.. Klasfkace statstckých závslostí Statstka se zývá především zkoumáím volé závslost. V rámc tohoto zkoumáí ale můžeme odhalt závslost pevé Podle druhu statstckých zaků, můžeme závslost člet ásledově: korelačí závslost závslost mez kvattatvím zaky (apř. vztah mez spotřebou krmva a dosahovaým přírůstkem u zvířat, mez délkou klasu pšece a počtem zr v klasu, mez výosem plody a straě jedé a spotřebou hojv), asocačí závslost závslost mez kvaltatvím alteratvím zaky (apř. vztah mez postřkem stromů a červvostí ovoce,), kotgečí závslost závslost mez kvaltatvím zaky možým (apř. ctlvost růzých druhů zvířat a ěkteré stresové poděty, vlv růzých techologí a výos jedotlvých druhů obl) Veškeré závslost můžeme rozdělt a závslost příčé a závslost zdálvé. Smysl zkoumat mají pouze závslost příčé, kde vystupuje: jede jev jako příča ezávslá proměá (X), druhý jev jako úček závslá proměá (Y). Statstka zkoumá příčé volé závslost Klasfkace statstckých závslostí číselých zaků Každá závslost číselých zaků má dva vzájemě eodděltelé atrbuty (vlastost): teztu závslost - korelace. průběh závslost - regrese, Statstka měří průběh a teztu závslost číselých zaků. Příčé závslost číselých zaků klasfkujeme z růzých hledsek: a závslost jedostraé a závslost oboustraé (vždy však vzájemé), a závslost přímočaré a křvočaré, ěkteré (zejméa přímočaré) a závslost poztví a závslost egatví (toto hledsko má pouze okrajový výzam), podle matematckých fukcí použtých a zkoumáí průběhu závslost a závslost leárí a závslost eleárí, podle počtu příč (ezávslých proměých) a závslost párové (jedoduché, s jedou ezávslou proměou) a závslost mohoásobé (s ejméě dvěma současě působícím ezávslým proměým),atd. V prax se větša úloh omezuje je a párové a leárí ebo křvočaré závslost. 3

4 Druhy korelačí závslost: Podle počtu zaků: - jedoduchá (prostá) Y = f (X) - víceásobá Y = f (X 1, X,, X ) Podle typu regresí fukce: y leárí závslost y eleárí závslost x x Podle směru regresí fukce: kladá (přímá) závslost záporá (epřímá závslost křvočará závslost y y y x x x Podle stupě závslost (korelace) zaků: ezávslost volá závslost žší stupeň vyšší stupeň pevá závslost y y y y x x x x Obr. 9.4 Příklady korelačí závslost 4

5 9.3. Korelačí aalýza Korelačí aalýza zkoumá korelačí závslost mez kvattatvím (číselým) zaky. Př zkoumáí korelačí závslost rozezáváme dva základí pojmy: Korelace = stupeň (těsost) závslost. Regrese = průběh závslost prostředctvím matematcké fukce (zpravdla přímky), změa závslé proměé podle ezávsle proměé. Př malém počtu statstckých jedotek je základem pro zkoumáí závslostí základí - datová tulka, do které zazameáváme hodoty statstckých zaků pro všechy statstcké jedotky od = 1 až po =. Základí - datová tulka a zkoumáí závslost T. 9.1 Statstcká jedotka Hodoty statstckých zaků Zak x Zak y 1 x 1 y 1 x y... x y V této podobě jde je o zázam výsledků zjšťováí za čleý statstcký soubor. Př velkém rozsahu dat je pracoví tulka epraktcká a epřehledá. Výhodější je v této stuac tzv. korelačí tulka, v které jsou uvedey četost kombací obmě hodot obou zaků. Pokud jde o ezávslé proměé je možé vykoat tříděí podle proměé x podle proměé y. T. 9. Korelačí tulka a zkoumáí závslost Zak x Zak y y 1 y. y l x l x1 x 1. l x x l x y1 y.. 5

6 Počet letokruhů Příklad: Za 10 rod máme údaje o počtu dětí v rodě (proměá x) a velkost bytu (proměá y) vyjádřeé počtem místostí. T. 9.3 Základí - datová tulka Statstcké zaky rody Roda Počet dětí v rodě (proměá x) Počet místostí (proměá y) T. 9.4 Korelačí tulka Počet dětí (proměá x) Počet místostí (proměá y) Celkem Celkem Prostředkem grafcké prezetace závslostí číselých zaků je korelačí bodový graf. Body v grafu představují jedotlvé statstcké jedotky, kterým odpovídají obměy příslušých statstckých zaků a osách x a y. Pozámka: Když se vyskyte více statstckých jedotek se stejým obměam statstckých zaků, body se v bodovém korelačím grafu překrývají. Pro lepší ázorost je možé v tomto případě použít pseudo-3d graf. Příklad: U ařezaých prke můžeme zkoumat závslost jejch tloušťky a počtu letokruhů , 0 1, 1, 4 1, 6 1, 8, 0,, 4, 6 Tloušťka prka [cm] Obr. 9.3 Korelačí bodový graf a zkoumáí závslost tloušťky prke a počtu jejch letokruhů 6

7 Korelačí aalýza má dvě základí úlohy: regresí úloha, korelačí úloha Korelačí a regresí úloha Korelačí úloha Aalytcký ástroj korelace se může použít k testováí závslost dvou číselých statstckých zaků. Korelačí úloha spočívá ve zkoumáí těsost korelačího vztahu. Závslost zameá, že hodoty jedoho zaku odpovídají přímo úměrě (kladá korelace) ebo eúměrě (záporá korelace) hodotám ve druhého zaku. Mírou korelace je koefcet, ebo dex korelace r. Má hodoty od -1 do 1, udávající, jak přesě odpovídají předpokládaé (očekávaé) hodoty, vyjádřeé regresí fukcí - spojcí tredu (tred, vývoj, směr, vyrováí měřeých velč), skutečým datům. Spojce tredu je ejspolehlvější v případě, že se hodota dexu (koefcetu) korelace - spolehlvost blíží ebo rová hodotě 1. Pokud jsou hodoty obou zaků ezávslé, bude korelace blízká ule. Idex (koefcet) korelace se vypočítá podle vztahu: r ( y ( y y( x )) y ) y 1 y kde x je x-ová souřadce datového bodu y je y-ová souřadce datového bodu je počet datových bodů Podle hodoty Idexu (koefcetu) korelace určuje míru závslost. Když bude mít Idex (koefcet) korelace hodoty: r = 0,0 0, r = 0,3 0,4 r = 0,5 0,6 r = 0,7 0,8 r = 0,9 1,0 jedá se o žádou ebo velm slou závslost jedá se o slou jedá se o průměrou závslost jedá se o slou závslost jedá se o velm slou závslost 7

8 9.4.. Regresí úloha Regresí úloha korelačí aalýzy má za cíl popsat průběh zkoumaého vztahu statstckých zaků a použít její výsledky př progózách. Jde o to, y jsme vyjádřl průběh korelačí závslost t.j. změy závsle proměé a změách ezávsle proměé. Teto vztah azýváme regrese. Regres popsujeme regresí fukcí. R = regresí koefcet = koefcet spolehlvost případé předpovědě Přesost regresí fukce je přímo závslá a rozsahu souboru. Pomocí regresí aalýzy, prodloužeím spojce tredu, se dají staovt hodoty za, ebo před zobrazeým daty. Tím se dá provést matematcká předpověď. Přesost matematckého předvídáí je úměrá velkost korelačí závslost. K určeí parametrů (koefcetů) regresí fukce se používá metoda ejmeších čtverců. 8

9 Metoda mmálích čtverců Výzam metody mmálích čtverců Metoda mmálích čtverců je uverzálí metodou staoveí (odhadu) parametrů b 0, b 1,..., b m fukce ahrazující původí aměřeé hodoty y závsle proměé Y. Zameá to, že hledáme fukc, která má součet čtverců odchylek měřeých údajů od teoretckých co ejmeší. V geometrcké představě to zameá, že hledáme takovou křvku, která co ejtěsěj přléhá k jedotlvým bodům. Fukce této křvky by měla být co ejjedodušší, y se dala sado používat k výpočtu dalších potřebých hodot. Tuto fukc azýváme regresí fukcí. Původě ezámé koefcety b j jsou parametry regresí fukce. Výběr typu fukce (tj. apř. kvadratcká, lomeá apod.) je v kompetec řeštele úlohy. Metoda mmálích čtverců aleze pak parametry ejlepší fukce předem zvoleého typu. každé pozorovaé hodotě y odpovídá hodota vypočteá y čtverec odchylky pozorovaé a vypočteé hodoty závslé proměé hodoty zavslé promeé Y pozorovaé hodoty závslé proměé y regresí fukce y hodoty ezávslé proměé X Obr. 9.7 Grafcké zázorěí metody krtéra mmálích čtverců 9

10 Metoda mmálích čtverců mmalzuje součet čtverců odchylek pozorovaých (aměřeých) hodot závsle proměé a zvoleé regresí fukce. Spočívá tedy v hledáí takové regresí fukce pro kterou bude platt vztah y y m 1 Platí pro fukce leárí eleárí, jedoduché víceásobé. Je-l rozsah souboru rove, je krtérum mmálích čtverců m ( y y ) [ y b j f j ( x )] 1 1 j 0 m. Dá se ukázat, že vyhovuje-l určtá fukce krtéru mmálích čtverců, splňuje automatcky též ( y y ) 0 (součet kladých a záporých odchylek kolem 1 regresí fukce se kompezuje). Tato podmíka však regresí fukc eurčuje jedozačě. Exstuje jedá regresí fukce zvoleého typu, která pro kokrétí data vyhovuje podmíce mmálích čtverců. Y y y X Obr. 9.8 Grafcké zázorěí krtéra mmálích čtverců 10

11 Proceta 9.5. Základí typy regresích fukcí a jejch aplkace Regresí fukce - spojce tredů může mít růzý tvar. Nejčastěj se používají fukce: leárí, expoecálí, mocá, logartmcká, polyomcká, Vyrováí leárí fukcí. Leárí spojce tredu je přzpůsobeá přímka používaá u jedoduchých leárích mož dat. Data jsou leárí, jestlže průběh jejch datových bodů přpomíá přímku. Leárí spojce tredu obvykle zobrazuje, že ěco roste ebo klesá kostatí měrou y a bx Příklad: Vyrováí vývoje výdajů a vědu z HDP leárí fukcí,5 Proceta z HDP a vědu a výzkum Slovesko EU 1,5 y = 0,03x - 44,115 R = 0, y = -0,05x + 50,645 R = 0,899 0, Roky Obr. 9.9 Porováí vývoje podílu vědy z HDP SR a EU 11

12 Počet požárů Vyrováí mocou fukcí Mocá spojce tredu je křvka používaá u dat porovávajících stoupající hodoty aměřeé v určtých tervalech. Například zrychleí auta v tervalech po 1 sekudě. Mocou spojc tredu elze vytvořt, jestlže data obsahují ulové ebo záporé hodoty. b y ax Vyrováí logartmckou fukcí Logartmcká spojce tredu je přzpůsobeá křvka používaá u dat, která rychle stoupají ebo klesají a postupě se vyrovávají. U logartmcké spojce tredu je možé použít kladé záporé hodoty. y al( x) b Vyrováí polyomckou fukcí Polyomcká spojce tredu je křvka používaá u dat, která kolísají. a edají se tedy aproxmovat jedodušší fukcí. Stupeň polyomu může být urče počtem kolísáí v datech ebo počtem zakřveí (maxm a mm) v křvce. Stupeň má obvykle jede vrchol. Stupeň 3 má obvykle jede ebo dva vrcholy. Stupeň 4 má obvykle až tř vrcholy. y a b x 6 1 b x... b6 x Příklad: Vyrováí počtu požárů za roky polyomem 0 50 Počty požárů ve stavebctví v ČR 00 y = 1,48x x + 6E+06 R = 0, Roky Obr. 9.9 Vývoj počtu požáru za roky

13 Počet požárů Úrazy Vyrováí expoecálí spojcí Expoecálí spojce tredu je křvka, která se používá v případě, že hodoty dat stoupají ebo klesají ve stále větších krocích. Tuto spojc elze vytvořt, jestlže data obsahují ulové ebo záporé hodoty. bx y ae Příklad Další graf udává statstcký soubor vytvořeý z reálě vysledovaých údajů v letecké dopravě. Počet smrtelých úrazů přpadajících a 1 mlo alétaých klometrů je vysledová v rocích 1950 až 005 Soubor byl vyrová expoecálí fukc. Koefcet spolehlvost R = je dost vysoký, y se expoecálí fukce mohla použít pro statstcké předvídáí. 50 Graf smrtelých úrazů Počty požárů ve stavebctví v ČR y = 5E+7e -0,08443x R = 0, y = 1,48x x + 6E+06 R = 0, Roky Roky Obr. 9.9 Vývoj smrtelých úrazů v letecké dopravě a 1 ml. alétaých klometrů za roky Předvídaé údaje jsou esmírě ceé formace pro strateg krzového pláováí. Tyto a obdobě vyhodoceé další vysledovaé formace se dají aplkovat a každé letště. To umožňuje přpravt odpovídající dmez místích záchraých sl a prostředků, přpravt potřebou kapactu zdravotckých a techckých zařízeí, orgazac záchraé hasčské lékařské služby, vytvořt s obraz o řídících pracích apod. 13

14 9.6. Asocačí závslost Asocačí závslost je závslost mez dvěma kvaltatvím alteratvím (dvojým) zaky: T. 9.5 Základí - datová tulka a zkoumáí asocačí závslost přítomost zaku epřítomost zaku zak A a zak B b Zak A Všeobecá asocačí tulka Zak B b β Celkem a aβ a α αb αβ α Celkem b β T. 9.6 Koefcet asocace Q a a b b Koefcet korelace Odchylka od ezávslost R a a a b b b Příklad: Soubor pracovíků podku B, rok 001, = 450 alteratví zaky: A očkováí, B oemocěí Oemocěí (B) Očkováí (A) ao b e ao a e Koefcet asocace Q a a , Koefcet asocace ukazuje vysoký stupeň účost očkováí. b b 14

15 9.7. Kotgečí závslost Kotgečí závslost mez kvaltatvím možým zaky Všeobecá kotgečí tulka T. 9.7 Zak A a a a a 1 k Celkem b b Zak B b j b l 1 1 j j k1 k kj kl 1 j l j 1l l l Celkem 1 k Čtvercová kotgece k l j k 1 j1 j 1 j1 j l j j k l j 1 j1 j Čuprovův koefcet kotgece K k 1l 1 15

16 Příklad: U 350 zákazíků byla hodocea spokojeost s poskytovaým službam vybraé frmy. T. 9.7 Kotgečí tulka a zkoumáí závslost spokojeost a využíváí služeb zákazíky Zákazíc Využíváí služeb Spokojeost Celkem se službam frmy ao e zřídka často velm často Celkem ( ) , K , 7 ( 3 1)( 1) 0,44 Z výsledku vyplývá, že exstuje průměrý vztah (závslost) mez spokojeostí se službam frmy a frekvecí jejch využíváí. 16

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

BIVŠ. Pravděpodobnost a statistika

BIVŠ. Pravděpodobnost a statistika BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Statistická analýza dat

Statistická analýza dat INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Statstcká aalýza dat Učebí texty k semář Autor: Prof. RNDr. Mla Melou, DrSc. Datum: 5.. 011 Cetrum pro rozvoj výzkumu pokročlých řídcích a sezorckých techologí CZ.1.07/.3.00/09.0031

Více

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN

Více

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC Jří HŘEBÍČEK, Mchal HEJČ, Jaa SOUKOPOVÁ ECO-Maagemet,

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK 04 prof. Ig. Bohuml Mařík, CSc. STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH.

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 OBSAH: ÚVOD... 4. CO JE STATISTIKA?... 4. STATISTICKÁ DATA... 5.3 MĚŘENÍ

Více

ÚVOD DO PRAKTICKÉ FYZIKY I

ÚVOD DO PRAKTICKÉ FYZIKY I JIŘÍ ENGLICH ÚVOD DO PRAKTICKÉ FYZIKY I ZPRACOVÁNÍ VÝSLEDKŮ MĚŘENÍ Jede z epermetů, které změly vývoj fyzky v mulém století. V roce 9 prof. H. Kamerlgh Oes ve své laboratoř v Leydeu měřl teplotí závslost

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Nepředvídané události v rámci kvantifikace rizika

Nepředvídané události v rámci kvantifikace rizika Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT (OPRAVENÁ VERZE 006) Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 Obsah: Úvod... 3 Programové prostředky pro statstcké výpočty... 4. Tabulkový

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

SPOŘENÍ. Spoření krátkodobé

SPOŘENÍ. Spoření krátkodobé SPOŘENÍ Krátkodobé- doba spořeí epřesáhe jedo úrokové období (obvykle 1 rok). Úroky jsou přpsováy a koc doby spořeí. Jedotlvé složky jsou úročey a základě jedoduchého úročeí. Dlouhodobé doba spořeí bude

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

Využití účetních dat pro finanční řízení

Využití účetních dat pro finanční řízení Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze. Lukáš Kleňha

Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze. Lukáš Kleňha Vysoká škola ekoomcká v Praze Fakulta formatky a statstky Vyšší odborá škola formačích služeb v Praze Lukáš Kleňha egresí aalýza acetovy rogrese o rví hostalzac s CHOPN 0 Prohlášeí Prohlašuj, že jsem

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

Fraktálová komprese. Historie

Fraktálová komprese. Historie Fraktálová komprese Hstore Prví zmíky o tzv. fraktálové kompres jsem ašel kdys v bezvadé a dodes aktuálí kížce!! Grafcké formáty (Braslav Sobota, Já Mlá, akl. Kopp), kde však šlo spíše o adšeý úvod a pak

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

Téma 5: Analýza závislostí

Téma 5: Analýza závislostí Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech)

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech) Pozámk k tématu Koelace a jedoduchá leáí egee (Téma eí ve kptech) Mějme data, ),...,(, ), kteá jou áhodým výběem z ějaké populace. Data ted pokládáme za ezávlé ealzace dvojce áhodých velč ( X, Y ). Půmě

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

1 STATISTICKÁ ŠETŘENÍ

1 STATISTICKÁ ŠETŘENÍ STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;

Více

Jednoduchá lineární závislost

Jednoduchá lineární závislost Jedoduchá leárí závlot Regreí fuce: ),...,, ( 0 m f Předpolad: Fuce je leárí v parametrech: ) (... ) 0 ( 0 f f m m f 0 ()... f m () regreor 0... m regreí parametr určujeme METODOU NEJMENŠÍCH ČTVERCŮ Regreí

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

Téma 3: Popisná statistika

Téma 3: Popisná statistika Popá tatta Téma : Popá tatta Předáša 7 Záladí tattcé pojmy Pojem a úoly tatty Statta je věda, teá e zabývá zíáváím, zpacováím a aalýzou dat po potřeby ozhodováí. Zoumá tav a vývoj homadých jevů a vztahů

Více

DLUHOPISY. Třídění z hlediska doby splatnosti

DLUHOPISY. Třídění z hlediska doby splatnosti DLUHOISY - dlouhodobý obchodovatelý ceý papír - má staoveou dobu splatost - vyadřue závaze emteta oblgace (dlužía) vůč matel oblgace (věřtel) Tříděí z hledsa doby splatost - rátodobé : splatost do 1 rou

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

VÍCEKRITERIÁLNÍ ANALÝZA VARIANT ZA JISTOTY

VÍCEKRITERIÁLNÍ ANALÝZA VARIANT ZA JISTOTY VÍCEKRITERIÁLNÍ ANALÝZA VARIANT ZA JISTOTY Záklaí pom Rozhoutí výběr eé ebo více varat z mož všech přípustých varat. Rozhoovatel subekt, který má za úkol učt rozhoutí. V úlohách vícekrterálí aalýz varat

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

SML33 / SMM33 / SMN3. Multifunkční měřící přístroje Návod k obsluze. Firmware 3.0 / 2013

SML33 / SMM33 / SMN3. Multifunkční měřící přístroje Návod k obsluze. Firmware 3.0 / 2013 KMB systems, s.r.o. Dr. M. Horákové 559, 460 06 Liberec 7, Czech Republic tel. +420 485 30 34, fax +420 482 736 896 email : kmb@kmb.cz, iteret : www.kmb.cz SML33 / SMM33 / SMN3 Multifukčí měřící přístroje

Více

Beta faktor a ekvitní prémie z cizího trhu: přenositelnost a statistická spolehlivost

Beta faktor a ekvitní prémie z cizího trhu: přenositelnost a statistická spolehlivost Beta fakto a ekvtí péme z czího thu: přeostelost a statstcká spolehlvost Veze 15. 4. 014 chal Dvořák Abstakt Cílem textu je lustovat že český buzoví th eobsahuje dostatečý počet ttulů ke koektímu staoveí

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005 Patří slovo BUSINESS do zdravotictví?. 23. 6. 2005 Společost Deloitte Společost Deloitte v České republice má více ež 550 zaměstaců a kaceláře v Praze a Olomouci. Naše česká pobočka je součástí aší regioálí

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY MODELOVÁÍ POPTÁVKY, ABÍDKY A TRŽÍ ROVOVÁHY Schéma tržní rovnováhy Modely otávky na trhu výrobků a služeb Formulace otávkové funkce Komlexní model Konstrukce modelu otávky Tržní otávka Dynamcké modely otávky

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

ZÁKLADNÍ ICHTYOLOGICKÉ METODY

ZÁKLADNÍ ICHTYOLOGICKÉ METODY ZÁKLADNÍ ICHTYOLOGICKÉ METODY Určováí věku a staoveí růstu ryb Ryby jsou poikilotermí obratlovci, u ichž jsou všechy biologické fukce zásadím způsobem ovlivňováy teplotou vody. To platí v plém rozsahu

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

VÝVOJ NÁSTROJE PRO POSUZOVÁNÍ RECYKLAČNÍCH TECHNOLOGIÍ ASFALTOVÝCH VOZOVEK S DŮRAZEM NA UHLÍKOVOU STOPU

VÝVOJ NÁSTROJE PRO POSUZOVÁNÍ RECYKLAČNÍCH TECHNOLOGIÍ ASFALTOVÝCH VOZOVEK S DŮRAZEM NA UHLÍKOVOU STOPU 6. KONFERENCE PROJEKTOVÁNÍ POZEMNÍCH KOMUNIKACÍ Praha, 19.5.2015 VÝVOJ NÁSTROJE PRO POSUZOVÁNÍ RECYKLAČNÍCH TECHNOLOGIÍ ASFALTOVÝCH VOZOVEK S DŮRAZEM NA UHLÍKOVOU STOPU Václav Sížk Fakulta stavbí ČVUT

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

Klonování, embryonální kmenové buňky, aj. proč ano a proč ne

Klonování, embryonální kmenové buňky, aj. proč ano a proč ne Kloováí, embryoálí kmeové buňky, aj. proč ao a proč e Doc. MUDr. Petr Hach, Csc., Em. předosta ústavu pro histologii a embryologii 1. lékařské fakulty Uiversity Karlovy v Praze Neí určeo k dalšímu šířeí

Více

Compaq ipaq Pocket PC řady H3900 Referenční příručka

Compaq ipaq Pocket PC řady H3900 Referenční příručka Compaq ipaq Pocket PC řady H3900 Referečí příručka prosiec 2002 Iformace v tomto dokumetu se mohou změit bez předchozího upozorěí. SPOLEČNOST COMPAQ COMPUTER CORPORATION NENESE ODPOVĚDNOST ZA TECHNICKÉ

Více

Fázová charakteristika femtosekundových impulzov a jej vplyv na dvojfotónovú fluorescenciu

Fázová charakteristika femtosekundových impulzov a jej vplyv na dvojfotónovú fluorescenciu Attila GAÁL Fakulta matematiky fyziky a iformatiky UK Bratislava Igác BUGÁR Duša VELIČ Medziárodé laserové cetrum Bratislava Fratišek UHEREK Medziárodé laserové cetrum a Katedra mikroelektroiky FEI STU

Více