PRAVDĚPODOBNOST ... m n
|
|
- Otto Procházka
- před 8 lety
- Počet zobrazení:
Transkript
1 RVDĚODONOST - matematická discilía, která se zabývá studiem zákoitostí, jimiž se řídí hromadé áhodé jevy - vytváří ravděodobostí modely, omocí ichž se saží ostihout rocesy, ovlivěé áhodou. Náhodé okusy: rocesy, jejichž výsledek elze ředem jedozačě určit (je ejistý); závisí jedak a daých odmíkách, ři kterých je rovádě, jedak a áhodě. Teorie ravděodobosti se zabývá ouze áhodými okusy, které jsou za stejých odmíek oakovatelé a u ichž je mělivost výsledků odstatá a vykazuje určitou zákoitost. Hromadé áhodé jevy: výsledky oakovatelých áhodých okusů (symbolika,, C,...). ravděodobost áhodého jevu: ravděodobost áhodého jevu je číslo (), které lze iterretovat jako míru možosti astoueí áhodého jevu.! Eistují růzé defiice ravděodobosti: a) iomatická teorie ravděodobosti: ravděodobost je fukce, která každému áhodému jevu řiřazuje reálé číslo, řičemž musí být slěy ásledující aiomy ) 0 ) (...)... 3) E. (ro eslučitelé jevy) b) Klasická defiice ravděodobosti: ravděodobost jevu se rová odílu říadů řízivých astoueí jevu a očtu všech říadů možých, jsou-li všechy stejě ravděodobé. m kde m je očet říadů řízivých je očet říadů možých. c) Statistická defiice ravděodobosti: Jestliže ři rostoucím očtu oakováí áhodého okusu () m relativí četost kolísá ve stále užších mezích kolem určitého čísla, můžeme toto číslo ovažovat za ravděodobost jevu. relativí četost jevu m kde m je očet astoueí jevu je očet oakováí okusu. - odhad ravděodobosti áhodého jevu a základě výsledků, získaých ři mohoásobém oakováí áhodého okusu - tato defiice má aosteriorí charakter.
2 ravidla ro očítáí s ravděodobostmi odmíěá ravděodobost je odmíěá ravděodobost jevu vzhledem k jevu, tj. ravděodobost astoueí jevu za ředokladu, že astal jev., ro > 0, ro > 0. ravidlo o ásobeí ravděodobostí: ravděodobost současého astoueí jevů a (tz. jejich růiku) je rova součiu eodmíěé ravděodobosti jedoho jevu a odmíěé ravděodobosti druhého jevu vzhledem k rvímu jevu.. Zobecěí ravidla o ásobeí ravděodobostí ro dva a více jevů: 3 i i. Nezávislost jevů Jestliže, ak jev ezávisí a jevu. Jestliže, ak jev ezávisí a jevu. Nutá a ostačující odmíka (defiice) ezávislosti dvou jevů:. Zjedodušeí ravidla o ásobeí ravděodobostí ro ezávislé jevy: i i 3. ravidlo ro sčítáí ravděodobostí: ravděodobost sjedoceí jevů a je rova součtu ravděodobostí těchto jevů, zmešeé o ravděodobost jejich růiku.. Disjuktí jevy Jestliže 0, ak jevy a jsou disjuktí. Zjedodušeí ravidla ro sčítáí ravděodobostí ro disjuktí jevy:.
3 Náhodá veličia Náhodá veličia - veličia, jejíž hodota je jedozačě určea výsledkem áhodého okusu - vlivem áhodých čiitelů může abýt růzých hodot, roto elze její kokrétí hodotu řed rovedeím áhodého okusu jedozačě určit - symbolika, Y,... - říklady áhodých veliči: očet bodů, které adou a hrací kostce, očet oruch určitého zařízeí, doba čekáí a obsluhu v určité rodejě, atd.. Záko rozděleí áhodé veličiy: ravidlo, které každé hodotě ebo možiě hodot z každého itervalu řiřazuje ravděodobost, že áhodá veličia abude této hodoty ebo hodoty z určitého itervalu. Je to ravděodobostí model emirické áhodé veličiy. - áhodou veličiu okládáme za daou, okud záme všechy její možé hodoty a ravděodobosti výskytu každé z ich. ois rozděleí áhodé veličiy ) Diskrétí áhodá veličia Distribučí fukce: udává ravděodobost, že NV abude hodoty meší ebo rové. F t t ravděodobostí fukce: udává ravděodobost, že NV abude hodoty rové.! oz.:... rostor hodot NV, tj. možia možých hodot NV. ) Sojitá áhodá veličia Distribučí fukce F f t Hustota ravděodobosti f F! f d df d dt 3
4 Charakteristiky áhodých veliči - číselé hodoty, jejichž cílem je kocetrovat (zestručit) ois NV - výstižý ois základích vlastostí rozděleí NV. odle vlastosti rozděleí, kterou oisují, rozezáváme:. Charakteristiky olohy. Charakteristiky variability 3. Charakteristiky šikmosti 4. Charakteristiky šičatosti.. Charakteristiky olohy Středí hodota E = očekávaá hodota (z lat. eectatis) a) Diskrétí NV E b) Sojitá NV E f d odus ˆ a) Diskrétí NV - hodota NV, která má ejvětší ravděodobost výskytu (ejravděodobější hodota) ˆ... ma b) Sojitá NV - bod, v ěmž je hustota ravděodobosti maimálí, tj. lokálí maimum hustoty ravděodobosti f(). ˆ... f 0 Kvatily - oužívají se ředevším kvatily sojité áhodé veličiy. Hodota F je 00 %-ím kvatilem NV, jestliže ro i latí. - je hodota NV, kterou hodoty NV eřekročí s ravděodobostí 00 %. 4
5 5. Charakteristiky variability Roztyl D a) Diskrétí NV E D b) Sojitá NV d f d f d f E D Směrodatá odchylka D
6 Některá rozděleí áhodých veliči Rozděleí áhodé veličiy = ravděodobostí model chováí áhodé veličiy.. Rozděleí diskrétích áhodých veliči iomické rozděleí i - NV je očet výskytů áhodého jevu v ezávislých áhodých okusech, je-li ravděodobost astoueí jevu ve všech okusech stejá ( ) - rozděleí má arametry :... očet ezávislých okusů... ravděodobost astoueí sledovaého jevu v okusu. ravděodobostí fukce, = 0,,..., ; 0 < < 0 jiak. E D. Nař.: NV je očet šestek, které adou ři deseti hodech kostkou. oissoovo rozděleí o - NV je očet výskytů áhodého jevu v určitém časovém itervalu délky t (tz. za jedotku času), v jedotce lochy ebo objemu (v rostorové jedotce) - rozděleí má arametr :... středí hodota rozděleí. ravděodobostí fukce e!, = 0,,,...; 0 0 jiak. E D. Nař.: NV je očet oruch stroje za směu, očet telefoích hovorů za hodiu, očet vad a m koberce. roimace iomického rozděleí rozděleím issoovým odmíky: očet okusů musí být dostatečě velký (alesoň 30) a ravděodobost velmi malá (alesoň 0,). ři aroimaci udává () řibližou ravděodobost, že ve velkém očtu ezávislých áhodých okusů se sledovaý jev vyskyte -krát, je-li ravděodobost výskytu jevu v jedom okusu veli malá. Nař.: NV je očet vadých výrobků ve velké sérii, je-li ravděodobost výroby zmetku velmi malá. 6
7 Hyergeometrické rozděleí Hy N - oužívá se v říadě závislých okusů, tz. ři výběru bez vraceí - NV je očet vybraých rvků se sledovaou vlastostí ři závislých okusech - má 3 arametry : N... rozsah souboru, z ěhož vybíráme... očet rvků v základím souboru, které mají sledovaou vlastost... rozsah výběru ( = očet závislých okusů). ravděodobostí fukce E N N N N D. N N N oužití: Nař. ři kotrole jakosti u malého očtu výrobků ebo v říadě, kdy kotrola má ráz destrukčí zkoušky (výrobek je ziče).. Rozděleí sojitých áhodých veliči Eoeciálí rozděleí E - NV je doba čekáí do astoueí sledovaého jevu, může-li teto jev astat v kterémkoli okamžiku - arametr = očátečí doba, během které sledovaý jev astat emůže. / Hustota ravděodobosti : f e,, > 0, 0 0 jiak. e,. / Distribučí fukce : F E D. Nař.: NV je doba čekáí zákazíka a obsluhu v rodejě, doba realizace dvou o sobě jdoucích telefoích hovorů, doba životosti zařízeí, u ichž dochází k oruše z áhodých říči (e v důsledku ootřebeí). oužití: V teorii solehlivosti a životosti, v teorii hromadé obsluhy (tzv. teorii frot), v teorii obovy. 7
8 Normálí rozděleí N - je vhodé tam, kde kolísáí NV je zůsobeo velkým očtem eatrých a vzájemě ezávislých vlivů - klasickým tyem veliči, které se řídí tímto rozděleím, jsou áhodé chyby - omocí N lze za jistých odmíek aroimovat řadu jiých rozděleí, a to i esojitých. Hustota ravděodobosti : Distribučí fukce : f e, - < <, - < <, > 0 F t e dt, - < <. E D. - hustota ravděodobosti je zvoovitá křivka, symetrická odle a její tvar závisí a arametru - rozděleí N je jedovrcholové, vrchol je v bodě - = modus = mediá. Normováí NV s ormálím rozděleím: Výočet distribučí fukce ormálího rozděleí je obtížý, avíc by bylo uto očítat hodotu distribučí fukce ro každý seciálí říad (tj. ro růzá, μ, σ ), roto se z důvodů usaděí výočtu trasformuje áhodá veličia, která má ormálí rozděleí s arametry μ a σ, a ormovaou veličiu U, která má ormovaé ormálí rozděleí. Normovaé ormálí rozděleí N 0 - ůvodí NV, která má N ormujeme, tz. trasformujeme a NV U, která má N 0 - je tak zavedea ormovaá veličia U, která má ulovou středí hodotu a jedotkový roztyl - hodoty distribučí fukce a kvatilů N 0 je možo tabelovat. U, E U 0, U D. Vztah ro výočet F(): F u u Hustota ravděodobosti : u e, ro - < u < Distribučí fukce : u e dt u t. Tabulky ormovaého ormálího rozděleí Vzhledem k symetrii N 0 odle bodu u 0 latí: u u u u u u Z důvodu symetrie N 0 kolem 0 jsou tabelováy hodoty 0,5. u ouze ro u 0 a kvatily ouze ro 8
9 Rozděleí ěkterých fukcí áhodých veliči - mají zvláští výzam ro řešeí ěkterých matematicko-statistických úloh (viz. další výklad) - stejé začeí ro áhodé veličiy i jejich hodoty - v rai se oužívají ředevším kvatily těchto rozděleí, jsou tabelováy. Rozděleí - NV je součtem ν ezávislých NV s ormovaým ormálím rozděleím - rozděleí má arametr : ν... očet stuňů volosti - kvatily jsou tabelováy ro ν =,,..., 30 a ro vybraé ravděodobosti. U i i U U U Rozděleí Studetovo (t) t ν - NV t je odílem dvou ezávislých NV: NV U s rozděleím N 0 a NV s rozděleím - rozděleí má arametr : ν... očet stuňů volosti - kvatily jsou tabelováy ro ν =,,..., 30 a ro vybraé ravděodobosti - oužívá se ředevším ro výběry malého rozsahu ( < 30) - rozděleí je symetrické odle bodu t = 0, ro kvatily roto latí vztah t t. t U Rozděleí Fisherovo (Sedecorovo) - NV F je odílem dvou ezávislých NV: NV F ν ; ν s rozděleím a NV - má arametry: ν... očet stuňů volosti NV (v čitateli) ν... očet stuňů volosti NV (ve jmeovateli). s rozděleím F 9
10 Oerace s áhodými jevy - vztahy mezi áhodými jevy graficky zázorňují tzv. Veovy diagramy. Jev je částí jevu ; z jevu lye jev (imlikace); astoueí jevu má vždy za ásledek astoueí jevu.. Jevy a jsou si rovy; a současě. 3. C Jev C je růik jevů a (logický souči); jev C astae rávě tehdy, astae-li současě jev i jev. 4. C Jev C je sjedoceí jevů a (logický součet); jev C astae rávě tehdy, astae-li alesoň jede z jevů a. 5. C Jev C je rozdíl jevů a ; jev C astae rávě tehdy, když jev a současě jev eastae. 6. E je jev jistý Jev, který musí astat vždy. Ø je jev emožý Jev, který astat emůže. Kombiatorika ermutace! Variace bez oakováí V k! k! Variace s oakováím V k k Kombiace C k k! k! k! 0
můžeme toto číslo považovat za pravděpodobnost jevu A.
RVDĚODONOST - matematická discilía, která se zabývá studiem zákoitostí, jimiž se řídí hromadé áhodé jevy - vytváří ravděodobostí modely, omocí ichž se saží ostihout áhodé rocesy. Náhodé okusy: rocesy,
Vícemůžeme toto číslo považovat za pravděpodobnost jevu A.
RAVDĚODOBNOST - matematická discilína, která se zabývá studiem zákonitostí, jimiž se řídí hromadné náhodné jevy - vytváří ravděodobnostní modely, omocí nichž se snaží ostihnout náhodné rocesy. Náhodné
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení
S1P áhodá roměá vybraá rozděleí PRAVDĚPODOBOST A STATISTIKA áhodá roměá vybraá rozděleí S1P áhodá roměá vybraá rozděleí Vybraá rozděleí diskrétí P Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBOST A STATISTIKA Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým rozděleím X ~D(), R má základí rostor Z = { } a ravděodobostí fukci: ( ) 1 0 Charakteristiky: středí hodota: E(X ) roztyl:
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
VícePřednáška č. 10 Analýza rozptylu při jednoduchém třídění
Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
VíceNáhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
VíceMezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
VíceNárodní informační středisko pro podporu kvality
Národí iformačí středisko ro odoru kvality Testováí zůsobilosti a výkoosti výrobího rocesu RNDr. Jiří Michálek, Sc Ústav teorie iformace a automatizace AVČR UKAZATELE ZPŮSOBILOSTI 3 UKAZATELE ZPŮSOBILOSTI
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
Více6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
VíceStatistika pro metrologii
Statistika pro metrologii T. Rössler Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky v rámci projektu Vzděláváí výzkumých pracovíků v Regioálím cetru pokročilých
VíceP2: Statistické zpracování dat
P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu
VíceZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti
Více1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );
1 PSE 1 Náhodý pokus, áhodý jev. Operace s jevy. Defiice pravděpodobosti jevu, vlastosti ppsti. Klasická defiice pravděpodobosti a její použití, základí kombiatorické vzorce. 1.1 Teoretická část 1.1.1
Víceodhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr
Více1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
VíceV. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
VícePevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.
evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické
VíceDefinice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
VíceNáhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.
Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího
Více2. Náhodná veličina. je konečná nebo spočetná množina;
. Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité
VíceDeskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
VíceSTATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
Více2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.
0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace
VíceEntropie, relativní entropie a sdílená (vazební) informace
Etroie, relativí etroie a sdíleá vazebí iformace Pojem iformace je říliš rozsáhlý a to, abchom jej komleě osali jedoduchou defiicí. Pro libovolou distribuci ravděodobosti můžeme defiovat tzv. etroii, jež
VícePRAVDĚPODOBNOST A STATISTIKA. Metoda momentů Metoda maximální věrohodnosti
SP3 Odhady arametrů PRAVDĚPODOBNOST A STATISTIKA Metoda momentů Metoda maimální věrohodnosti SP3 Odhady arametrů Metoda momentů Vychází se z: - P - ravděodobnostní rostor - X je náhodná roměnná s hustotou
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
VíceTento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254
Evroský sociálí od Praha & EU: Ivestujeme do vaší budoucosti eto materiál vzikl díky Oeračímu rogramu Praha Adatabilita CZ..7/3../3354 Maažerské kvatitativí metody II - ředáška č.3 - Queuig theory teorie
Více1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která
VíceCvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu
Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý
Vícec) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),
a) Vyslovte a dokažte Liouvillovu větu o šaté aroximovatelosti algebraického čísla řádu d b) Defiujte Liouvillovo číslo c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je trascedetí 2 a) Defiujte
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
VíceDynamická pevnost a životnost Statistika
DŽ statistika Dyamická pevost a životost tatistika Mila Růžička, Josef Jreka, Zbyěk Hrbý mechaika.fs.cvt.cz zbyek.hrby@fs.cvt.cz DŽ statistika tatistické metody vyhodocováí dat DŽ statistika 3 tatistické
VícePřednášky část 7 Statistické metody vyhodnocování dat
DŽ ředášky část 7 tatistické metody vyhodocováí dat Mila Růžička mechaika.fs.cvt.cz mila.rzicka@fs.cvt.cz DŽ tatistické metody vyhodocováí dat Jak velké rozptyly lze očekávat mezi dosažeými pevostmi ebo
VícePro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
Vícejako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
VíceČíselné charakteristiky náhodných veličin
Číselé charakteristiky áhodých veliči Motivace Doposud jsme pozali fukcioálí charakteristiky áhodých veliči (apř. distribučí fukce, pravděpodobostí fukce, hustota pravděpodobosti), které plě popisují pravděpodobostí
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,
Více9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:
9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí
VíceNáhodný výběr, statistiky a bodový odhad
Lekce Náhodý výběr, statistiky a bodový odhad Parametr rozděleí pravděpodobosti je ezámá kostata, jejíž přímé určeí eí možé. Nástrojem pro odhad ezámých parametrů je áhodý výběr a jeho charakteristiky
VíceNáhodné jevy a pravděpodobnost
Lekce Náhodé jevy a pravděpodobost Výklad pravděpodobosti musí začít evyhutelě od základích pojmů Pravděpodobost, velmi zjedodušeě řečeo, pojedává o áhodých jevech (slově vyjádřeých výsledcích áhodých
VícePravděpodobnost a statistika - absolutní minumum
Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky
VíceIntervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním
Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí
VíceOdhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
Vícez možností, jak tuto veličinu charakterizovat, je určit součet
6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p
VíceVícekanálové čekací systémy
Vícekaálové čekací systémy taice obsluhy sestává z ěkolika kaálů obsluhy, racujících aralelě a avzájem ezávisle. Vstuy i výstuy systému mají oissoovský charakter. Jedotky vstuující do systému obsadí ejrve
Víceb c a P(A B) = c = 4% = 0,04 d
Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá
VíceIntervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
Více13 Popisná statistika
13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický
Víceveličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
VíceTESTOVÁNÍ STATISTICKÝCH HYPOTÉZ
TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího
VíceSměrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec
Směrice /0 Statitické vyhodocováí dat, verze 3 Verze 3 e hodá ůvodí Směricí /0 verze, za čl..3 e vlože ový odtavec. Statitické metody ro zkoušeí zůobiloti Statitická aalýza oužívaá ro aalýzu výledků zkoušky
Více1. Základy počtu pravděpodobnosti:
www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých
Více8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI
8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -
VíceStatistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.
Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový
Vícei 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky
Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí
VíceVYSOCE PŘESNÉ METODY OBRÁBĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,
VíceCvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.
Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu
VíceCvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu
Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia
VíceProblémy hodnocení výkonnosti a způsobilosti řízení procesů v rámci nesplnění normality rozdělení dominantního znaku jakosti
Jiří Zmatlík 1, Pavel Zdvořák Problémy hodoceí výkoosti a zůsobilosti řízeí rocesů v rámci eslěí ormality rozděleí domiatího zaku jakosti Klíčová slova: eshodý rodukt, zaky jakosti měřitelé a zaky jakosti
VíceIntervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
Více1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
Více8.2.10 Příklady z finanční matematiky I
8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do
Více6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY
6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY Rozdleí áhodé veliiy je edis, terým defiujeme ravdodobost jev, jež lze touto áhodou veliiou osat. Záladím rozdleím oisujícím výbry bez vraceí je hyergeometricé
VícePopisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem
Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme
Více1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
Více8. Odhady parametrů rozdělení pravděpodobnosti
Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z
VícePřijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika
Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f
VícePravděpodobnostní modely
Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k
VícePřednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti
Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou
Vícevají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví
Statistika v biomedicísk ském výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Literatura Edice Biomedicísk ská statistika vydáva vaá a Uiverzitě
Vícevají statistické metody v biomedicíně
Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk
VíceUPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ
3..- 4.. 2009 DIVYP Bro, s.r.o., Filipova, 635 00 Bro, http://www.divypbro.cz UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ autoři: prof. Ig. Mila Holický, PhD., DrSc., Ig. Karel Jug, Ph.D., doc. Ig. Jaa Marková,
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru
VíceInterval spolehlivosti pro podíl
Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této
VíceTéma 6: Indexy a diference
dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -
VíceSekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
Více5 DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět:
5 DISKRÉTNÍ ROZDĚLENÍ RAVDĚODOBNOSTI Čas e sudiu aioly: 0 miu Cíl: o rosudováí ohoo odsavce budee umě: charaerizova hyergeomericé rozděleí charaerizova Beroulliho ousy a z ich odvozeé jedolivé yy disréích
VíceTestování statistických hypotéz
Testováí statstckých hyotéz Př statstckých šetřeích se často setkáváme s roblémy tohoto druhu () Máme zjstt, zda dva daé vzorky ocházejí z téhož ZS. () Máme rozhodout, zda rozdíly hodot růměrů (res. roztylů)
Více8.3.1 Vklady, jednoduché a složené úrokování
8..1 Vklady, jedoduché a složeé úrokováí Předoklady: 81 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží
VíceVýukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT
Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot
VíceZpůsobilost. Data a parametry. Menu: QCExpert Způsobilost
Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány
VícePravděpodobnost a statistika Výpisky z cvičení Ondřeje Chocholy
Pravděpodobost a statistika Výpisky z cvičeí Odřeje Chocholy Ja Štětia 9. listopadu 9 Cviˇceí 3.9.9 Úloha: Máme 4 kostky. Ω = {a, b, c, d}, Ω = 6 4 A = 6 5 4 3 P(A) = 6 5 4 3 6 4 Naejvýš l kostek: m...
VíceOdhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza
Více4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
Více17. Statistické hypotézy parametrické testy
7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé
VícePři sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
Více11. INDUKTIVNÍ STATISTIKA
Pravděodobost a statstka. INDUKTIVNÍ STATISTIKA Iduktví statstka Průvodce studem Navážeme a katolu 7 a ukážeme, jak racovat se soubory, jejchž všechy rvky ejsou zámy. Předokládaé zalost Pojmy z ředchozích
VíceJihočeská univerzita v Českých Budějovicích. Pedagogická fakulta PRAVDĚPODOBNOSTNÍ MODELY KOLEM NÁS BAKALÁŘSKÁ PRÁCE. Radka Glücksmannová
Jihočesá uiverzita v Česých Budějovicích Pedagogicá faulta PRAVDĚPODOBNOSTNÍ MODELY KOLEM NÁS BAKALÁŘSKÁ PRÁCE Rada Glücsmaová Česé Budějovice, rosiec 7 Na tomto místě bych ráda oděovala vedoucímu baalářsé
VíceASYNCHRONNÍ STROJE. Obsah
VŠB TU Ostrava Fakulta elektrotechiky a iformatiky Katedra obecé elektrotechiky ASYCHROÍ STROJE Obsah. Výzam a oužití asychroích motorů 2. rici čiosti asychroího motoru 3. Rozděleí asychroích motorů 4.
VícePRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady
SP Bodové a tervalové odhady PRAVDĚPODOBNOST A STATISTIKA Bodové a tervalové odhady Lbor Žák SP Bodové a tervalové odhady Lbor Žák Bodové a tervalové odhady Nechť je áhodá proměá, která má dstrbučí fukc
VíceZávislost slovních znaků
Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví
VíceMarkovovy řetězce s diskrétním časem (Discrete Time Markov Chain)
Stochastcé rocesy Marovovy řetězce s dsrétím časem (Dscrete Tme Marov Cha) Stochastcý roces Stochastcým rocesem {X(t), tr} je moža áhodých velč X(t) závslých a jedom arametru t. Stavový rostor : moža možých
Více0,063 0,937 0,063 0, P 0,048 0,078 0,95. = funkce CONFIDENCE.NORM(2α; p(1 p)
. Příklad Při průzkumu trhu projevilo 63 z dotázaých zákazíků zájem o iovovaý výrobek, který má být uvede a trh se zákazíky. Odvoďte a odhaděte proceto a počet zájemců v populaci s 95% spolehlivostí. Následě
Více6.1 Systémy hromadné obsluhy
6. Systémy hromadé obsluhy Proces usoojováí áhodě i hromadě vziajících ožadavů a obsluhu se azývá roces hromadé obsluhy. Předmětem teorie hromadé obsluhy, ědy taé ozačovaé jao teorie frot (z aglicých slov
Více