PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)"

Transkript

1 Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím zadáí vyberte správou odpověď zakroužkováím příslušé variaty [ a), b), c), d) ebo e) ]. Správě je vždy pouze jeda z abízeých odpovědí. V případě, že ebude jedozačě zřejmé, která z variat je zakroužkováa, či pokud ebude zakroužkováa žádá ebo aopak více variat odpovědí, bude otázka hodocea jako esprávě zodpovězeá. ) (b) Na edokoale kokurečím trhu a) se cea statku rová mezímu příjmu firmy b) se cea statku rová mezím ákladům firmy c) cea statku převyšuje mezí příjem firmy d) je cea statku ižší ež mezí příjem firmy 2) (b) Firma v dokoalé kokureci vyrábí oproti firmě v edokoalé kokureci a) méě zboží za ižší ceu b) více zboží za vyšší ceu c) více zboží za ižší ceu d) méě zboží za vyšší ceu 3) (b) Obecá ekoomická teorie je věda o: a) výrobě b) trhu c) spotřebě d) tvorbě ce e) všechy odpovědi jsou správé 4) (b) Formálě abstraktí pojetí ek. vědy tkví a) v matematických důkazech zákoů b) v existeci hodotových soudů c) v uplatňováí zákoů tedece d) v odmítáí matematických metod 5) (b) Ekoomie jako věda vzikla a) se vzikem trhu b) a koci 7. stol. c) se vzikem moetarismu d) se vzikem keyesiáství

2 6) (b) Příčiou zboží výroby je existece a) trhu b) dělby práce c) peěz d) vzácosti 7) (b) Firma rozšiřuje všechy své vstupy, přírůstky výstupů jsou ižší ež přírůstky vstupů. Jedá se o a) záko klesajících výosů b) klesající výosy z rozsahu c) záko rostoucích vstupů d) rostoucí vstupy z rozsahu 8) (b) Důchodový efekt zameá a) že při kostatím důchodu změa cey vyvolá změu poptávaého možství b) že při změě důchodu dojde ke změě poptávaého možství c) že při změě důchodu dojde ke změě poptávky d) že změa cey vyvolá změu celkového užitku 9) (b) Cílem eceové kokurece je přilákáí poptávky těmito metodami a) růstem kvality a iovacemi b) desigem a záručí dobou c) reklamou a spotřebím úvěrem d) výhodější otevírací dobou pro zákazíky e) všechy odpovědi jsou správé 0) (b) Firma je v rovováze, když a) abízí tolik kolik je poptáváo b) využívá plě své kapacity c) má ejižší áklady d) se rovají mezí příjmy a mezí áklady ) (b) Reálá mzda je a) mzda vyjádřeá v peěžích jedotkách b) mzda před odečteím daí c) mzda vyjádřeá ve zboží, které je možo za i koupit d) mzda po odečteí daí 2) (b) Dlouhé období při aalýze firmy zameá: a) období dlouhé 5-0 let b) období delší ež 0let c) období, kdy všechy áklady jsou proměé d) vždy období do roku

3 3) (b) Teorie spotřebitele považuje za trazitivitu tuto vlastost tří spotřebích košů X, Y a Z: a) je-li X preferováo před Y a Y před Z, potom je i X preferováo před Z b) je-li X preferováo před Y a Y před Z, emusí X být utě preferováo před Z c) meší možství zboží je vždy preferováo před větším možstvím d) větší možství zboží je vždy preferováo před meším možstvím 4) (b) Nepřízivý ákladový "šok" má v krátkém období za ásledek a) pokles HDP a růst ceové hladiy b) růst HDP a pokles ceové hladiy c) pokles HDP a pokles ceové hladiy d) růst HDP a růst ceové hladiy 5) (b) Rozdíl mezi GNP(mp) a NDP(fc) je a) amortizace, čistý příjem z majetku v zahraičí a epřímé daě b) amortizace, čistý příjem z majetku v zahraičí a přímé daě c) amortizace, a epřímé daě a daě ze zisku podiků d) amortizace a epřímé daě 6) (b) Vztah mezi HDP a mírou ezaměstaosti se azývá a) Pigouův záko b) Keyesův záko c) Friedmaův záko d) Mudellův záko 7) (b) Iflace je a) růst všech jedotlivých ce veškerých výrobků a služeb b) růst celkové ceové hladiy výrobků a ceová hladia služeb se ezapočítává c) růst celkové ceové hladiy výrobků a služeb d) růst ceové hladiy pouze regulovaých výrobků a služeb 8) (b) V klasickém modelu makroekoomické rovováhy je křivka AS: a) elastická b) vodorová c) mírě rostoucí d) vertikálí 9) (b) Poteciálí produkt je: a) produkt dlouhodobě evyčerpávající eobovitelé zdroje b) maximálí možý výstup ekoomiky c) produkt dlouhodobě eakcelerující ai edecelerující iflaci d) produkt při ulové ezaměstaosti

4 20) (b) Dvoustupňový bakoví systém se skládá z: a) komerčích bak a kampeliček b) komerčích bak a spořitele c) komerčích bak a pojišťove d) komerčích bak a ivestičích fodů 2) (b) Desiflací rozumíme: a) pokles ceové hladiy b) růst ceové hladiy c) pokles růstu ceové hladiy d) stabilitu ceové hladiy 22) (b) Iflace tažeá abídkou může vzikout: a) sížeím státích výdajů a ákup statků a služeb b) devalvací árodí měy c) revalvací árodí měy d) poklesem ivestičích výdajů 23) (b) V zemi je 200 mil. obyvatel, z toho je 90 mil. zaměstaých a 0 mil. ezaměstaých. Jaká je míra ezaměstaosti země? a) % b) 0% c) 8% d) 5% 24) (b) Co z ásledujícího způsobí posuutí agregátí poptávkové křivky doprava: a) zvýšeí úrokových měr při daé ceové hladiě b) zvýšeí očekávaé iflace c) zvýšeí daí d) sížeí ceové hladiy 25) (b) Národí důchod je jiý ázev pro: a) NNP MP (čistý árodí produkt v tržích ceách) b) NNP FC (čistý árodí produkt v ceách výrobích faktorů) c) GDP FC (hrubý domácí produkt v ceách výrobích faktorů) d) GNP FC (hrubý árodí produkt v ceách výrobích faktorů) 26) (b) Rozdíl mezi iveturou a ivetarizací je ásledující: a) ivetura je zjištěí skutečého stavu, ivetarizace je zjištěí účetího stavu b) ivetura je zjištěí účetího stavu, ivetarizace je zjištěí skutečého stavu c) ivetarizace je ázev celého procesu, ivetura je pouze částí zjištěím skutečého stavu d) mezi pojmy eí rozdíl

5 27) (b) Do dlouhodobého ehmotého majetku epatří: a) software b) goodwill c) hardware d) licece e) patet 28) (b) Zůstatková cea dlouhodobého majetku se vypočítá: a) pořizovací cea opravé položky b) pořizovací cea opravé položky odpisy c) cea pořízeí opravé položky d) cea pořízeí opravé položky odpisy e) pořizovací cea oprávky 29) (b) Účetí kihy v soustavě (podvojého) účetictví jsou: a) deík, hlaví kiha, kihy aalytických účtů a kihy podrozvahových účtů b) deík, hlaví kiha, kihy aalytické evidece a předvaha c) deík, hlaví kiha, kiha pohledávek a závazků, předvaha d) deík, hlaví kiha a předvaha e) deík, rozvaha, výkaz zisku a ztráty (případě výkaz Cash flow a výkaz o změách vlastího kapitálu) 30) (b) Účetí závěrka je: a) uzavíráí účtů a zjišťováí koečých stavů a účtech b) výpočet ukazatelů fiačí aalýzy c) výpočet daňového základu a splaté daňové poviosti d) sestaveí daňového přizáí a výročí zprávy e) sestaveí výkazů fiačího účetictví 3) (b) Poviost účtovat o dai z přidaé hodoty mají: a) všechy účetí jedotky b) pouze ěkteré účetí jedotky, ostatí mohou o DPH účtovat dobrovolě c) všechy účetí jedotky mohou o DPH účtovat dobrovolě, poviost dáa eí d) účetí jedotky, které akupují materiál a prodávají zboží e) účetí jedotky, jejichž obrat je vyšší ež Kč 32) (b) Účetí jedotky (podikatelé) vedoucí účetictví v České republice se pro účely účetictví řídí: a) Zákoem o účetictví, Prováděcí vyhláškou č. 500 k tomuto zákou a Českými účetími stadardy b) Zákoem o účetictví, Prováděcí vyhláškou č. 500 k tomuto zákou a Postupy účtováí pro podikatele c) Zákoem o účetictví, Zákoem o daích z příjmů a Zákoem o dai z přidaé hodoty d) Zákoem o účetictví, Českými účetími stadardy a Postupy účtováí pro podikatele e) Zákoem o účetictví a všemi daňovými zákoy 33) (b) Účetí jedotka, která poskytla dodavateli zálohu, ji v účetictví vykazuje jako: a) závazek b) pohledávku c) příjem příštích období d) výos příštích období e) áklad příštích období

6 34) (b) Rozdíl mezi způsobem A a způsobem B účtováí zásob je: a) způsobem B se účtuje pořízeí zásob v průběhu účetího období a ákladové účty, u způsobu A ikoli b) způsobem A se účtuje pořízeí zásob v průběhu účetího období a ákladové účty, u způsobu B ikoli c) způsob B účtuje pořízeí zásob v průběhu účetího období a rozvahové účty zásob d) způsob B účtuje pořízeí zásob v průběhu účetího období a rozvahové účty pořízeí zásob 35) (b) Směka emůže být: a) zajišťovacím prostředkem b) dlužým ceým papírem c) platebím prostředkem d) majetkovým ceým papírem 36) (b) Směrá účtová osova obsahuje: a) sytetické účty rozvahové, výsledkové a závěrkové b) účtové třídy a účtové skupiy c) sytetické a aalytické účty d) sytetické účty rozvahové a výsledkové e) pouze účtové třídy 37) (b) Pokud společost zaplatí ájemé za dvě období zpětě (dle výpisu z bakovího účtu), je tato účetí operace zúčtováa jako: a) dohadé položky aktiví b) dohadé položky pasiví c) sížeí výosů d) časové rozlišeí e) peíze a cestě 38) (b) Kritérium věrého a poctivého zobrazeí v účetictví zameá: a) poskytout fiačím úřadům podklady pro fiačí kotrolu b) poskytout uživatelům iformací pravdivý obraz o hospodařeí a fiačí situaci účetí jedotky c) eadhodocovat aktiva a pasiva, epodhodocovat výosy a áklady d) eadhodocovat aktiva a výosy, epodhodocovat pasiva a áklady e) respektovat daňové zákoy 39) (b) Pro výpočet ukazatelů retability je stěžejím údajem : a) kapitál vlastí ebo cizí b) zisk hrubý, čistý ebo upraveý (apř. EBIT) c) deí spotřeba zásob d) tržby účetí jedotky e) poměr vlastího a cizího kapitálu 40) (b) Daň z přidaé hodoty je u plátců této daě : a) přímou daí, mající vliv a výsledek hospodařeí b) epřímou daí, emající vliv a výsledek hospodařeí c) epřímou daí, mající vliv a výsledek hospodařeí d) přímou daí, emající vliv a výsledek hospodařeí

7 4) (b) Rozdíl mezi ceou výrobku a variabilími áklady připadajícími a teto výrobek se azývá: a) bod zvratu b) příspěvek a krytí fixích ákladů a zisku c) příspěvek a krytí variabilích ákladů a zisku d) příspěvek a krytí celkových ákladů a zisku 42) (3b) Jakou částku je uté des uložit, aby za 5 let při úrokové míře 0, byla k dispozici suma 6 05 Kč? a) b) 3 22 c) 500 d) e) ) (b) Mezi vlastí exterí fiačí zdroje podiku patří: a) erozděleý zisk, b) lombardí úvěr, c) emise podikových obligací, d) evratá dotace získaá z veřejých zdrojů, e) příjem z prodeje adbytečých zásob. 44) (2b) Jestliže při úrokové míře 8 % je ČSH rova ule, je hodota VVP rova: a) 8 %, b) 0,08 %, c) 0 %, d) 6 %, e) %. 45) (3b)Kolik čií doba ávratosti ivestice, jestliže kapitálový výdaj čií mil. Kč, ročí čistý zisk z ivestice čií , odpisy lieárí, doba životosti ivestice 4 roky? a) 4 roky b) 3 roky c) 2 roky d) rok e) 2,5 roku 46) (b) Faktorig je a) druh dlouhodobého mezibakovího úvěru b) metoda řízeí zásob c) odkup pohledávek d) druh dlouhodobého ceého papíru e) způsob oceňováí podiku prostředictvím diskotováí volého cash flow 47) (b) Družstvo může maximálě založit a) právická osoba ebo 2 fyzické osoby b) právická osoba ebo 5 fyzických osob c) 2 právické osoby ebo 5 fyzických osob d) 5 právických osob ebo 0 fyzických osob e) počet fyzických ai právických osob eí urče

8 48) (b) Nákladově orietovaá cea a) se rová variabilím ákladům a výrobek b) se rová fixím ákladům a výrobek c) se rová celkovým ákladům a výrobek d) se v praxi evyužívá e) musí uhradit áklady a výrobek a příspěvek k zisku. 49) (b) Marketigový mix zahruje a) výrobek, ceu, reklamu, servis b) výrobek, ceu, propagaci, distribuci c) výrobce, ceu, dodávku, komuikaci d) výrobek, propagaci, servis e) výrobek, ceu, izerci, záručí dobu 50) (b) Kafeteria systém představuje a) vytvářeí pravidelých přestávek a oddych po odpracováí určitého času b) árok a čerpáí určité prémie v podobě hmotých statků výrobků firmy c) výběr určité struktury čerpáí sociálích požitků zaměstacem d) způsob prostorového uspořádáí výrobího zařízeí e) systém propojováí pracovích fukcí z důvodu zajištěí pružého zastupováí jedotlivých pracovíků 5) (b) Shareholder value je a) hodota pro akcioáře b) hodota pro dlužíka c) hodota pro věřitele d) hodota pro zájmovou skupiu e) hodota pro odběratele 52) (b) Mezi síly v Porterově modelu 5 sil epatří a) kokurece b) hrozba substitutů c) hrozba komplemetů d) vyjedávací síla dodavatelů e) odběratelů 53) (b) Ukazatele likvidity vyjadřují a) jak efektivě podik hospodaří se svými dlouhodobými aktivy b) schopost podiku reagovat a měící se požadavky odběratelů c) schopost podiku likvidovat odepsaá zařízeí d) schopost podiku vytvářet zisk e) schopost podiku uhrazovat své závazky 54) (b) Mezi eziskové orgaizace epatří a) příspěvkové orgaizace b) družstva c) adace d) občaská sdružeí e) všechy výše uvedeé orgaizace jsou eziskové

9 55) (b) Mírou produktivity práce se rozumí a) počet odpracovaých hodi za kaledáří měsíc b) podíl celkových mzdových ákladů a počtu pracovíků c) možství výrobků vyrobeé jedím pracovíkem za jedotku času d) počet prodaých výrobků za rok e) peěžě vyjádřeá spotřeba výrobích faktorů 56) (b) Degrese ákladů je a) klesáí celkových ákladů s rostoucím objemem výroby b) růst jedotkových ákladů s rostoucím objemem výroby c) pokles jedotkových ákladů s rostoucím objemem výroby d) růst celkových ákladů s objemem výroby e) pokles zisku vzhledem k předchozímu sledovaému období 57) (2b) Když se spojí potraviářský podik s počítačovou firmou, půjde pravděpodobě o fúzi a) horizotálí b) vertikálí c) koglomerátí d) přímou e) epřímou 58) (2b) Obratový cyklus peěz vyjadřuje a) dobu mezi platbou za akoupeý materiál a přijetím ikasa z prodeje výrobků b) dobu, která uplye od fakturace výrobků do de ikasa c) dobu od ákupu materiálu do doby prodeje vyrobeých výrobků d) dobu mezi objedáím a dodáím materiálu bez ohledu a dobu ikasa e) dobu, která uplye od založeí podiku a dosažeím bodu zvratu 59) (2b) Bod zvratu představuje a) objem výroby, při kterém se tržby rovají celkovým ákladům b) průsečík přímky tržeb a fixích ákladů c) bod, kdy tržby klesou pod fixí áklady a podik jde do kokurzu d) bod, kdy variabilí áklady se rovají tržbám e) průsečík fixích a variabilích ákladů 60) (3b) NOPAT je a) provozí zisk po zdaěí b) zisk před úroky a zdaěím c) čistý zisk před zdaěím d) hrubý zisk před zdaěím e) ai jeda uvedeá odpověď 6) (2b) Mějme zadáy ásledující pravděpodobosti: P(A) 0.4, P(B) 0.5, P ( A B) 0.2 jevy A, B a) jsou eslučitelé a zároveň ezávislé b) ejsou eslučitelé ai ezávislé c) jsou eslučitelé, leč ikoli ezávislé d) jsou ezávislé, leč ikoli eslučitelé e) žádá z možostí a) až d) eí správá. Pak platí, že

10 62) (2b) Pro jevy A a B s pravděpodobostmi z předchozího příkladu 6) platí, že a) P( A B) 0. 7 a P( A B) b) P( A B) 0.7 a P( A B) c) P( A B) 0.9 a P( A B) d) P( A B) 0.9 a P( A B) e) žádá z možostí a) až d) eí správá 63) (2b) Má-li áhodá veličia X ormálí rozděleí se středí hodotou 2 a rozptylem 3, pak veličia Y X / 3 má a) ormálí rozděleí se se středí hodotou 0 a rozptylem b) ormálí rozděleí se se středí hodotou a rozptylem 0 c) ormálí rozděleí se se středí hodotou 2 a rozptylem d) ormálí rozděleí se se středí hodotou 2 a rozptylem 3 e) ai jeda z možostí a) až d) eí správá 64) (2b) Mějme áhodou veličiu s ormovaým ormálím rozděleím. Pak pravděpodobost, že tato áhodá veličia přesáhe hodotu 0 je a) rova 0.5 b) větší ež c) přibližě rova d) přibližě rova 0 e) žádá z možostí a) až d) eí správá 65) (b) Nestraý odhad a) má ze všech odhadů ejmeší rozptyl b) jeho rozptyl pro rozsah výběru jdoucí k ekoeču koverguje k ule c) je vždy asymptoticky estraý d) je vždy kozistetí e) žádá z možostí a) až d) eí správá 66) (2b) Testujeme hypotézu o středí hodotě základího souboru H 0 : µ 00 oproti hypotéze alterativí H : µ > 00. Víme, že testové kritérium má za předpokladu platosti ulové hypotézy ormovaé ormálí rozděleí a záme ásledující kvatily tohoto rozděleí: P z p 0,95,645 0,975,96 0,99 2,326 0,995 2,576 Vyjde-li ám hodota testového kritéria z.66, pak můžeme učiit ásledující závěr: a) H 0 zamítáme jak a hladiě výzamosti α 5%, tak i a hladiě výzamosti α % b) H 0 ezamítáme a hladiě výzamosti α 5%, ai a hladiě výzamosti α % c) H 0 zamítáme a hladiě výzamosti α 5%, leč ikoli a hladiě výzamosti α % H zamítáme a hladiě výzamosti α %, leč ikoli a hladiě výzamosti α 5% d) 0 e) žádá z možostí a) až d) eí správá

11 67) (2b) Pro středí hodotu µ základího souboru jsme určili 95%-í iterval spolehlivosti (49.47, 50.03) a 99%-í iterval spolehlivosti (49.37, 50.3). Pokud bychom testovali hypotézu µ 49.3 oproti alterativě µ 49.3, došli bychom k ásledujícímu závěru: a) zamítáme hypotézu µ 49.3 a hladiě výzamosti 5%, leč ikoli % b) zamítáme hypotézu µ 49.3 a hladiě výzamosti %, leč ikoli 5% c) hypotézu µ 49.3 ezamítáme ai a 5%-í, ai a %-í hladiě výzamosti d) hypotézu µ 49.3 zamítáme jak a 5%-í, tak i a %-í hladiě výzamosti e) žádá z možostí a) až d) eí správá 68) (2b) Mějme zadáy tři matice: 0 Σ 2 Σ Σ Která z ich může být kovariačí maticí áhodých veliči X, Y: a) je Σ 2 b) je Σ 3 c) Σ a Σ 2, ale ikoli Σ 3 Σ d) Σ 2 a Σ 3, ale ikoli e) ai jeda z možostí a) až d) eí správá 69) Defiujme proměé y i 0, i,2,,, které vyjadřují objem prostředků (v tis. Kč) které daá firma vkládá v rámci reklamí kampaě do i-tého druhu médií (apř. TV, rozhlas, časopisy, apod.). Nechť hodota c i udává účiost reklamy v daém médiu (počet "osloveých" osob a 000 Kč ivestovaých do daého média). Firma hodlá ve sledovaém období ivestovat do reklamí kampaě miimálě 250 tis. Kč a maximálě 550 tis. Kč. a.(3b) V lieárím matematickém modelu této optimalizačí úlohy bude mít podmíka omezující miimálí celkovou výši ivestic této firmy do reklamy tvar: 5 a) i d) i y i 250 b) i c i i c i y i 250 e) j y i 550 c) y j 250 j y j 550 b.(3b) V lieárím matematickém modelu optimalizačí úlohy z předchozí otázky může mít účelová fukce pro dosažeí co ejvyššího celkového účiku ivestic daé firmy do reklamy tvar: a) mi z d) max z i i c i y i b) max z c ij y ij i e) mi z c i i c j y j y i c) max z c i i y i

12 c.(3b) V lieárím matematickém modelu výše uvedeé optimalizačí úlohy bude mít podmíka zabezpečující požadavek, aby do prvích 5 médií bylo ivestováo právě 50 % všech prostředků skutečě vkládaých do reklamí kampaě tvar: 5 a) i 5 d) i x i 25 p x i 0,5 i c i 5 b) i 5 e) i x i 275 p x i 0,5 i x i 5 c) i x i 25 70) (3b) Jaké je optimálí řešeí úlohy lieárího programováí daé ásledujícím modelem? Použijte grafickou metodu s využitím obrázku. maximalizujte z x x 2 za podmíek: 3x +2x 2 60 x 30 x 2 30 x, x 2 0 a) [0, 30] b) [30, 30] c) [20, 0] d) [30, 0] e) emá optimálí řešeí x 2 3x +2x 2 60 x 2 30 x 30 x 7) (3b) Při řešeí časové aalýzy jistého projektu bylo zjištěo, že ejpozději utý koec čiosti (5,7) je v čase 22 a čiost trvá právě 8 čas. jedotek, kdy je ejdříve možý začátek této čiosti? (Poz.: Jde o ekritickou čiost s celkovou časovou rezervou 6 jedotek.) a) 8 b) 0 c) 2 d) 4 e) elze ze zadaých údajů určit

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Finanční řízení podniku. Téma: Časová hodnota peněz

Finanční řízení podniku. Téma: Časová hodnota peněz Fiačí řízeí podiku Téma: Časová hodota peěz Faktor času se ve fiačím řízeí uplatňuje a) při rozhodováí o ivesticích b) při staoveí trží cey majetku podiku c) při ukládáí volých peěžích prostředků d) při

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ

DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ Ivestičí horizot IH: doba, po kterou má ivestor v daé ivestici vázáy své peíze. Při ivestici do dluhopisu jsme vystavei riziku změy výosů Uvažujme

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY ÚROKOVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY 1. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(r) úrok v % z hodoty kapitálu za časové

Více

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací 6.-7. září 006 tegrace hodot Value-at-Risk lieárích subportfolií a bázi vícerozměrého ormálího

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

SH = BH*( 1 + i) n nebo

SH = BH*( 1 + i) n nebo PEKS 2 Literatura Syek PEK 4. vydáí Faktor času v peěžím vyjádřeí Peěží jedotka Kč přijata ebo vyplacea v růzých časových okamžicích má rozdílou hodotu. Deší korua je ceější, ež korua získaá později apř.

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

PŘIJÍMACÍ ŘÍZENÍ PRO ŠKOLNÍ ROK 2012/2013

PŘIJÍMACÍ ŘÍZENÍ PRO ŠKOLNÍ ROK 2012/2013 PŘIJÍMACÍ ŘÍZENÍ PRO ŠKOLNÍ ROK 2012/2013 OSNOVA 1. Práví předpisy 2. Přijímací řízeí 3. Termíy 4. Hodoceí uchazečů 5. Rozhodutí 6. Další kola přijímacího řízeí 7. Zápisový lístek 8. Jedoté přijímací zkoušky

Více

ROZVAHA. družstvo Od: 1.1.2013 Do: 31.12.2013. Zemědělská 897/5 Hradec Králové 500 03

ROZVAHA. družstvo Od: 1.1.2013 Do: 31.12.2013. Zemědělská 897/5 Hradec Králové 500 03 ROZVAHA k... 3.. 1.. 1. 2.... 2. 0. 1. 3..... A K T I V A AKTIVA CELKEM 001 B. Dlouhodobý majetek 003 B.I. Dlouhodobý nehmotný majetek 004 B.I.3. Software 007 B.I.7. Nedokončený dlouhodobý nehmotný majetek

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

3689/101/13-1 - Ing. Vítězslav Suchý, U stadionu 1355/16, 434 01 Most tel.: 476 709 704 mobil: 605 947 813 E-mail: vit.suchy@volny.

3689/101/13-1 - Ing. Vítězslav Suchý, U stadionu 1355/16, 434 01 Most tel.: 476 709 704 mobil: 605 947 813 E-mail: vit.suchy@volny. 3689/101/13-1 - o ceě : Bytu č. 2654/16 v č. p. 2654 v bloku č. 10 složeém z domů č.p. 2651, 2652, 2653, 2654 a 2655 a pozemcích p. č. 2450, 2449, 2448, 2447 a 2446. včetě příslušeství v katastrálím území

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

9. Účetní výkazy 702 Konečný účet rozvažný (v tis. Kč)

9. Účetní výkazy 702 Konečný účet rozvažný (v tis. Kč) 9. Účetní výkazy Obsah kapitoly: Účetní závěrka postup, obsah Vazba mezi účetní uzávěrkou a závěrkou Vazba mezi účty a výkazy Konečný účet rozvažný, účet zisků a ztrát Rozvaha, výkaz zisku a ztráty Mlékárny

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

INFLUENCE OF THE ENVIRONMENTAL LEGISLATION ON THE VALUE OF THE ENTERPRISE TECHNICAL EQUIPMENT

INFLUENCE OF THE ENVIRONMENTAL LEGISLATION ON THE VALUE OF THE ENTERPRISE TECHNICAL EQUIPMENT INFLUENCE OF THE ENVIRONMENTAL LEGISLATION ON THE VALUE OF THE ENTERPRISE TECHNICAL EQUIPMENT VLIV ENVIRONMENTÁLNÍ LEGISLATIVY NA HODNOTU TECHNICKÝCH ZAŘÍZENÍ PODNIKU Paseka P., Mareček J. Departmet of

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

Otázka 24 Výkaz o finančních tocích označujeme: a cash flow b rozvaha c výsledovka d provozní hospodářský výsledek e výkaz o pracovním kapitálu

Otázka 24 Výkaz o finančních tocích označujeme: a cash flow b rozvaha c výsledovka d provozní hospodářský výsledek e výkaz o pracovním kapitálu TEORETICKÉ OTÁZKY Otázka 1 Pokud firma dosahuje objemu výroby, který je označován jako tzv. bod zvratu, potom: a vyrábí objem produkce, kdy se celkové příjmy (výnosy, tržby) rovnají mezním nákladům b vyrábí

Více

Teorie kompenzace jalového induktivního výkonu

Teorie kompenzace jalového induktivního výkonu Teorie kompezace jalového iduktivího výkou. Úvod Prvky rozvodé soustavy (zdroje, vedeí, trasformátory, spotřebiče, spíací a jistící kompoety) jsou obecě vzato impedace a jejich áhradí schéma můžeme sestavit

Více

1 Cash Flow. Zdroj: Vlastní. Obr. č. 1 Tok peněžních prostředků

1 Cash Flow. Zdroj: Vlastní. Obr. č. 1 Tok peněžních prostředků 1 Cash Flow Rozvaha a výkaz zisku a ztráty jsou postaveny na aktuálním principu, tj. zakládají se na vztahu nákladů a výnosů k časovému období a poskytují informace o finanční situaci a ziskovosti podniku.

Více

Modul Strategie. 2006... MTJ Service

Modul Strategie. 2006... MTJ Service Představeí obsahuje dvě základí součásti, a to maažerskou (pláováí cash-flow, rozšířeé statistiky) a pracoví (řešeí work-flow). Základem maažerské oblasti je pláováí cash-flow (pláováí fiačího toku firmou).

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

6.8 Základní účtování nákladů a výnosů

6.8 Základní účtování nákladů a výnosů 6 Základní účtování nákladů a výnosů 6.8 Základní účtování nákladů a výnosů 6.8.1 Vymezení pojmu náklady a výnosy Náklady! & Při podnikatelské činnosti dochází ke spotřebě majetkových složek (například

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

1. Pražská účetní společnost, s. r. o. Účetní závěrka k 31. prosinci 2013

1. Pražská účetní společnost, s. r. o. Účetní závěrka k 31. prosinci 2013 1. Pražská účetní společnost, s. r. o. Účetní závěrka k 31. prosinci 2013 Rozvaha v plném rozsahu k 31.12.2013 v celých tisících Kč 1. Pražská účetní společnost s.r.o. Na Výtoni 1259/12 128 00 Praha 2

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

ÚČTOVÁ TŘÍDA 0 DLOUHODOBÝ MAJETEK

ÚČTOVÁ TŘÍDA 0 DLOUHODOBÝ MAJETEK Účet Položka rozvahy Aktiva Pasiva ÚČTOVÁ TŘÍDA 0 DLOUHODOBÝ MAJETEK Účtová skupina 01 Dlouhodobý nehmotný majetek 011 Zřizovací výdaje B.I.1. 012 Nehmotné výsledky výzkumu a vývoje B.I.2. 013 Software

Více

obchodních společností

obchodních společností Finanční výkazy obchodních společností Ladislav Šiška Obchodní společnosti založení vznik zápisem do obchodního rejstříku veřejný seznam podnikatelů + sbírka listin ochrana třetích osob členění českých:

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Témata profilové maturitní zkoušky z předmětu Účetnictví a daně

Témata profilové maturitní zkoušky z předmětu Účetnictví a daně Témata profilové maturitní zkoušky z předmětu Účetnictví a daně obor Podnikání 1. Právní úprava účetnictví - předmět účetnictví, podstata, význam a funkce - právní normy k účetnictví - účtová osnova a

Více

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ Vlastosti úloh celočíselého programováí VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ PRINCIP ZESILOVÁNÍ NEROVNOSTÍ A ZÁKLADNÍ METODY. METODA VĚTVENÍ A HRANIC. TYPY ÚLOH 1. Úloha lieárího programováí: max{c

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

Tabulková část informační povinnosti emitentů kótovaných cenných papírů. Základní údaje. IČ 45272271 Obchodní firma Interhotel Olympik, a.s.

Tabulková část informační povinnosti emitentů kótovaných cenných papírů. Základní údaje. IČ 45272271 Obchodní firma Interhotel Olympik, a.s. Tabulková část informační povinnosti emitentů kótovaných cenných papírů IČ 45272271 Obchodní firma Interhotel Olympik, a.s. Ulice Sokolovská 138 Obec Praha 8 PSČ 186 00 E-mail Internetová adresa vyhnisova@olympik.cz

Více

Zpráva o hospodaření. Matematického ústavu Slezské univerzity v Opavě. za rok 2000

Zpráva o hospodaření. Matematického ústavu Slezské univerzity v Opavě. za rok 2000 Zpráva o hospodaření Matematického ústavu Slezské univerzity v Opavě za rok 2000 1. Úvod Matematický ústav Slezské univerzity v Opavě vykázal za rok 2000 zisk ve výši 37 tis. Kč. Jedná se o zisk, kterého

Více

17. INDIVIDUÁLNÍ ÚČETNÍ ZÁVĚRKA SPOLEČNOSTI CZECH PROPERTY INVESTMENTS, A.S. v tis. Kč Pozn. 31. prosince 2010 31. prosince 2009

17. INDIVIDUÁLNÍ ÚČETNÍ ZÁVĚRKA SPOLEČNOSTI CZECH PROPERTY INVESTMENTS, A.S. v tis. Kč Pozn. 31. prosince 2010 31. prosince 2009 17. INDIVIDUÁLNÍ ÚČETNÍ ZÁVĚRKA SPOLEČNOSTI CZECH PROPERTY INVESTMENTS, A.S. zpracovaná za rok končící 31. prosincem 2010 v souladu s Mezinárodními standardy účetního výkaznictví ve znění přijatém Evropskou

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

Předmluva 1. Podstata a význam účetnictví 2 Organizace účetnictví 2. Úvod 3 Předmět účetnictví 3 Rozsah vedení účetnictví 3 Schéma účetních soustav 4

Předmluva 1. Podstata a význam účetnictví 2 Organizace účetnictví 2. Úvod 3 Předmět účetnictví 3 Rozsah vedení účetnictví 3 Schéma účetních soustav 4 Předmluva 1 Podstata a význam účetnictví 2 Organizace účetnictví 2 KAPITOLA 1 Úvod 3 Předmět účetnictví 3 Rozsah vedení účetnictví 3 Schéma účetních soustav 4 KAPITOLA 2 Účetní záznamy 5 Význam a podstata

Více

Tabulková část informační povinnosti emitentů registrovaných cenných papírů. Základní údaje. IČ 45272271 Obchodní firma Interhotel Olympik, a. s.

Tabulková část informační povinnosti emitentů registrovaných cenných papírů. Základní údaje. IČ 45272271 Obchodní firma Interhotel Olympik, a. s. Tabulková část informační povinnosti emitentů registrovaných cenných papírů IČ 45272271 Obchodní firma Interhotel Olympik, a. s. Ulice Sokolovská 138 Obec Praha 8 PSČ 186 00 E-mail Internetová adresa Jméno,

Více

Rozvaha firmy YAZ, s.r.o období 2009-2012

Rozvaha firmy YAZ, s.r.o období 2009-2012 Rozvaha firmy YAZ, s.r.o období 2009-2012 Rozvaha v plném rozsahu (tis. Kč) 2012 2011 2010 2009 AKTIVA CELKEM 2 133 720 1 943 174 1 850 647 1 459 933 A. POHLEDÁVKY ZA UPSANÝ VLASTNÍ KAPITÁL B. DLOUHODOBÝ

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005 Patří slovo BUSINESS do zdravotictví?. 23. 6. 2005 Společost Deloitte Společost Deloitte v České republice má více ež 550 zaměstaců a kaceláře v Praze a Olomouci. Naše česká pobočka je součástí aší regioálí

Více

Ú Č T O V Á O S N O V A. 0 Dlouhodobý majetek - dlouhodobý nehmotný majetek - dlouhodobý hmotný majetek - účty pořízení majetku a účty oprávek

Ú Č T O V Á O S N O V A. 0 Dlouhodobý majetek - dlouhodobý nehmotný majetek - dlouhodobý hmotný majetek - účty pořízení majetku a účty oprávek Ú Č T O V Á O S N O V A 0 Dlouhodobý majetek - dlouhodobý nehmotný majetek - dlouhodobý hmotný majetek - účty pořízení majetku a účty oprávek 1 Zásoby - materiál, zásoby vlastní výroby, zboží 2 Finanční

Více

PLASTIC FICTIVE COMPANY

PLASTIC FICTIVE COMPANY Strana 1 z 7 Identifikace firmy PLASTIC FICTIVE COMPANY a.s. Telefon 00420/ 246810246 Janáčkova 78 Telefax 00420/ 369113691 508 08 Nové Město e-mail info@pfc-plastic.cz Česká republika Web www.pfc-plastic.cz

Více

Obsah. Seznam zkratek některých použitých právních předpisů...xv Seznam ostatních použitých pojmů a zkratek... XVI Předmluva...

Obsah. Seznam zkratek některých použitých právních předpisů...xv Seznam ostatních použitých pojmů a zkratek... XVI Předmluva... Obsah Seznam zkratek některých použitých právních předpisů...................xv Seznam ostatních použitých pojmů a zkratek.......................... XVI Předmluva....................................................

Více

VÝROČNÍ ZPRÁVA ZA ROK 2008 EKONOMICKÁ ČÁST Výkaz zisku a ztráty NÁKLADY název ukazatele číslo hlavní hosp. I. Spotřebované nákupy celkem 02 1 271 01. Spotřeba materiálu 03 516 02. Spotřeba energie 04 755

Více

Kapitola 1 Základy účetnictví

Kapitola 1 Základy účetnictví Kapitola 1 Základy účetnictví SHRNUTÍ UČIVA AKTIVA jedná se o majetek, který účetní jednotka používá k podnikání. Aktiva zahrnují zejména peněžní prostředky, dlouhodobý majetek, zásoby a pohledávky. PASIVA

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

2. přednáška. Ing. Josef Krause, Ph.D.

2. přednáška. Ing. Josef Krause, Ph.D. EKONOMIKA PODNIKU I 2. přednáška Ing. Josef Krause, Ph.D. Majetková a kapitálová struktura Rozvaha ROZVAHA účetní přehled majetku podniku, zachycující bilanční formou stav podnikových prostředků (aktiv)

Více

Finanční nebo dluhová krize aneb mluviti stříbro a mlčeti zlato

Finanční nebo dluhová krize aneb mluviti stříbro a mlčeti zlato Fiačí ebo dluhová krize aeb mluviti stříbro a mlčeti zlato Bohatství árodů 1 lze akademicky (abstraktě) rozdělit do dvou základích skupi: 1. Tezaurovaé. 2. Ivestovaé, oběhové. Tezaurovaá část bohatství

Více

Přehled přednášek a cvičení

Přehled přednášek a cvičení 1. Význam účetnictví, předmět účetnictví Právní úprava účetnictví Účetní doklady Přehled přednášek a cvičení 2. Rozvaha majetek, zdroje krytí (aktiva, pasiva) Typické změny rozvahových stavů Inventarizace

Více

Rozvaha 31.12.10. A. Pohledávky za upsaný základní kapitál 002 0 0 0. B. Dlouhodobý majetek 003 570 545-3 456 567 089 180 669

Rozvaha 31.12.10. A. Pohledávky za upsaný základní kapitál 002 0 0 0. B. Dlouhodobý majetek 003 570 545-3 456 567 089 180 669 Dle vyhlášky MF ČR č.500/2002 Sb. Rozvaha Účetní jednotka doručí v plném rozsahu Název a sídlo účet.jednotky účetní závěrku současně s doručením daňového přiznání na daň z příjmů (v celých tisících Kč)

Více

Tabulková část informační povinnosti emitentů registrovaných cenných papírů. IČ 12297 Obchodní firma Jihočeské papírny, a. s., Větřní.

Tabulková část informační povinnosti emitentů registrovaných cenných papírů. IČ 12297 Obchodní firma Jihočeské papírny, a. s., Větřní. Tabulková část informační povinnosti emitentů registrovaných cenných papírů IČ 12297 Obchodní firma Jihočeské papírny, a. s., Větřní Ulice Obec Větřní PSČ 382 11 E-mail Internetová adresa www.jip.cz Tel.

Více

Tabulková část informační povinnosti emitentů registrovaných cenných papírů. Základní údaje. IČ 45534276 Obchodní firma VEBA textilní závody a.s.

Tabulková část informační povinnosti emitentů registrovaných cenných papírů. Základní údaje. IČ 45534276 Obchodní firma VEBA textilní závody a.s. Tabulková část informační povinnosti emitentů registrovaných cenných papírů IČ 45534276 Obchodní firma VEBA textilní závody a.s. Ulice Přadlácká 89 Obec Broumov PSČ 550 17 E-mail veba@veba.cz Internetová

Více

53 684 953 47 278 722 Aktiva celkem

53 684 953 47 278 722 Aktiva celkem Obchodní firma: ING Bank N.V., organizační složka sídlo: Praha 5, Nádražní 344/25 identifikační číslo: 291 798 66 předmět podnikání: banka okamžik sestavení účetní závěrky: 27.4.2005 kód banky: 3500 ROZVAHA

Více

Majetek. MAJETEK členění v rozvaze. Dlouhodobý majetek

Majetek. MAJETEK členění v rozvaze. Dlouhodobý majetek Majetek Podnikání se bez majetku neobejde, různé druhy podnikání ovlivňují i skladbu a velikost majetku. Základem majetku jsou peníze, za které se nakupují potřebné majetkové části. Rozvaha (bilance) písemný

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

VÝROČNÍ ZPRÁVA ZA ROK 2009 EKONOMICKÁ ČÁST Výkaz zisku a ztráty NÁKLADY název ukazatele číslo hlavní hosp. I. Spotřebované nákupy celkem 02 1 404 01. Spotřeba materiálu 03 729 02. Spotřeba energie 04 675

Více

5. ČIŠTĚNÍ A FAKTURACE ODPADNÍCH VOD (v tis. m 3 ) 6. VÝVOJ NÁKLADŮ NA VODNÉ, VODU PŘEDANOU A STOČNÉ (v tis. Kč) 7. VÝVOJ POČTU ZAMĚSTNANCŮ

5. ČIŠTĚNÍ A FAKTURACE ODPADNÍCH VOD (v tis. m 3 ) 6. VÝVOJ NÁKLADŮ NA VODNÉ, VODU PŘEDANOU A STOČNÉ (v tis. Kč) 7. VÝVOJ POČTU ZAMĚSTNANCŮ 5. ČIŠTĚNÍ A FAKTURACE ODPADNÍCH VOD (v tis. m 3 ) Voda čištěná 9.139 8.895 8.547 8.699 7.874 90,5 Fakturace - domácnosti - ostatní 1.829 2.935 1.697 2.738 Celkem 4.764 4.435 4.109 3.953 3.904 98,8 1.646

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

Metodika výpočtu finančního zdraví pro OP Zemědělství

Metodika výpočtu finančního zdraví pro OP Zemědělství Příloha 19 pro OP Zemědělství Vyhodnocení finančního zdraví žadatele je: a) kriterium přijatelnosti b) bodovací kriterium u opatření 1.1., 1.2. a 2.1.5. (viz Příloha 3 Bodovací kritéria) Požadované dokumenty

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více