Relativita I příklady
|
|
- Františka Nováková
- před 5 lety
- Počet zobrazení:
Transkript
1 quation Chapter 1 ection 1 Relatiita I příklad 1 Mion Zadání: Doba žiota mionu (těžkého elektronu) je Δτ = 10 6 s Mion nikl e ýšce h = 30 km nad porchem Země interakcí kosmického áření s horními rstami atmosfér a dopadl na Zem Jakou musel mít minimální rchlost při niku? Řešení: Mion b podle klasické fik neměl na porch Země ůbec dopadnout protože se dříe ropadne na normální elektron a neutrino Z hlediska pooroatele na Zemi je ale mion pohblié soustaě a doba jeho žiota se prodlužuje na Δt = γ Δτ Mion proto může ulétnout až dálenost h cδt = cγ Δτ Z tohoto tahu počteme rchlost kterou musí minimálně mít: c Δτ c 1 = c (1) h Příklad le také řešit soustaě spojené s mionem jako kontrakci dálenosti kterou musí mion ulétnout Interal Zadání: Dokažte že interal mei děma událostmi je e šech souřadnicoých soustaách stejný Řešení: Předpokládejme že se odehrál dě události A a a každá je popsána čtřmi prostoročasoými údaji nějaké souřadnicoé soustaě počtěme interal soustaě a soustaě Ukážeme že obě hodnot jsou stejné V platí A A A A Δ s = c ( t t ) + ( ) + ( ) + ( ) () Interal přepíšeme pomocí přírůstků které určíme Lorento transformace Pro interal ted máme t = γ( t / c ) = γ( t) = = (3)
2 Δ s = c Δ t +Δ +Δ +Δ [ γ ] Δ s = c γ( Δt Δ / c ) + ( Δ Δ t) + Δ +Δ Po ronásobení se ýra úměrné Δ Δ t ruší a bude (4) γ ( ) γ ( ) γ ( ) γ ( ) Δ s = c Δt Δ + Δ + Δ t +Δ +Δ c Nní sloučíme člen s Δ a Δ t k sobě: s γ ( c ) t γ Δ = Δ + 1 Δ +Δ +Δ c Vužijeme-li definici koeficientu γ máme okamžitě Δ s = Δ + Δ + Δ c Δ t = Δ s (5) Interal mei oběma událostmi je proto e šech souřadnicoých soustaách stejný 3 lektron Zadání: lektron je urchlen napětím U = 10 6 V Určete jeho rchlost klasického i relatiistického ýrau pro kinetickou energii a ýsledk poronejte Řešení: lektron obou případech urchlením íská kinetickou energii W = QU (6) k V klasickém případě je 1 Wk QU Wk = m = = m m = 1 98 c (7) V relatiistickém případě je m0c Wk = γ m0c m0c = c 1 m0c QU + = 094c (8) Nerelatiistický ýra ted jeně nemůžeme tomto případě použít ede k rchlostem pohbu elektronu šším než je rchlost sětla 4 lunce Zadání: Jak se mění hmotnost lunce a jeden rok dík jeho ařoání? Intenita slunečního áření nad atmosférou Země je I = 14 kw/m hmotnost lunce je kg dálenost Země od lunce je d = km Řešení: Hmotnost se mění o Δm = Δ/c = PΔt /c = 4πd I Δt/c ~ kg (9) lunce přicháí o anedbatelný lomek sé celkoé hmotnosti
3 5 Dopplerů je (na přednášce) Zadání: Odoďte relatiistický Dopplerů je pomocí transformace lnoého čtřektoru (k k k ω/c) Zkuste se amslet nad tím proč docháí k Dopplerou jeu i tehd kdž droj pooroatele jen míjí a jejich dálenost se nemění (t transerální neboli příčný Dopplerů je) Řešení: nadno naleneme řešení soustaě spojené s drojem áření: ω/ c ω0 / c ω 0 / c k k cosα0 ω0/ c cosα0 = = k ksin α 0 ω0/ c sinα (10) 0 k 0 0 Nní proedeme Lorentou transformaci do sousta pooroatele (jde o inerní Lorentou transformaci): ω/ c γ γβ ω / c 0 ω0 / c cos α γβ γ ω0/ c cosα0 ω0 / c sinα = 1 0 ω0/ c sinα (11) Vhledem k tomu že nás ajímá frekence místě pooroatele postačí nalét jen nultý řádek maticoého násobení: ω = γ 1+ cos α0ω0 (1) c Tento tah je námý jako relatiistický Dopplerů je V limitě níkých rchlostí (anedbáme člen kadratické a šší /c) je γ 1 a ω = (1 + /c cos α 0 ) ω 0 Při daloání droje je α 0 = 180 a ω = (1 /c) ω 0 při přibližoání droje je α 0 = 0 a ω = (1 + /c) ω 0 Jde o námé nerelatiistické Dopplero tah Při šších rchlostech jsou tto tah modifikoán koeficientem γ Jestliže droj áření pooroatele míjí (α 0 = ± 90 ) je ω = γ ω 0 Ke měně frekence ted docháí i případě že se droj nedaluje ani nepřibližuje Tento je se naýá transerální Dopplerů je a jde o čistě relatiistický je který nemá nerelatiistické fice obdob Je působen měnou chodu času pohbující se soustaě (dilatací času) Prostoroé relace maticoé transformace dají tah ωcos α = γω ( β + cos α ) (13) ωsinα = ω sinα (14) Pokud obě ronice dělíme ískáme tah mei oběma úhl který je neáislý na frekencích a áisí jen na ájemné rchlosti sousta:
4 sin 0 tg α α = γβ + γ cos α Ze tahu je řejmé že lnoplocha měnila směr a že tato měna áisí jen na ájemné rchlosti sousta Relatiistický Dopplerů je jsme de ododili jen pro sětlo (ω = ck) a nikoli pro obecné lnění látk 0 (15) 6 Heaisideoo pole Zadání: Heaisideoo pole Určete pole nabité částice letící konstantní rchlostí Vužijte transformaci čtřektoru potenciálu pole ( A A A φ / c) Q Řešení: V soustaě spojené s nábojem je řejmě ektoroý potenciál nuloý (není de přítomno magnetické pole) a skalární potenciál je dán Coulomboým ákonem: Q φ = 4πε r (16) Proedeme inerní Lorentou transformaci do sousta pooroatele φ / c γ γβ Q/(4 πε0cr ) A γβ γ 0 A = (17) A Po násobení matic dostááme pro potenciál soustaě pooroatele γq γ βq φ = ; A ; A 0; A 0 4πε r = 4πε cr = = Ve ýsledku jsme onačili r = + + = γ ( t) + + (19) Je řejmé že magnetické pole je již nenuloé a elektrické pole je také modifikoáno Noý tar polí je 0 A γq( t) = = 3/ 4 πε 0 γ ( t) + + A = = 3/ 4 πε 0 γ ( t) + + A = = 3/ 4 πε 0 γ ( t) + + γq γq (18) (0)
5 Magnetické pole určíme jako rotaci ektoroého potenciálu: A A = = 0 A A γβq = = 3/ 4 πε 0cγ ( t) + + A A γβq = = + 3/ 4 πε 0cγ ( t) + + Důležitá je kolmá a ronoběžná složka elektrického pole určíme ji místech onačených na obráku postaičkou pooroatele: Q γ = t πε 0 + = + = 1 Q = = 4 ( ) = 0 = 0 γ 4 πε0 ( t) Vidíme že elektrické pole je napříč pohbu nataženo faktorem γ a e směru pohbu je stlačeno faktorem γ Pole se pohbuje spolu s nábojem Magnetické pole toří kružnice kolmé na pohb náboje Pro nekonečnou řadu nábojů bchom ískali pole kolem odiče P P (1) () (3) 7 Letící kondenátor Zadání: Roinný deskoý kondenátor s homogenním elektrickým polem se pohbuje hledem k pooroateli rchlostí e směru silokřiek pole Určete elektrické a magnetické pole které bude pooroatel pooroat ' 0 ' ' Řešení: Zaedeme souřadnicoou soustau spojenou s kondenátorem oustaa bude spojená s pooroatelem V soustaě spojené s kondenátorem jsou potenciál pole triiální lektrické pole musí být áporně atým gradientem skalárního potenciálu magnetické pole rotací ektoroého potenciálu odsud určíme potenciál: φ = 0 A = 0 A = 0 A = 0 (4)
6 Nní proedeme inerní Lorentou transformaci k soustaě spojené s pooroatelem: φ / c γ γβ 0 A γβ γ 0 A = (5) A Výsledné potenciál jsou: φ = γ = γ ( t) A 0 γ β 0 γβ ( t) = = c c A = 0 A = 0 Poslední částí ýpočtu je určení noých elektrických a magnetických polí: A β = = γ 0 γ 0= γ (1 / c ) 0 = 0 c A = = 0 A = = 0 A A = = A A = = A A = = Pohbuje-li se droj homogenního elektrického pole e směru silokřiek pole se nemění Toto trení ale neplatí pro pohb napříč silokřikám V tomto případě se mění elektrické pole a generuje pole magnetické (Vkoušejte!) (6) (7)
Relativita I příklady
quation Chapter 1 ection 1 Relatiita I příklad 1 Mion Zadání: Doba žiota mionu (těžkého elektronu) je = 10 6 s Mion nikl e ýšce h = 30 km nad porchem Země interakcí kosmického áření s horními rstami atmosfér
7. SEMINÁŘ Z MECHANIKY
- 4-7 SEINÁŘ Z ECHANIKY 4 7 Prázdný železniční agón o hotnosti kgse pohbuje rchlostí,9 s po 4 odoroné trati a srazí se s naložený agóne o hotnosti kgstojící klidu s uolněnýi brzdai Jsou-li oba oz při nárazu
1.6.7 Složitější typy vrhů
.6.7 Složitější tp rhů Předpoklad: 66 Pedaoická poznámka: Tato hodina přesahuje běžnou látku, probírám ji pouze případě, že mám přebtek času. Za normálních podmínek není příliš reálné s ětšinou tříd řešit
Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář.
/ 9 GONIOMETRIE ) Doplň tabulk hodnot: α ( ) 0 0 5 60 90 0 5 50 80 α (ra sin α cos α tg α cotg α α ( ) 0 5 0 70 00 5 0 60 α (ra sin α cos α tg α cotg α ) Doplň, zda je daná funkce v daném kvadrantu kladná,
6 Pohyb částic v magnetickém poli
Pohb částic v magnetickém poli V této části si ukážeme, jak homogenní magnetické pole ovlivňuje pohb částic. Soustavu souřadnic volíme vžd tak, ab vektor magnetickéindukce Bsměřovalposměruos (obr.).. Lorentova
VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE
Příklady: 1A. Jakou silou působí homogenní magnetické pole na přímý vodič o délce 15 cm, kterým prochází proud 4 A, a svírá s vektorem magnetické indukce úhel 60? Velikost vektoru magnetické indukce je
1 Nulové body holomorfní funkce
Nulové body holomorfní funkce Bod naýváme nulový bod funkce f), jestliže f ) =. Je-li funkce f) holomorfní v bodě, pak le funkci f) v jistém okolí bodu rovinout v Taylorovu řadu: f) = n= a n ) n, a n =
Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t
Dilatae času 1 Na kosmiké lodi zdalujíí se od Země ryhlostí,1 probíhal určitý děj, který podle měření účastníků letu tral jednu hodinu Jak dlouho trá tento děj pro pozoroatele na Zemi? Je možné, aby děj
Rovinná a prostorová napjatost
Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových
Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1
Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v
..6 Znaménka Předpoklad: 3, 5 Opakoání: Veličin s elikostí a směrem = ektoroé eličin Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku
1.6 Singulární kvadriky
22 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ neboť B = C =. Z rovnice (1.34) plne, že přímka, procháející singulárním bodem kvadrik má s kvadrikou společný poue tento singulární bod (je-li A ) nebo celá
3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru
3. Vlny 3. Úod Vlnění můžeme pozoroat například na odní hladině, hodíme-li do ody kámen. Mechanické lnění je děj, při kterém se kmitání šíří látkoým prostředím. To znamená, že například zuk, který je mechanickým
6.1 Shrnutí základních poznatků
6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice
= + = + = 105,3 137, ,3 137,8 cos37 46' m 84,5m Spojovací chodba bude dlouhá 84,5 m. 2 (úhel, který spolu svírají síly obou holčiček).
4.4.4 Trigonometrie v praxi Předpoklady: 443 Nejdřív něco jednoduchého na začátek. Př. : vě přímé důlní chodby ústící do stejného místa svírají úhel α = 37 46' mají být spojeny chodbou, spojující bodu
Systémy pro využití sluneční energie
Systémy pro využití sluneční energie Slunce vyzáří na Zemi celosvětovou roční potřebu energie přibližně během tří hodin Se slunečním zářením jsou spojeny biomasa pohyb vzduchu koloběh vody Energie
Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v
..7 Znaménka Předpoklad: 4 Opakoání: Veličin s elikostí a směrem = ektoroé eličin. Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku
Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky.
5 Vektor II Předpoklad: 4 Umíme už vektor sčítat, teď zkusíme opačnou operací rozklad vektoru na složk Př : Na obrázku je nakreslena síla Nakresli do obrázku síl a tak, ab platilo = + Kolik má úloha řešení?
LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM
LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM - predpokladejme, e name linearni a kvadraticke moment k osam, a chceme urcit moment k osam a. - souradnice elementu ds k posunutm osam jsou potom: = - d
Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků.
FOTLOÝ MÍČ Popis aktivit ýpočt odchlek přímek a rovin v tělese, resp. velikostí úhlů, které svírají stěn a hran v mnohostěnu. Předpokládané znalosti Odchlka rovin a přímk, odchlka dvou rovin. Definice
12 Rozvinutelné a zborcené plochy
1 Rozinutelné a zborcené plochy ÚM FSI VUT Brně Studijní text 1 Rozinutelné a zborcené plochy 1. 1 Délka analytické křiky 1. Délka analytické křiky: je rona součtu délek oblouků l ohraničených body t ;
FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
Hlavní body - elektromagnetismus
Elektromagnetismus Hlavní body - elektromagnetismus Lorenzova síla, hmotový spektrograf, Hallův jev Magnetická síla na proudovodič Mechanický moment na proudovou smyčku Faradayův zákon elektromagnetické
3. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE
Euklidoský prostor. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE Průodce studiem Geometrii lze budoat metodou syntetickou nebo metodou analytickou. Při syntetické metodě pracujeme přímo s geometrickými objekty.
13. cvičení z Matematické analýzy 2
. cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
KINETICKÁ TEORIE PLYNŮ
KIETICKÁ TEOIE PLYŮ Cíle a předpklady - snaží se ysětlit makrskpické chání plynů na ákladě chání jedntliých mlekul (jejich rychlstí, pčtu náraů na stěnu nádby, srážek s statními mlekulami Tat terie bere
Příklady Kosmické záření
Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum
1.6.5 Vodorovný vrh. Předpoklady: Pomůcky: kulička, stůl, případně metr a barva (na měření vzdálenosti doapdu a výšky stolu).
165 Vodoroný rh Předpoklad: 164 Pomůck: kulička, stůl, případně metr a bara (na měření zdálenosti doapdu a ýšk stolu) Pedaoická poznámka: Stejně jako předchozí i tato hodina stojí a padá s tím, jak dobře
FYZIKA I. Složené pohyby (vrh šikmý)
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Složené pohb (vrh šikmý) Prof. RNDr. Vilém Mádr, CSc. Prof. In. Libor Hlaváč, Ph.D. Doc. In. Irena Hlaváčová, Ph.D. Mr. Art. Damar
Fyzika I mechanika. Rozdělení fyziky podle jednotlivých oborů, tj. podle jevů, které zkoumá:
Fika I mechanika Úvod Základní fikální pojm Fika (fsis je řeck příroda) bla původně vědou o přírodě, ted souhrnem všech přírodních věd, které se s postupem dějin osamostatnil. Fika si však achovává ústřední
Mezony π, mezony K, mezony η, η, bosony 1
Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, (piony) a) Nabité piony hmotnost, rozpady, doba života, spin, parita, nezachování parity v jejich rozpadech b) Neutrální piony hmotnost, rozpady, doba
Z transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1)
Z transformace Definice Z transformací komplexní posloupnosti f = { roumíme funkci F ( definovanou vtahem F ( = n, ( pokud řada vpravo konverguje aspoň v jednom bodě 0 C Náev Z transformace budeme také
Relativistická kinematika
Relativistická kinematika 1 Formalismus čtyřhybnosti Pro řešení relativistických kinematických úloh lze často s výhodou použít formalismus čtyřhybnosti. Čtyřhybnost je čtyřvektor, který v sobě zahrnuje
FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
SPECIÁLNÍ TEORIE RELATIVITY
SPECIÁLNÍ TEORIE RELATIVITY 1. Základní informae autor Albert Einstein jey pozoroané e DVOU ztažnýh soustaáh, které se zhledem k sobě pohybují ryhlostí blízkou ryhlosti sětla e akuu Co uidí nější a nitřní
vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace
Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti
Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B)
Přijímací zkouška na naazující magisterské studium - 05 Studijní program Fyzika - šechny obory kromě Učitelstí fyziky-matematiky pro střední školy, Varianta A Příklad Částice nesoucí náboj q letěla do
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
f x = f y j i y j x i y = f(x), y = f(y),
Cvičení 1 Definice δ ij, ε ijk, Einsteinovo sumační pravidlo, δ ii, ε ijk ε lmk. Cvičení 2 Štoll, Tolar: D3.55, D3.63 Cvičení 3 Zopakujte si větu o derivovování složené funkce více proměnných (chain rule).
plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
F n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
Vlnění druhá sada Equation Chapter 1 Section 1
Vlnění druhá sada Equation Chapter 1 Setion 1 1. Ladička Zadání: Zdroj zuku se pohybuje na ozíku ryhlostí = 5 m s 1 směrem ke stěně. Na opačné straně slyší pozoroatel rázy na frekeni f R = 3 Hz. Jaká byla
Fyzikální korespondenční seminář UK MFF 22. II. S
Fzikální korespondenční seminář UK MFF http://fkosmffcunicz II S ročník, úloha II S Young a vlnová povaha světla (5 bodů; průměr,50; řešilo 6 studentů) a) Jaký tvar interferenčních proužků na stínítku
Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ
KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ URČEN ENÍ PRÁCE KLIKOVÉHO LISU URČEN ENÍ SETRVAČNÍKU KLIKOVÉHO LISU KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ KLIKOVÁ HŘÍDEL OJNICE KLIKOVÁ HŘÍDEL BERAN LOŽISKOVÁ TĚLESA
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Fyzika II, FMMI. 1. Elektrostatické pole
Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých
Hledané složky vektoru tvoří odvěsny pravoúhlého trojúhelníku:
7 Vektor III Předpoklad: 006 Pedagogická ponámka: Příklad, 4, 5 je možné vnechat, důležité je, ab alespoň 5 minut blo na příklad 7 Pedagogická ponámka: Úvodní příklad vužívám k prokoušení látk minulé hodin
Obsah a průběh zkoušky 1PG
Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dě konstrukční úlohy dle části po. bodech a jedna úloha ýpočetní úloha dle části za bodů. Ústní část jedna
K rozpoznání růstu či klesání dané funkce určitém směru nám pomůže gradient, tj. vektor., ln(1 x2 + y 2 [ = y
VKM/IM 017/018 Určete da funkce fx y) ln1 x +y ) v bodě A 1 1 ve směru vektorů u 1 1 0 u 0 1 u 3 1 1 a u 4 1 roste či klesá a určete rychlost měny. Řešení: Funkce fx y) je definovány pro všechny body R
1 4( 1) Co je řešením rovnice 2y 1 = 3? Co je řešením, pokud přidáme rovnici x + y = 3? Napište
Řešená cvičení lineární algebr I Karel Král 10. října 2017 Tento tet není určen k šíření. Všechn chb v tomto tetu jsou samořejmě áměrné. Reportujte je prosím na adresu kralka@iuuk.mff.cuni... Obsah 1 Cviceni
Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.
Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
Smíšený součin
7..14 Smíšený součin Předpoklady: 713 Je dán ronoběžnostěn LMNOPR. R O P N M L Jeho objem umíme spočítat stereometrikým zorem: V = S. p Ronoběžnostěn je také určen třemi ektory a, b a R O P b N M a L jeho
Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0
Generted b Foit PDF Cretor Foit Softwre http://www.foitsoftwre.com For elution onl. Kuželosečk I. Kuželosečk zákldních polohách posunuté to prtie je opkoání látk obkle probírné n střední škole. Kružnice
MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
Projekty - Vybrané kapitoly z matematické fyziky
Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................
Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0
Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
vsinα usinβ = 0 (1) vcosα + ucosβ = v 0 (2) v u = sinβ , poměr drah 2fg v = v 0 sin 2 = 0,058 5 = 5,85 %
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (,, 3, 4, 5, 7), I. Čáp (6).a) Předpokládáme-li impuls třecích sil puků o led vzhledem k velmi krátké době srážky za
1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu
. Dráha ronoměrně zrychleného (zpomaleného) pohybu teorie Veličina, která charakterizuje změnu ektoru rychlosti, se nazýá zrychlení. zrychlení akcelerace a, [a] m.s - a a Δ Δt Zrychlení je ektoroá fyzikální
1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů
3.3. Operace s vektory. Definice
Operace s ektory.. Operace s ektory Výklad Definice... Nechť ϕ je úhel do nenloých ektorů, (obr. ). Skalárním sočinem ektorů, rozmíme číslo, které bdeme označoat. (někdy strčně ) a které definjeme roností.
Plazma v kosmickém prostoru
Plazma v kosmickém prostoru Literatura F. F. Chen, Úvod do fyziky plazmatu Academia, Praha, 1984 D. A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics: With Space and Laboratory Applications
Rovinná napjatost a Mohrova kružnice
Rovinná napjatost a ohrova kružnice Dvojosý stav napjatosti - ukák anačení orientace napětí v rovině x Na obr. vlevo dole jsou vnačen složk napětí. Kladná orientace napětí x a je v případě, že vektor směřují
Přehled veličin elektrických obvodů
Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic
Výsledky úloh. 1. Úpravy výrazů + x 0, 2x 1 2 2, x Funkce. = f) a 2.8. ( ) ( ) 1.6. , klesající pro a ( 0, ) ), rostoucí pro s (, 1)
Výsledky úloh. Úpravy výrazů.. +, + R.., a 0, a b.., a ± b, a b a b a +.. + a +, 0, a.., a 0; ± ; n + a.. a + b 9, > 0.7., a ± b a b m n.8., m 0, n 0, m n.9. a, a > 0 m + n.0., ;0; ;;.., k.. tg, k sin.
Souřadnicové výpočty. Geodézie Přednáška
Souřadnicové výpočt Geodézie Přednáška Souřadnicové výpočt strana 2 Souřadnicové výpočt (souřadnicová geometrie) vchází z analtické geometrie zkoumá geometrické tvar pomocí algebraických a analtických
Michal Zamboj. December 23, 2016
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
Theory Česky (Czech Republic)
Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider
K rozpoznání růstu či klesání dané funkce určitém směru nám pomůže gradient, tj. vektor., ln(1 x2 + y 2 [ = y
VKM/IM - 204/205 Určete, da funkce f(x, y) ln( x 2 +y 2 ) v bodě A, ve směru vektorů u, 0, u 2 0,, u 3, a u 4, 2 roste či klesá a určete rychlost měny. Řešení: Funkce f(x, y) je definovány pro všechny
STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník
STACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Magnetické pole Vytváří se okolo trvalého magnetu. Magnetické pole vodiče Na základě experimentů bylo
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole
Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Vliv na tvar
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity
Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní
14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce
. Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
Definice 28 (Ortogonální doplněk vektorového podprostoru). V k V n ; V k V. (Pech:AGLÚ/str D.5.1)
14.3 Kolmost podprostorů 14.3.1 Ortogonální doplněk vektorového prostou Ve vektorovém prostoru dimenze 3 je ortogonálním doplňkem roviny (přesněji vektorového prostoru dimenze ) přímka na ní kolmá (vektorový
DUM č. 10 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla
projekt GML Brno Docens DUM č. 10 sadě Ma- Přípraa k matritě a PZ geometrie, analytická geometrie, analýza, komlexní čísla 14. Ator: Magda Krejčoá Datm: 1.08.01 Ročník: matritní ročníky Anotace DUM: Analytická
ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE
ELEKTRICKÝ NÁBOJ ELEKTRICKÉ POLE 1. Elektrický náboj, elektrická síla Elektrické pole je prostor v okolí nabitých těles nebo částic. Jako jiné druhy polí je to způsob existence hmoty. Elektrický náboj
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 9. přednáška: Ortogonalita Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
Rozměr a složení atomových jader
Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10
1.8.10 Proudění reálné tekutiny
.8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly
Analýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
Diferenciální rovnice 1
Diferenciální rovnice 7 OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice jsou velmi důležitou částí matematické analý protože umožňují řešit mimo jiné celou řadu úloh fik a technické prae Při řešení
LIMITA FUNKCE, SPOJITOST FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?
Vzorové příklady - 2.cvičení
Vorové příklady - cvičení Vorový příklad Vypočtěte velikost síly, potřebné k naddvihnutí poklopu, hradícího výpust nádrže s vodou obráek Hloubka vody v nádrži h =,0 m, a = 0,5 m, = 60º, tíha poklopu G
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ
1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3
lektostatické pole Dvě stejné malé kuličk o hmotnosti m jež jsou souhlasně nabité nábojem jsou pověšen na tenkých nitích stejné délk v kapalině s hustotou 8 g/cm Vpočtěte jakou hustotu ρ musí mít mateiál
Prověřování Standardního modelu
Prověřování Standardního modelu 1) QCD hluboce nepružný rozptyl, elektron (mion) proton, strukturní funkce fotoprodukce γ proton produkce gluonů v e + e produkce jetů, hadronů 2) Elektroslabá torie interference
Funkce dvou proměnných
Funkce dvou proměnných Funkce dvou proměnných harmonická vlna Postupné příčné vlnění T=2, = 2 ( t, ) Asin t 2 Asin t T v t Asin 2 T Počátek koná harmonický pohb, ten se šíří dál řadou oscilátorů ve směru
Diferenciální počet funkce jedné proměnné 1
Diferenciální počet funkce jedné proměnné Limita funkce Pojem limita můžeme česk vjádřit jako mez, případně hranice Zavedení pojmu limita si objasníme na příkladu Příklad : Funkce f ( ) Obr 6: Graf funkce