Relativita I příklady

Rozměr: px
Začít zobrazení ze stránky:

Download "Relativita I příklady"

Transkript

1 quation Chapter 1 ection 1 Relatiita I příklad 1 Mion Zadání: Doba žiota mionu (těžkého elektronu) je = 10 6 s Mion nikl e ýšce h = 30 km nad porchem Země interakcí kosmického áření s horními rstami atmosfér a dopadl na Zem Jakou musel mít minimální rchlost při niku? Řešení: Mion b podle klasické fik neměl na porch Země ůbec dopadnout protože se dříe ropadne na normální elektron a neutrino Z hlediska pooroatele na Zemi je ale mion pohblié soustaě a doba jeho žiota se prodlužuje na t = Mion proto může ulétnout až dálenost h ct = c Z tohoto tahu počteme rchlost kterou musí minimálně mít: c c c (1) h Příklad le také řešit soustaě spojené s mionem jako kontrakci dálenosti kterou musí mion ulétnout Interal Zadání: Dokažte že interal mei děma událostmi je e šech souřadnicoých soustaách stejný Řešení: Předpokládejme že se odehrál dě události A a a každá je popsána čtřmi prostoročasoými údaji nějaké souřadnicoé soustaě počtěme interal soustaě a soustaě Ukážeme že obě hodnot jsou stejné V platí A A A A s c ( t t ) ( ) ( ) ( ) () Interal přepíšeme pomocí přírůstků které určíme Lorento transformace Pro interal ted máme t( t / c ) ( t) (3)

2 s c t s c ( t / c ) ( t) Po ronásobení se ýra úměrné t ruší a bude (4) ( ) ( ) ( ) ( ) s c t t c Nní sloučíme člen s a t k sobě: s c t 1 c Vužijeme-li definici koeficientu máme okamžitě s c t s (5) Interal mei oběma událostmi je proto e šech souřadnicoých soustaách stejný 3 lektron Zadání: lektron je urchlen napětím U = 10 6 V Určete jeho rchlost klasického i relatiistického ýrau pro kinetickou energii a ýsledk poronejte Řešení: lektron obou případech urchlením íská kinetickou energii W QU (6) k V klasickém případě je 1 Wk QU Wk m m m 1 98 c (7) V relatiistickém případě je m0c Wk m0c m0c c 1 094c (8) m0c QU Nerelatiistický ýra ted jeně nemůžeme tomto případě použít ede k rchlostem pohbu elektronu šším než je rchlost sětla 4 lunce Zadání: Jak se mění hmotnost lunce a jeden rok dík jeho ařoání? Intenita slunečního áření nad atmosférou Země je I = 14 kw/m hmotnost lunce je kg dálenost Země od lunce je d = km Řešení: Hmotnost se mění o m = /c = Pt /c = 4d I t/c ~ kg (9) lunce přicháí o anedbatelný lomek sé celkoé hmotnosti

3 5 Dopplerů je Zadání: Odoďte relatiistický Dopplerů je pomocí transformace lnoého čtřektoru (k k k ω/c) Zkuste se amslet nad tím proč docháí k Dopplerou jeu i tehd kdž droj pooroatele jen míjí a jejich dálenost se nemění (t transerální neboli příčný Dopplerů je) Řešení: nadno naleneme řešení soustaě spojené s drojem áření: / c 0 / c 0 / c k k cos0 0/ c cos0 k ksin / c sin 0 k 0 0 Nní proedeme Lorentou transformaci do sousta pooroatele (jde o inerní Lorentou transformaci): / c / c 0 0 / c cos 0/ c cos0 0 / c sin 1 0 0/ c sin Vhledem k tomu že nás ajímá frekence místě pooroatele postačí nalét jen nultý řádek maticoého násobení: 1 cos 00 c Tento tah je námý jako relatiistický Dopplerů je V limitě níkých rchlostí (anedbáme člen kadratické a šší /c) je 1 a = (1 + /c cos ) 0 Při daloání droje je = 180 a = (1 /c) 0 při přibližoání droje je = 0 a = (1 + /c) 0 Jde o námé nerelatiistické Dopplero tah Při šších rchlostech jsou tto tah modifikoán koeficientem Jestliže droj áření pooroatele míjí ( = ± 90 ) je = 0 Ke měně frekence ted docháí i případě že se droj nedaluje ani nepřibližuje Tento je se naýá transerální Dopplerů je a jde o čistě relatiistický je který nemá nerelatiistické fice obdob Je působen měnou chodu času pohbující se soustaě (dilatací času) Prostoroé relace maticoé transformace dají tah (1) cos ( cos ) (13) sin sin (14) Pokud obě ronice dělíme ískáme tah mei oběma úhl který je neáislý na frekencích a áisí jen na ájemné rchlosti sousta:

4 sin 0 tg cos Ze tahu je řejmé že lnoplocha měnila směr a že tato měna áisí jen na ájemné rchlosti sousta Relatiistický Dopplerů je jsme de ododili jen pro sětlo (ω = ck) a nikoli pro obecné lnění látk 0 (15) 6 Heaisideoo pole Zadání: Heaisideoo pole Určete pole nabité částice letící konstantní rchlostí Vužijte transformaci čtřektoru potenciálu pole ( A A A / c) Q Řešení: V soustaě spojené s nábojem je řejmě ektoroý potenciál nuloý (není de přítomno magnetické pole) a skalární potenciál je dán Coulomboým ákonem: Q (16) 4 r Proedeme inerní Lorentou transformaci do sousta pooroatele / c Q/(4 0cr ) A 0 A (17) A Po násobení matic dostááme pro potenciál soustaě pooroatele Q Q ; A ; A 0; A 0 4 r 4 cr Ve ýsledku jsme onačili r ( t) (19) Je řejmé že magnetické pole je již nenuloé a elektrické pole je také modifikoáno Noý tar polí je 0 A Q( t) t 3/ 4 0 ( t) A t 3/ 4 0 ( t) A t 3/ 4 0 ( t) Q Q (18) (0)

5 Magnetické pole určíme jako rotaci ektoroého potenciálu: A A 0 A A Q 3/ 4 0c ( t) A A Q 3/ 4 0c ( t) Důležitá je kolmá a ronoběžná složka elektrického pole určíme ji místech onačených na obráku postaičkou pooroatele: Q t 0 1 Q 4 ( ) ( t) Vidíme že elektrické pole je napříč pohbu nataženo faktorem a e směru pohbu je stlačeno faktorem Pole se pohbuje spolu s nábojem Magnetické pole toří kružnice kolmé na pohb náboje Pro nekonečnou řadu nábojů bchom ískali pole kolem odiče P P (1) () (3) 7 Letící kondenátor Zadání: Roinný deskoý kondenátor s homogenním elektrickým polem se pohbuje hledem k pooroateli rchlostí e směru silokřiek pole Určete elektrické a magnetické pole které bude pooroatel pooroat ' 0 ' ' Řešení: Zaedeme souřadnicoou soustau spojenou s kondenátorem oustaa bude spojená s pooroatelem V soustaě spojené s kondenátorem jsou potenciál pole triiální lektrické pole musí být áporně atým gradientem skalárního potenciálu magnetické pole rotací ektoroého potenciálu odsud určíme potenciál: 0 A 0 A 0 A 0 (4)

6 Nní proedeme inerní Lorentou transformaci k soustaě spojené s pooroatelem: / c 0 A 0 A (5) A Výsledné potenciál jsou: ( t) A 0 0 ( t) c c A 0 A 0 Poslední částí ýpočtu je určení noých elektrických a magnetických polí: A 0 0 (1 / c ) 0 0 t c A 0 t A 0 t A A A A A A Pohbuje-li se droj homogenního elektrického pole e směru silokřiek pole se nemění Toto trení ale neplatí pro pohb napříč silokřikám V tomto případě se mění elektrické pole a generuje pole magnetické (Vkoušejte!) (6) (7)

Relativita I příklady

Relativita I příklady quation Chapter 1 ection 1 Relatiita I příklad 1 Mion Zadání: Doba žiota mionu (těžkého elektronu) je Δτ = 10 6 s Mion nikl e ýšce h = 30 km nad porchem Země interakcí kosmického áření s horními rstami

Více

7. SEMINÁŘ Z MECHANIKY

7. SEMINÁŘ Z MECHANIKY - 4-7 SEINÁŘ Z ECHANIKY 4 7 Prázdný železniční agón o hotnosti kgse pohbuje rchlostí,9 s po 4 odoroné trati a srazí se s naložený agóne o hotnosti kgstojící klidu s uolněnýi brzdai Jsou-li oba oz při nárazu

Více

1.6.7 Složitější typy vrhů

1.6.7 Složitější typy vrhů .6.7 Složitější tp rhů Předpoklad: 66 Pedaoická poznámka: Tato hodina přesahuje běžnou látku, probírám ji pouze případě, že mám přebtek času. Za normálních podmínek není příliš reálné s ětšinou tříd řešit

Více

6 Pohyb částic v magnetickém poli

6 Pohyb částic v magnetickém poli Pohb částic v magnetickém poli V této části si ukážeme, jak homogenní magnetické pole ovlivňuje pohb částic. Soustavu souřadnic volíme vžd tak, ab vektor magnetickéindukce Bsměřovalposměruos (obr.).. Lorentova

Více

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..6 Znaménka Předpoklad: 3, 5 Opakoání: Veličin s elikostí a směrem = ektoroé eličin Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t Dilatae času 1 Na kosmiké lodi zdalujíí se od Země ryhlostí,1 probíhal určitý děj, který podle měření účastníků letu tral jednu hodinu Jak dlouho trá tento děj pro pozoroatele na Zemi? Je možné, aby děj

Více

1 Nulové body holomorfní funkce

1 Nulové body holomorfní funkce Nulové body holomorfní funkce Bod naýváme nulový bod funkce f), jestliže f ) =. Je-li funkce f) holomorfní v bodě, pak le funkci f) v jistém okolí bodu rovinout v Taylorovu řadu: f) = n= a n ) n, a n =

Více

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..7 Znaménka Předpoklad: 4 Opakoání: Veličin s elikostí a směrem = ektoroé eličin. Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1

Pohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1 Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní

Více

12 Rozvinutelné a zborcené plochy

12 Rozvinutelné a zborcené plochy 1 Rozinutelné a zborcené plochy ÚM FSI VUT Brně Studijní text 1 Rozinutelné a zborcené plochy 1. 1 Délka analytické křiky 1. Délka analytické křiky: je rona součtu délek oblouků l ohraničených body t ;

Více

Hlavní body - elektromagnetismus

Hlavní body - elektromagnetismus Elektromagnetismus Hlavní body - elektromagnetismus Lorenzova síla, hmotový spektrograf, Hallův jev Magnetická síla na proudovodič Mechanický moment na proudovou smyčku Faradayův zákon elektromagnetické

Více

SPECIÁLNÍ TEORIE RELATIVITY

SPECIÁLNÍ TEORIE RELATIVITY SPECIÁLNÍ TEORIE RELATIVITY 1. Základní informae autor Albert Einstein jey pozoroané e DVOU ztažnýh soustaáh, které se zhledem k sobě pohybují ryhlostí blízkou ryhlosti sětla e akuu Co uidí nější a nitřní

Více

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti

Více

Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0

Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0 Generted b Foit PDF Cretor Foit Softwre http://www.foitsoftwre.com For elution onl. Kuželosečk I. Kuželosečk zákldních polohách posunuté to prtie je opkoání látk obkle probírné n střední škole. Kružnice

Více

1.6.5 Vodorovný vrh. Předpoklady: Pomůcky: kulička, stůl, případně metr a barva (na měření vzdálenosti doapdu a výšky stolu).

1.6.5 Vodorovný vrh. Předpoklady: Pomůcky: kulička, stůl, případně metr a barva (na měření vzdálenosti doapdu a výšky stolu). 165 Vodoroný rh Předpoklad: 164 Pomůck: kulička, stůl, případně metr a bara (na měření zdálenosti doapdu a ýšk stolu) Pedaoická poznámka: Stejně jako předchozí i tato hodina stojí a padá s tím, jak dobře

Více

Vlnění druhá sada Equation Chapter 1 Section 1

Vlnění druhá sada Equation Chapter 1 Section 1 Vlnění druhá sada Equation Chapter 1 Setion 1 1. Ladička Zadání: Zdroj zuku se pohybuje na ozíku ryhlostí = 5 m s 1 směrem ke stěně. Na opačné straně slyší pozoroatel rázy na frekeni f R = 3 Hz. Jaká byla

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

K rozpoznání růstu či klesání dané funkce určitém směru nám pomůže gradient, tj. vektor., ln(1 x2 + y 2 [ = y

K rozpoznání růstu či klesání dané funkce určitém směru nám pomůže gradient, tj. vektor., ln(1 x2 + y 2 [ = y VKM/IM 017/018 Určete da funkce fx y) ln1 x +y ) v bodě A 1 1 ve směru vektorů u 1 1 0 u 0 1 u 3 1 1 a u 4 1 roste či klesá a určete rychlost měny. Řešení: Funkce fx y) je definovány pro všechny body R

Více

1 4( 1) Co je řešením rovnice 2y 1 = 3? Co je řešením, pokud přidáme rovnici x + y = 3? Napište

1 4( 1) Co je řešením rovnice 2y 1 = 3? Co je řešením, pokud přidáme rovnici x + y = 3? Napište Řešená cvičení lineární algebr I Karel Král 10. října 2017 Tento tet není určen k šíření. Všechn chb v tomto tetu jsou samořejmě áměrné. Reportujte je prosím na adresu kralka@iuuk.mff.cuni... Obsah 1 Cviceni

Více

Fyzika II, FMMI. 1. Elektrostatické pole

Fyzika II, FMMI. 1. Elektrostatické pole Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých

Více

Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B)

Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B) Přijímací zkouška na naazující magisterské studium - 05 Studijní program Fyzika - šechny obory kromě Učitelstí fyziky-matematiky pro střední školy, Varianta A Příklad Částice nesoucí náboj q letěla do

Více

1.6 Singulární kvadriky

1.6 Singulární kvadriky 22 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ neboť B = C =. Z rovnice (1.34) plne, že přímka, procháející singulárním bodem kvadrik má s kvadrikou společný poue tento singulární bod (je-li A ) nebo celá

Více

Funkce dvou proměnných

Funkce dvou proměnných Funkce dvou proměnných Funkce dvou proměnných harmonická vlna Postupné příčné vlnění T=2, = 2 ( t, ) Asin t 2 Asin t T v t Asin 2 T Počátek koná harmonický pohb, ten se šíří dál řadou oscilátorů ve směru

Více

3. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE

3. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE Euklidoský prostor. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE Průodce studiem Geometrii lze budoat metodou syntetickou nebo metodou analytickou. Při syntetické metodě pracujeme přímo s geometrickými objekty.

Více

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů

Více

Obsah a průběh zkoušky 1PG

Obsah a průběh zkoušky 1PG Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dě konstrukční úlohy dle části po. bodech a jedna úloha ýpočetní úloha dle části za bodů. Ústní část jedna

Více

K rozpoznání růstu či klesání dané funkce určitém směru nám pomůže gradient, tj. vektor., ln(1 x2 + y 2 [ = y

K rozpoznání růstu či klesání dané funkce určitém směru nám pomůže gradient, tj. vektor., ln(1 x2 + y 2 [ = y VKM/IM - 204/205 Určete, da funkce f(x, y) ln( x 2 +y 2 ) v bodě A, ve směru vektorů u, 0, u 2 0,, u 3, a u 4, 2 roste či klesá a určete rychlost měny. Řešení: Funkce f(x, y) je definovány pro všechny

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací kouška na MFF UK v Prae Studijní program Matematika, bakalářské studium Studijní program Informatika, bakalářské studium 2013, varianta A U každé deseti úloh je nabíeno pět odpovědí: a, b, c,

Více

Smíšený součin

Smíšený součin 7..14 Smíšený součin Předpoklady: 713 Je dán ronoběžnostěn LMNOPR. R O P N M L Jeho objem umíme spočítat stereometrikým zorem: V = S. p Ronoběžnostěn je také určen třemi ektory a, b a R O P b N M a L jeho

Více

7.2.10 Skalární součin IV

7.2.10 Skalární součin IV 7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ Cíle a předpklady - snaží se ysětlit makrskpické chání plynů na ákladě chání jedntliých mlekul (jejich rychlstí, pčtu náraů na stěnu nádby, srážek s statními mlekulami Tat terie bere

Více

Fyzika I mechanika. Rozdělení fyziky podle jednotlivých oborů, tj. podle jevů, které zkoumá:

Fyzika I mechanika. Rozdělení fyziky podle jednotlivých oborů, tj. podle jevů, které zkoumá: Fika I mechanika Úvod Základní fikální pojm Fika (fsis je řeck příroda) bla původně vědou o přírodě, ted souhrnem všech přírodních věd, které se s postupem dějin osamostatnil. Fika si však achovává ústřední

Více

3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3. Vlny 3. Úod Vlnění můžeme pozoroat například na odní hladině, hodíme-li do ody kámen. Mechanické lnění je děj, při kterém se kmitání šíří látkoým prostředím. To znamená, že například zuk, který je mechanickým

Více

Parabola a přímka

Parabola a přímka 755 Parabola a přímka Předpoklad: 755, 756, 75, 75, 753 Pedagogická poznámka: Na probrání celého obsahu je třeba tak jeden a půl vučovací hodin Pokud tolik času nemáte, je potřeba buď rchle proběhnout

Více

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní

Více

Příklad) Na obrázku níže je parabola, která je grafem jisté kvadratické funkce f. Zjisti o této funkci VŠECHNO.

Příklad) Na obrázku níže je parabola, která je grafem jisté kvadratické funkce f. Zjisti o této funkci VŠECHNO. říklad) Na obrázku níže je parabola, která je grafem jisté kadratické funkce f. Zjisti o této funkci VŠECHNO. Řešení: krok. Z obrázku yčteme několik bodů (uspořádaných dojic), které náleží funkci f. krok.

Více

Mezony π, mezony K, mezony η, η, bosony 1

Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, (piony) a) Nabité piony hmotnost, rozpady, doba života, spin, parita, nezachování parity v jejich rozpadech b) Neutrální piony hmotnost, rozpady, doba

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Radián je středový úhel, který přísluší na jednotkové kružnici oblouku délky 1.

Radián je středový úhel, který přísluší na jednotkové kružnici oblouku délky 1. Goniometrické funkce Velikost úhlu v míře stupňové a v míře obloukové Vjadřujeme-li úhl v míře stupňové, je jednotkou stupeň ( ), jestliže v míře obloukové, je jednotkou radián (rad). Ve stupňové míře

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

F n = F 1 n 1 + F 2 n 2 + F 3 n 3.

F n = F 1 n 1 + F 2 n 2 + F 3 n 3. Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,

Více

Fyzikální korespondenční seminář UK MFF 22. II. S

Fyzikální korespondenční seminář UK MFF  22. II. S Fzikální korespondenční seminář UK MFF http://fkosmffcunicz II S ročník, úloha II S Young a vlnová povaha světla (5 bodů; průměr,50; řešilo 6 studentů) a) Jaký tvar interferenčních proužků na stínítku

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

DUM č. 10 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla

DUM č. 10 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla projekt GML Brno Docens DUM č. 10 sadě Ma- Přípraa k matritě a PZ geometrie, analytická geometrie, analýza, komlexní čísla 14. Ator: Magda Krejčoá Datm: 1.08.01 Ročník: matritní ročníky Anotace DUM: Analytická

Více

5.2. Matematika a její aplikace

5.2. Matematika a její aplikace 5.2. Matematika a její aplikace Specifické cíle: loh yužití ntroly) Kompetence k názornosti. í základních myšlenkoých operací Vedeme žáky k ch. Kompetence komunikatiní Vedeme žáky ke hodné komunikaci s

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

Vzorové příklady - 2.cvičení

Vzorové příklady - 2.cvičení Vorové příklady - cvičení Vorový příklad Vypočtěte velikost síly, potřebné k naddvihnutí poklopu, hradícího výpust nádrže s vodou obráek Hloubka vody v nádrži h =,0 m, a = 0,5 m, = 60º, tíha poklopu G

Více

Příklady Kosmické záření

Příklady Kosmické záření Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum

Více

GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář.

GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář. / 9 GONIOMETRIE ) Doplň tabulk hodnot: α ( ) 0 0 5 60 90 0 5 50 80 α (ra sin α cos α tg α cotg α α ( ) 0 5 0 70 00 5 0 60 α (ra sin α cos α tg α cotg α ) Doplň, zda je daná funkce v daném kvadrantu kladná,

Více

S p e c i f i c k ý n á b o j e l e k t r o n u. Z hlediska mechanických účinků je magnetická síla vlastně silou dostředivou.

S p e c i f i c k ý n á b o j e l e k t r o n u. Z hlediska mechanických účinků je magnetická síla vlastně silou dostředivou. S p e c i f i c k ý n á b o j e l e k t r o n u Ú k o l : Na základě pohybu elektronu v homogenním magnetickém poli stanovit jeho specifický náboj. P o t ř e b y : Viz seznam v deskách u úlohy na pracovním

Více

7. Gravitační pole a pohyb těles v něm

7. Gravitační pole a pohyb těles v něm 7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:

Více

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie RNDr. Yetta Bartákoá Gymnázium, SOŠ a VOŠ Ledeč nad Sázaou Objemy a porchy těles koule, kuloá plocha a jejich části VY INOVACE_05 9_M Gymnázium, SOŠ a VOŠ Ledeč nad Sázaou Objemy a porchy těles

Více

Rovinná a prostorová napjatost

Rovinná a prostorová napjatost Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových

Více

Michal Zamboj. December 23, 2016

Michal Zamboj. December 23, 2016 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

Určete počáteční rázový zkratový proud při trojfázovém, dvoufázovém a jednofázovém zkratu v označeném místě schématu na Obr. 1.

Určete počáteční rázový zkratový proud při trojfázovém, dvoufázovém a jednofázovém zkratu v označeném místě schématu na Obr. 1. AB5EN Nesmetrické zkrat Příklad č. Určete počáteční rázoý zkratoý proud při trojfázoém, doufázoém a jednofázoém zkratu označeném místě schématu na Obr.. G T 0,5/0 kv = MVA u k = % T3 0,5/0 kv = 80 MVA

Více

Z transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1)

Z transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1) Z transformace Definice Z transformací komplexní posloupnosti f = { roumíme funkci F ( definovanou vtahem F ( = n, ( pokud řada vpravo konverguje aspoň v jednom bodě 0 C Náev Z transformace budeme také

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Student(ka): Písemná část státní závěrečné zkoušky Fyzika (učitelství) červen Bodové hodnocení: Hodnotil(a): Celkové hodnocení testu:

Student(ka): Písemná část státní závěrečné zkoušky Fyzika (učitelství) červen Bodové hodnocení: Hodnotil(a): Celkové hodnocení testu: Spránou odpoěď zaroužujte. Celoé hodnocení testu: Úloha 1 (3 body) Mějme ýtah o hmotnosti m, terý je poěšen na laně přes penou ladu. Za druhý onec lana tahá silou F čloě, terý stojí onom ýtahu. Jeho hmotnost

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM

LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM - predpokladejme, e name linearni a kvadraticke moment k osam, a chceme urcit moment k osam a. - souradnice elementu ds k posunutm osam jsou potom: = - d

Více

ELEKTROMAGNETICKÉ POLE

ELEKTROMAGNETICKÉ POLE ELEKTROMAGNETICKÉ POLE 1. Magnetická síla působící na náboj v magnetickém poli Fyzikové Lorentz a Ampér zjistili, že silové působení magnetického pole na náboj Q, závisí na: 1. velikosti náboje Q, 2. relativní

Více

Základy maticového počtu Matice, determinant, definitnost

Základy maticového počtu Matice, determinant, definitnost Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

4.2. Graf funkce více proměnných

4.2. Graf funkce více proměnných V této kapitole se soustředíme na funkce dvou proměnných. Poue v tomto případě jsme schopni graf funkcí dvou proměnných obrait. Pro funkce tří a více proměnných trácí grafické vjádření smsl. Výklad Definice

Více

Separovatelné diferenciální rovnice

Separovatelné diferenciální rovnice Matematika 2, příklady na procvičení (Josef Tkadlec, 8. 6. 2009) Separovatelné diferenciální rovnice. Řešte diferenciální rovnici s počáteční podmínkou x = e x t, x() = 0. 2. Řešte diferenciální rovnici

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MULTIKOPTÉRY. Ing. Vlastimil Kříž

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MULTIKOPTÉRY. Ing. Vlastimil Kříž FAKULTA ELEKTROTECHNKY A KOMUNKAČNÍCH TECHNOLOGÍ VYSOKÉ UČENÍ TECHNCKÉ V BRNĚ MULTKOPTÉRY ng. Vlastiil Kříž Koplení inoace studijních prograů a šoání kalit ýuk na FEKT VUT Brně OP VK CZ.1.07/2.2.00/28.0193

Více

Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky.

Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky. 5 Vektor II Předpoklad: 4 Umíme už vektor sčítat, teď zkusíme opačnou operací rozklad vektoru na složk Př : Na obrázku je nakreslena síla Nakresli do obrázku síl a tak, ab platilo = + Kolik má úloha řešení?

Více

1.6.8 Pohyby v centrálním gravitačním poli Země

1.6.8 Pohyby v centrálním gravitačním poli Země 1.6.8 Pohyby centrálním graitačním poli emě Předpoklady: 160 Pedagogická poznámka: Pokud necháte experimentoat s modelem studenty, i případě, že už program odellus znají, stráíte touto hodinou dě yučoací

Více

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků.

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků. FOTLOÝ MÍČ Popis aktivit ýpočt odchlek přímek a rovin v tělese, resp. velikostí úhlů, které svírají stěn a hran v mnohostěnu. Předpokládané znalosti Odchlka rovin a přímk, odchlka dvou rovin. Definice

Více

Skalár (z lat. scala, stupnice) je veličina (teplota, hustota, energie, objem, čas,...), jejíž hodnota. v y. j k i v z. v x

Skalár (z lat. scala, stupnice) je veličina (teplota, hustota, energie, objem, čas,...), jejíž hodnota. v y. j k i v z. v x Základní rovnice pro metodu CFD V kapitole budou odvoen ákladní rovnice v diferenciální formě užívané při numerickém řešení toku tekutin. Vžd předpokládáme spojité prostřední, tj. platnost kontinua. Nejdříve

Více

STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník STACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Magnetické pole Vytváří se okolo trvalého magnetu. Magnetické pole vodiče Na základě experimentů bylo

Více

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v A1B15EN kraty Příklad č. 1 V soustaě na obrázku je označeném místě trojfázoý zkrat. rčete: a) počáteční rázoý zkratoý proud b) počáteční rázoý zkratoý ýkon c) nárazoý proud Řešení: 1) olíme ztažný ýkon;

Více

1.8.9 Bernoulliho rovnice

1.8.9 Bernoulliho rovnice 89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její

Více

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20

Více

Systémy pro využití sluneční energie

Systémy pro využití sluneční energie Systémy pro využití sluneční energie Slunce vyzáří na Zemi celosvětovou roční potřebu energie přibližně během tří hodin Se slunečním zářením jsou spojeny biomasa pohyb vzduchu koloběh vody Energie

Více

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu . Dráha ronoměrně zrychleného (zpomaleného) pohybu teorie Veličina, která charakterizuje změnu ektoru rychlosti, se nazýá zrychlení. zrychlení akcelerace a, [a] m.s - a a Δ Δt Zrychlení je ektoroá fyzikální

Více

3.3. Operace s vektory. Definice

3.3. Operace s vektory. Definice Operace s ektory.. Operace s ektory Výklad Definice... Nechť ϕ je úhel do nenloých ektorů, (obr. ). Skalárním sočinem ektorů, rozmíme číslo, které bdeme označoat. (někdy strčně ) a které definjeme roností.

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

QUADROTORY. Ing. Vlastimil Kříž

QUADROTORY. Ing. Vlastimil Kříž QUADROTORY ng. Vlastiil Kříž Obsah 2 Mateatický odel, říení transforace ei báei (rotace) staoý popis říení Eistující projekt unieritní hobb koerční Quadrotor 3 ožnost isu iniu pohbliých součástek dobrý

Více

9. cvičení z Matematické analýzy 2

9. cvičení z Matematické analýzy 2 9. cvičení z Matematické analýzy 7. listopadu -. prosince 7 9. Určete Fourierovu řadu periodického rozšíření funkce ft = t na, a její součet. Definice: Necht f je -periodická funkce, která je integrabilní

Více

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

silový účinek proudu, hydraulický ráz Proudění v potrubí

silový účinek proudu, hydraulický ráz Proudění v potrubí : siloý účinek proudu, hydraulický ráz SILOVÝ ÚČINEK PROUDU: x nější síly na ymezený objem kapaliny: stupní ýstupní i Výpočtoá ektoroá ronice pro reálnou kapalinu: Q rychlost y G A G R A R A = p S... tlakoá

Více

Smíšený součin

Smíšený součin 7..14 Smíšený součin Předpokldy: 713 Je dán ronoěžnostěn LMNOPR. R O P N M L Jeho ojem umíme spočítt stereometrikým zorem: V = S. p Ronoěžnostěn je tké určen třemi ektory, : R O P N M L jeho ojem musí

Více

1 Integrál komplexní funkce pokračování

1 Integrál komplexní funkce pokračování Integrál komplexní funkce pokračování Definice. Nechť D a F ) je taková funkce, že F ) = f) pro všechna D. Pak F ) naýváme primitivní funkcí k funkci f) v oblasti D. Protože při integraci funkce f po křivce,

Více

f x = f y j i y j x i y = f(x), y = f(y),

f x = f y j i y j x i y = f(x), y = f(y), Cvičení 1 Definice δ ij, ε ijk, Einsteinovo sumační pravidlo, δ ii, ε ijk ε lmk. Cvičení 2 Štoll, Tolar: D3.55, D3.63 Cvičení 3 Zopakujte si větu o derivovování složené funkce více proměnných (chain rule).

Více

Speciální teorie relativity IF relativistická kinematika

Speciální teorie relativity IF relativistická kinematika Prinip relatiity Speiální teorie relatiity IF relatiistiká kinematika Newtonoy pohyboé zákony umožňují popis hoání těles pohybujííh se nízkými ryhlostmi Při ryhlosteh, kterýh dosahují částie uryhloačíh,

Více

LIMITA FUNKCE, SPOJITOST FUNKCE

LIMITA FUNKCE, SPOJITOST FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

2-Kinematika Bodu KINEMATIKA

2-Kinematika Bodu KINEMATIKA 7 -Kinematika Bodu KINEMATIKA Kinematika-úod Kinematika jako část mechaniky je nauka o pohybu těles bez ohledu na síly, které pohyb způsobily. Tělesa nebudou mít našich úahách hmotnost a budou popsána

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé.

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé. Poěst, která znikne jednom městě, pronikne elmi brzo do druhého města, i když nikdo z lidí, kteří mají podíl na šíření zprá, neodcestuje z jednoho města do druhého. Účast na tom mají da docela různé pohyby,

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)

Více