O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika



Podobné dokumenty
Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Funkce - pro třídu 1EB

Funkce a lineární funkce pro studijní obory

FUNKCE POJEM, VLASTNOSTI, GRAF

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

Pavlína Matysová. 5. listopadu 2018

Kapitola 1: Reálné funkce 1/20

Inovace a zkvalitnění výuky prostřednictvím ICT

Funkce základní pojmy a vlastnosti

Matematika (KMI/PMATE)

Funkce pro studijní obory

0.1 Funkce a její vlastnosti

Bakalářská matematika I

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

Matematika I (KMI/PMATE)

0.1 Úvod do matematické analýzy

Základy matematiky pro FEK

Funkce základní pojmy a vlastnosti

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

7.1 Extrémy a monotonie

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

0.1 Úvod do matematické analýzy

Funkce základní pojmy a vlastnosti

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

Funkce pro učební obory

Funkce. Limita a spojitost

Kapitola 4: Průběh funkce 1/11

Lineární funkce, rovnice a nerovnice

Matematická analýza ve Vesmíru. Jiří Bouchala

( ) Opakování vlastností funkcí. Předpoklady:

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.

Základy matematiky pro FEK

Kapitola 4: Průběh funkce 1/11

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis

Funkce. Vlastnosti funkcí

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Kapitola 1: Reálné funkce 1/13

Funkce, elementární funkce.

Význam a výpočet derivace funkce a její užití

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

Matematika (KMI/PMATE)

FUNKCE, ZÁKLADNÍ POJMY

Funkce. Definiční obor a obor hodnot

Že tuto definici znáte, ale stále přesně nevíte, jak funkci chápat? Ukážeme si konkrétní příklad Definiční obor (množina A)

PŘEDNÁŠKA 2 POSLOUPNOSTI

Průběh funkce 1. Průběh funkce. Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

Matematická analýza pro informatiky I.

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21

FUNKCE A JEJICH VLASTNOSTI

Exponenciální a logaritmická funkce

1 Množiny, výroky a číselné obory

FUNKCE, ZÁKLADNÍ POJMY

10. cvičení - LS 2017

7. Funkce jedné reálné proměnné, základní pojmy

Kapitola 1: Reálné funkce 1/13

Funkce a základní pojmy popisující jejich chování

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik

Univerzita Karlova v Praze Pedagogická fakulta

Úvod, základní pojmy, funkce

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto

P ˇ REDNÁŠKA 3 FUNKCE

2. FUNKCE JEDNÉ PROMĚNNÉ

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Funkce. y = x + 4 [x; x + 4] Vynásob číslo 2 x 2 * x

Matematika B 2. Úvodní informace

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

KFC/SEM, KFC/SEMA Elementární funkce

CZ.1.07/1.5.00/

Přijímací zkouška na navazující magisterské studium 2014

, f g jsou elementární funkce.

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

IX. Vyšetřování průběhu funkce

NMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2.

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Mocninná funkce: Příklad 1

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.

Aplikační úlohy z diferenciálního počtu jedné proměnné

Použití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT. Monotónie. Konvexita. V této části budou uvedena některá použití derivací.

Matematická analýza III.

Posloupnosti a jejich konvergence

Úloha určit průběh funkce znamená nakreslit graf funkce na zadaném intervalu, nejčastěji na celé množině reálných čísel R.

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace

Přednáška 1: Reálná funkce jedné reálné proměnné

4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem

Funkce. Obsah. Stránka 799

Matematická analýza 1

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

x 0; x = x (s kladným číslem nic nedělá)

Limita posloupnosti a funkce

8 Střední hodnota a rozptyl

Transkript:

O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat, a které je nutné znát, a také s pojmy definiční obor funkce a obor hodnot funkce. Poznatky z této kapitoly absolvent střední školy už zřejmě zvládá, přesto doporučuji úvodní kapitolu pečlivě projít a prostudovat. Co musíte umět Nemusíte umět téměř nic, kromě sčítání, odčítání a dalších základních dovedností. Vše ostatní vás naučím já. 1

Co je to funkce V této kapitole Vás chci seznámit se všemi funkcemi, které můžete ve svém matematickém životě potkat. Jedná se o funkce, kterým se říká elementární. Existují i jiné, ale s těmi se (skoro jistě) nesetkáte. Elementárních funkcí je nekonečně mnoho, takže popsat každou zvlášt je nemožné. Zavedu systém (třídění) funkcí do 4 přihrádek. Tím se celá problematika funkcí velmi zpřehlední. Nejprve si ale musíme vysvětlit, co to funkce je. V odborné literatuře se dočtete, že funkce f je takové zobrazení z množiny A do množiny B, které každému x z množiny A přiřadí jednoznačně (právě jedno) y z množiny B. Tak je to správně, ale někomu to nemusí být příliš srozumitelné. Funkci si představujte jako černou skříňku do které z jedné strany vhodíte číslo, a podle jistého návodu (předpisu) vypadne z druhé strany jiné číslo. Předpis je jednoznačný, černá skříňka tedy neváhá, nerozhoduje se jaké číslo vyhodí, má jen jednu možnost. f(x) = x 2 + 1 Toto je funkce, která vezme číslo x, vynásobí jej samo sebou a přičte k němu jedničku. f(2) = 2 2 + 1 = 5 To je ta naše černá skříňka, do které hodíte čislo 2, a následně vypadne číslo 5. Číslu 2 tedy přiřadíme číslo 5, funkční hodnota v bodě 2 je 5. f(4) = 4 2 + 1 = 17 Když hodíte do skříňky číslo 4, tak vypadne číslo 17. Číslu 4 tedy přiřadíme číslo 17, funkční hodnota v bodě 4 je 17. f( 3) = ( 3) 2 + 1 = 10 Jestliže vhodíte číslo -3, vypadne číslo 10, funkční hodnota v bodě -3 je 10. 2

Graf funkce Graf funkce je obrázek, ze kterého můžete o funkci získat nějakou představu, vidíte její vlastnosti a vyčtete funkční hodnoty. Na vodorovné ose jsou hodnoty x, na svislou osu vynášíme funkční hodnoty, f(x). f(x) = x 2 + 1 Poznámka: Tato klikatice nemůže být grafem žádné funkce, protože bodu x = 4 bychom mohli přiřadit minimálně tři hodnoty a my víme, že funkce musí být jednoznačná! 3

Definiční obor a obor hodnot Definiční obor funkce je množina všech čísel, které do černé skříňky můžeme vhodit, aniž by se porouchala. Definiční obor funkce f značíme D f. f(x) = x 2 + 1 Libovolné číslo mohu umocnit na druhou a pak přičíst jedničku, neexistuje tedy žádné číslo, které bychom do skříňky nemohli vhodit. D f = R R je množina všech reálných čísel, někdy také píšeme místo písmene R interval (, ) f(x) = 4 x 3 Tato funkce už není tak snášenlivá. Nesmíme totiž dělit nulou! Proto x 3, a D f = R \ {3}, nebo li D f = (, 3) (3, ). f(x) = 3x 2 x 2 6x + 8 I zde si musíte dát pozor, abyste nedělili nulou. Hledáme proto taková x, pro která platí x 2 6x + 8 = 0 a tato čísla z definičního oboru vyloučíme. Řešíme tedy kvadratickou rovnici, což jistě každý umí, ale pro jistotu připomínám: nejprve se spočítá tzv. diskriminant D = b 2 4ac. 4

Čísla a, b,c jsou čísla z kvadratické rovnice (a je číslo u x 2, b je u x a c je to zbývající), tedy a = 1, b = 6, c = 8.. D = ( 6) 2 4 1 8 = 36 32 = 4 Kořeny kvadratické rovnice (hledaná x, pro která x 2 6x + 8 = 0) jsou dány vzorečkem x 1,2 = b± D 2a. x 1,2 = 6 ± 4 2 = 6 ± 2 2, x 1 = 6 + 2 2 = 8 2 = 4, x 2 = 6 2 2 = 4 2 = 2. Můžeme si udělat zkoušku. Pro g(x) = x 2 6x + 8 máme g(2) = 2 2 6 2 + 8 = 4 12 + 8 = 0 g(4) = 4 2 6 4 + 8 = 16 24 + 8 = 0. Čísla 2 a 4 tedy nemůžeme vhodit do černé skříňky, protože bychom dělili nulou. Proto platí: D f = R \ {2; 4}, nebo li D f = (, 2) (2, 4) (4, ). 5

Obor hodnot funkce je množina všech těch čísel, která z černé skříňky vypadnou, když tam naházíme celý definiční obor. Obor hodnot funkce f značíme H f. Urči obor hodnot funkce f(x) = x 2 + 1 Určit obor hodnot je obecně těžké, musíme totiž určit nejmenší a největší hodnotu, která z černé skříňky může vypadnout. To se naučíme až v kapitole o využití derivací a průběhu funkce. V tomto příkladě to ale poznáme. x 2 je totiž vždy kladné. Nejmenší hodnota, které může nabýt, je nula. Proto nejmenší číslo, které z černé skříňky s nápisem x 2 + 1 vypadne, je 1. Největší hodnota této funkce neexistuje. Čím větší číslo do skříňky vhodíme, tím větší číslo vypadne. H f =< 1, ) Poznámka: Definice definičního oboru a oboru hodnot mají za cíl jediné - abyste je pochopili. V této podobě je jistě v žádné učebnici nenajdete. Slouží hlavně k vysvětlení a pochopení, a to i za cenu menší přesnosti a korektnosti. Poslední, co bych chtěl před výčtem konkrétních funkcí připomenout, jsou některé základní vlastnosti funkcí, které můžeme vyšetřovat. 6

Monotonie První základní vlastností je monotonie funkce. Monotonií myslíme otázku, zda je funkce rostoucí nebo klesající. Definice. O funkci řekneme, že je rostoucí na intervalu I, jestliže pro každá x 1, x 2 I, x 1 < x 2 platí, že také f(x 1 ) < f(x 2 ). Vysvětlující douška: Pokud do funkce házíme větší a větší čísla, tak vypadávají větší a větší hodnoty. Pohybujeme li se po grafu tak, jak je obvyklé (tedy zleva doprava), pak graf míří pořád výš a výš (roste). rostoucí funkce 7

Definice. O funkci řekneme, že je klesající na intervalu I, jestliže pro každá x 1, x 2 I, x 1 < x 2 platí, že naopak f(x 1 ) > f(x 2 ). Vysvětlující douška: Pokud do funkce házíme větší a větší čísla, tak vypadávají menší a menší hodnoty. Pohybujeme li se po grafu tak, jak je obvyklé (zleva doprava), pak graf míří pořád níž a níž (klesá). klesající funkce 8

Definice. O funkci řekneme, že je neklesající na intervalu I, jestliže pro každá x 1, x 2 I, x 1 < x 2 platí, že f(x 1 ) f(x 2 ). Vysvětlení: Funkce tedy neklesá, ale nemusí růst! neklesající funkce - není ale rostoucí! Definice. O funkci řekneme, že je nerostoucí na intervalu I, jestliže pro každá x 1, x 2 I, x 1 < x 2 platí, že f(x 1 ) f(x 2 ). Vysvětlení: Funkce tedy neroste, ale nemusí nutně klesat! nerostoucí funkce - není ale klesající! 9

Poznámka: - tato funkce je klesající na intervalech (, 3) a (3, ) ale není klesající na intervalu (, )! 2 < 4 ale f(2) < f(4) Poznámka: - tato funkce je klesající na intervalu (, ), i když na celém intervalu není spojitá ( je přetržená ) Pozn: Přesnou definici spojitosti naleznete v některé z následujících kapitol. 10

Omezenost Definice. O funkci f řekneme, že je omezená zdola na intervalu I, jestliže existuje nějaké číslo K takové, že pro všechna x I je f(x) K. Vysvětlení: Představujeme li si stále funkci jako černou skříňku, tak at do ní vhodíme cokoliv, vždy vypadne číslo větší než nějaké K nebo rovné K. Nemůže tedy vypadnout hodnota menší. Rozhodněte, zda je omezená funkce: f(x) = x 2 + 1 Už jsme si říkali, že nejmenší hodnota, kterou z této funkce můžeme získat, je 1. Je tedy zdola omezená a K = 1. (ještě ale také může být K = 0, nebo K = 1, K = 17,... stačí ale, že takové K existuje). Graf funkce vypadá takto: funkce omezená zdola 11

Definice. O funkci f řekneme, že je omezená shora na intervalu I, jestliže existuje nějaké číslo K takové, že pro všechna x I je f(x) K. Vysvětlení: Po vhození libovolného čísla do funkce, vždy vypadne číslo menší, než nějaké K nebo rovné K. Nemůže tedy nikdy vypadnout hodnota větší. Rozhodněte, zda je omezená funkce: f(x) = x 2 + 7 Číslo x 2 je vždy větší nebo rovno nule, proto číslo x 2 je vždy menší nebo rovno nule. Tudíž: f(x) = x 2 + 7 7 pro každé x R Funkce je omezená shora. funkce omezená shora 12

Prostota Dalším důležitým pojmem je prostota funkce. Definice. O funkci f(x) řekneme, že je prostá, platí li, že pokud x 1 x 2, pak f(x 1 ) f(x 2 ). Jinak zapsáno, jestliže f(x 1 ) = f(x 2 ), pak také x 1 = x 2. Vysvětlující douška: Funkce je prostá, jestliže každá hodnota z H(f) je přiřazena jen jedenkrát. Tedy jen jednomu číslu z definiční oboru. Vhodíme li do naší černé skříňky dvě různá čísla, tak musí vypadnout dvě různé hodnoty. Funkce f(x) = x 2 není prostá, protože dvěma různým číslům přiřadí stejnou hodnotu. f( 3) = 9 ale také f(3) = 9. Jedna hodnota (y = 9) z oboru hodnot je přiřazena dvěma různým číslům (x 1 = 3, x 2 = 3) z definičního oboru. 13

Sudost, lichost Sudá funkce O funkci f(x) řekneme, že je sudá, pokud funkční hodnoty pro čísla opačná jsou stejné. Nezáleží na znaménku čísla x. Zapisujeme f(x) = f( x). Pokud do černé skříňky vhodíme např. číslo 2, tak vypadne stejná hodnota, jako kdybychom vhodili číslo 2. f(x) = x 2 f(2) = f( 2) = 4 f(11) = f( 11) = 121 atd. Graf sudé funkce je osově souměrný podle osy y. 14

Lichá funkce Funkční hodnoty liché funkce pro čísla opačná už nemusí být stejné, ale liší se jen znaménkem. Zapisujeme f(x) = f( x). Pokud do černé skříňky vhodíme např. číslo 2, tak vypadne hodnota lišící se jen ve znaménku od hodnoty, která vypadne po vhození čísla 2. f(x) = x 3 f(2) = 8 f(5) = 25 f( 2) = 8 f( 5) = 25 atd. Graf liché funkce je středově souměrný podle počátku. Závěr: Vysvětlili jsme si tedy základní vlastnosti funkcí, které budeme nadále často používat. Nyní k jednotlivým typům funkcí. Existují jen 4 velké skupiny funkcí. Všechny ostatní vzniknou jejich sčítáním, odčítáním, násobením, dělením a skládáním. 15