7. Funkce jedné reálné proměnné, základní pojmy

Podobné dokumenty
7. Funkce jedné reálné proměnné, základní pojmy

0.1 Úvod do matematické analýzy

Funkce základní pojmy a vlastnosti

Kapitola 1: Reálné funkce 1/20

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

FUNKCE POJEM, VLASTNOSTI, GRAF

Bakalářská matematika I

Matematika I (KMI/PMATE)

Matematika (KMI/PMATE)

Kapitola 1: Reálné funkce 1/13

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Kapitola 1: Reálné funkce 1/13

Inovace a zkvalitnění výuky prostřednictvím ICT

0.1 Funkce a její vlastnosti

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti

Funkce. Vlastnosti funkcí

Funkce, elementární funkce.

Přednáška 1: Reálná funkce jedné reálné proměnné

2. FUNKCE JEDNÉ PROMĚNNÉ

2 Reálné funkce jedné reálné proměnné

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Funkce a základní pojmy popisující jejich chování

Funkce a lineární funkce pro studijní obory

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:

Funkce - pro třídu 1EB

FUNKCE A JEJICH VLASTNOSTI

h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

P ˇ REDNÁŠKA 3 FUNKCE

Číselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, }

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

FUNKCE, ZÁKLADNÍ POJMY

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce pro studijní obory

FUNKCE, ZÁKLADNÍ POJMY

analytické geometrie v prostoru s počátkem 18. stol.

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje.

Matematická analýza ve Vesmíru. Jiří Bouchala

Základy matematiky pro FEK

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

(Zavedení pojmu funkce, vlastnosti. Repetitorium z matematiky

Management rekreace a sportu. 10. Derivace

PŘEDNÁŠKA 2 POSLOUPNOSTI

Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

( ) Opakování vlastností funkcí. Předpoklady:

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

MATURITNÍ TÉMATA Z MATEMATIKY

Funkce. Obsah. Stránka 799

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce

Gymnázium Jiřího Ortena, Kutná Hora

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Pavlína Matysová. 5. listopadu 2018

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.

Matematická analýza pro informatiky I.

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

CZ.1.07/1.5.00/

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f.

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =

Úvod, základní pojmy, funkce

Q(y) dy = P(x) dx + C.

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0

Funkce pro učební obory

Využití programu MS Excel při výuce vlastností kvadratické funkce

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.

Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou

Maturitní otázky z předmětu MATEMATIKA

INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že

9 Kolmost vektorových podprostorů

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.

Matematická analýza pro informatiky I. Limita posloupnosti (I)

Posloupnosti a jejich konvergence POSLOUPNOSTI

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

Přednáška 3: Limita a spojitost

ANALYTICKÁ GEOMETRIE V ROVINĚ

O FUNKCÍCH. Obsah. Petr Šedivý Šedivá matematika

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Význam a výpočet derivace funkce a její užití

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu.

1 Linearní prostory nad komplexními čísly

Transkript:

Moderní technologie ve studiu aplikované fyziky CZ.1.07/..00/07.0018 7. Funkce jedné reálné proměnné, základní pojmy V této chvíli jsme již ve výkladu přikročili ke kapitole, kterou můžeme považovat za počátek výkladu tzv. diferenciálního počtu. Hned objasníme, co tento pojem vlastně znamená. Které matematické úvahy jsou pro zkoumání jevů nejdůležitější? Z každodenní zkušenosti víme, že se v přírodě neustále dějí změny. Naším cílem je nalézt příčiny změn a jejich vzájemnou souvislost. Z tohoto pohledu jsou nejdůležitější úvahy o proměnných veličinách a studium závislostí proměnných veličin. Při zkoumání určitého jevu chceme bud to získat celkový pohled na daný jev, tj. celkový průběh, nebo okamžitý stav jevu. Častěji dovedeme matematicky vyjádřit jenom okamžitý stav úkazu a jeho celkový průběh teprve hledáme. Dospěli jsme tedy ke dvěma základním problémům: Jak z celkového průběhu odvodit okamžitý stav jevu a naopak, jak z okamžitého stavu odvodit celkový obraz. Oba uvedené problémy se matematicky řeší metodami tzv. infinitezimálního počtu. Odpověď na první problém dává diferenciální počet a druhý problém řeší integrální počet. Diferenciální počet je tedy matematická disciplína, která zkoumá změny funkčních hodnot v závislosti na změně nezávislé proměnné. Infinitezimální počet vytvořili nezávisle na sobě v 17. století I. Newton (v Anglii) a G. W. Leibniz (v Německu). Matematika před Newtonem a Leibnizem se omezovala na statické formy počítání, měření a popisování tvarů. Díky vytvořenému diferenciálnímu a integrálnímu počtu, který umožnil zkoumání pohybu a změny zachytil pohyb, bylo možno studovat proudění kapalin, rozpínání plynů, popisovat fyzikální jevy jako elektřinu a magnetismus nebo také odhalit zákonitosti létání, růstu rostlin a živočichů, popsat průběh šíření nemocí nebo kolísání ekonomického zisku. Přistupme tedy k definici základního objektu zkoumání diferenciálního počtu pojmu funkce. 57

POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v kapitole. Poznámka: V dalším výkladu budeme termínem funkce, případně funkce jedné proměnné rozumět vždy jen reálnou funkci jedné reálné proměnné. Funkce f je tedy předpis, který každému reálnému číslu X přiřazuje jediné reálné číslo y = f ( ) Y. Předpis f lze zadat různými způsoby, například tabulkou, grafem, výrazem (vzorcem), případně více výrazy (vzorci), jak uvádí následující příklad. Nejčastěji je funkce zadána výrazem 1 y = f ( ), kde se chápe jako proměnná, za kterou se dosazují čísla z X, a y jako proměnná nabývající hodnot z Y; se pak nazývá nezávisle proměnná (argument funkce), y závisle proměnná. Namísto f se k označení funkce užívá často přímo výraz f ( ). Pro pevně zadanou hodnotu a proměnné se příslušná hodnota f (a ) nazývá hodnota funkce f v bodě a, či funkční hodnota v bodě a. Množina X všech hodnot proměnné se nazývá definiční obor funkce f a značí se D ( f ). Množina všech hodnot funkce f se nazývá obor hodnot funkce f a značí se H ( f ). Není-li pro funkci f zadán definiční obor D ( f ) = X, přijímá se úmluva, že se za něj považuje množina právě všech čísel, pro něž má předpis y = f ( ) smysl. V technických aplikacích je definičním oborem funkce nejčastěji interval. (a) X = {1,, 3, 4, 5}, Y = {0, 1, }, f je funkce zadaná dále uvedenou tabulkou. Platí H( f) = {0, 1}. 1 3 4 5 y = f() 0 1 1 0 1 (b) Funkce f je zadána grafem na obr. 7.1. (c) Funkce f je zadána výrazem (vzorcem) ( ) y = f =. D( f ) není udán, v tomto případě podle úmluvy je D( f ) = 0, ). GRAF FUNKCE Graf funkce f je množina bodů [, y ] roviny s vlastností D ( f ), y = f ( ). 1 Říkáme, že funkce je zadána analyticky. 58

Obrázek 7.1 Zadání funkce grafem (a) Grafem funkce y = f() =, D( f ) = 0, ), je množina {[, ]; 0, )} bodů roviny. Jde o pravou polovinu paraboly na obr. 7.. Obrázek 7. Graf funkce y = f ( ) =, D (f ) = 0, ) (b) Na obr. 7.3 je graf funkce = f( ) 1je li < 0 y =. je li 0 Z definice funkce plyne, že množina bodů M roviny je grafem nějaké funkce, jestliže každá rovnoběžka s osou y má s množinou M nejvýše jeden společný bod. 59

Obrázek 7.3 Graf funkce y = f( ) 1 je li < 0 = je li 0 Na obr. 7.4 je množina M grafem funkce y = f ( ), kdežto množina M nemůže být grafem žádné funkce y = f ( ); některé rovnoběžky s osou y mají s M více než jeden společný bod. Obrázek 7.4 Množina bodů M je grafem funkce, množina bodů M není grafem žádné funkce Při kreslení grafu funkce se postupuje tradiční metodou bod po bodu. Nejprve se určí dostatečný počet dvojic [, f ( )], zakreslí se jako body roviny a tyto se pak spojí vhodnou čarou. Graf bude tím přesnější, čím bude k dispozici více bodů [, f ( )]. Osobní počítače s grafickým výstupem jsou vesměs vybaveny 60

procedurami, které najdou dostatečný počet takových bodů, pomocí nichž vykreslí metodou bod po bodu graf funkce s uspokojivou věrností. Sestrojování grafů funkcí s využitím analytických prostředků bude též tématem kapitoly 10 o průběhu funkce. NULOVÝ BOD FUNKCE Číslo a se nazývá nulový bod (též kořen) funkce f, jestliže platí f (a ) = 0. (a) Funkce y f( ) = = má jediný nulový bod. (b) Funkce = f( ) = 1 y má nulové body 1, 1. Hledání nulových bodů funkcí patří k velmi důležitým, avšak často k obtížným úlohám. Někdy nelze určit nulové body ve tvaru přesného čísla. Pak zbývá nalezení nulových bodů přibližně užitím numerických metod. Cenný je v tomto případě přibližný odhad nulového bodu, který získáme nakreslením grafu (nejlépe počítačem). Je zřejmé, že nulové body jsou pak průsečíky grafu funkce s osou (pozor na nulové body, které mohou ležet mimo rozsah grafického výstupu). Z grafu funkce ( ) = f na obr. 7.5 lze soudit, že nulové body jsou dva; první z nich, 1, patří do 1; 1,5 (je asi 1,4), druhý,, patří do 1; 1,5 (je asi 1,4). V tomto případě umíme nulové body určit přesně řešením kvadratické rovnice = 0, tj. =,. 1 = ROVNOST FUNKCÍ Funkce f, g jsou si rovny, jestliže D ( f ) = D (g ) a pro každé D ( f ) (případně D (g )) platí f ( ) = g ( ); zapisuje se f = g, v opačném případě f g. (a) Funkce f ( ) =, ( ) (b) Funkce f ( ) = 1, f ( ) g = jsou si rovny, f = g. = si nejsou rovny, f g, neboť D( f ) = R, D(g) = R {0}, D( f ) D(g). 61

Obrázek 7.5 Graf funkce f( ) = OPERACE S FUNKCEMI Součet, rozdíl, součin a podíl funkcí f, g se definuje a značí takto: ( f g)( ) = f( ) + g( ) + ; ( f g)( ) = f( ) g( ) ; ( g)( ) f( ) g( ) f = ; f g ( ) = f g ( ) ( ) ( g( ) 0). Z uvedených vztahů vyplývá grafická interpretace graf výsledné funkce se dostane metodou bod po bodu provedením požadované operace s funkčními hodnotami v příslušném bodě. Pro funkce f ( ) = ( +1), g ( ) = je f g ( f + g)( ) = ( + 1 ) + ; ( f g)( ) = ( + 1 ) ; ( fg)( ) = ( +1) ; ( ) = ( +1). VÝZNAČNÉ TYPY FUNKCÍ Funkce f je sudá, jestliže pro každé D ( f ) platí D ( f ) a f ( ) = f ( ); její graf je souměrný podle osy y. 6

Funkce f je lichá, jestliže pro každé D ( f ) platí D ( f ) a f ( ) = f ( ); její graf je souměrný podle počátku. Funkce f je periodická (s periodou p), jestliže eistuje p 0 takové, že pro všechna D ( f ) platí + p D ( f ) a f ( ) = f ( + p ). Funkce f je rostoucí, případně klesající na M D ( f ), jestliže pro každé 1, M platí 1 < f ( 1) < f ( ), případně 1 < f ( 1) > f ( ). Funkce f je neklesající, případně nerostoucí na M D ( f ), jestliže pro každé 1, M platí 1 < f ( 1) f ( ), případně 1 < f ( 1) f ( ). Funkce f je ryze monotónní na M D ( f ), jestliže je f na M rostoucí nebo klesající. Funkce f je monotónní na M D ( f ), jestliže je f na M neklesající nebo nerostoucí. Funkce f je shora omezená, případně zdola omezená na M D ( f ), je-li množina f (M ) = {f (); M } shora, případně zdola omezená. Funkce f je omezená na M D ( f ), je-li f na M shora i zdola omezená. Poznámka: Pokud se v uvedených definicích uvažuje M = D( f ), vynechává se dovětek na M. K ověření, zda daná funkce je některého z uvedených typů lze v jednoduchých případech vystačit s běžnými prostředky středoškolské matematiky. Lze ale také využít prostředků diferenciálního počtu (viz kapitola 10). SLOŽENÁ FUNKCE Uvažujme funkce f, g a předpokládejme, že některé hodnoty funkce g ( ) patří do D ( f ). Každé takové hodnotě u = g ( ) D ( f ) lze přiřadit hodnotu y = f (u) = f (g ( )). Tím je definována nová funkce h ( ) = f (g ( )), která se nazývá funkce složená z funkcí f, g a značíme ji h = f g. Platí D (h) = {; D (g), g ( ) D ( f )}. f je vnější a g vnitřní složka. Uzávorkování ve výrazu f (g ( )) pro funkci složenou z funkcí f, g určuje jednoznačně pořadí, v němž se skládání provádí, tj. funkce g se aplikuje jako první, funkce f jako druhá. Poznámka: Složenou funkci f (g()) lze slovně vyjádřit termínem f po g. (a) Nechť f ( ) =, g( ) =. Složená funkce f po g, f( g( ) ) =, je funkce, která vznikla složením funkce g, která zdvojnásobuje, s funkcí f, která odmocňuje. Složená funkce g po f vznikne 63

složením funkce f, která odmocňuje, a funkce g, která zdvojnásobuje, tj. g( f( ) ) (b) Funkce ( ) =. h = je funkce složená z funkce g, která umocňuje, a funkce f, která odmocňuje, tj. f po g, ( g( ) ) f =. Termín složená funkce se vztahuje ke způsobu, jakým lze vyjádřit funkční hodnoty, nikoliv přímo k funkci samotné. Zda funkce je složená či ne závisí na tom, jak na ni pohlížíme. Funkce v předchozím příkladu (b) je složená přitom však na ni lze pohlížet jako na nesloženou funkci f ( ) =. Rozklad složené funkce na její složky bude důležitý v řadě konstrukcí. Skládání funkcí lze přirozeně rozšířit i pro více funkcí. Funkce v( ) = lncos je funkce složená po ln po cos, tj. v ( ) = f( g( h( ) )) počítá přirozený logaritmus, f odmocňuje., kde h počítá kosinus, g PROSTÁ A INVERZNÍ FUNKCE Funkce f se nazývá prostá na M D ( f ), jestliže pro každé 1, M bude 1 f ( 1) f ( ); v případě M = D ( f ) se vynechává na M. Z definice je zřejmé, že prostá funkce nabývá každé své hodnoty právě jednou, neboli, každá rovnoběžka s osou protne její graf nejvýše v jednom bodě. 1 (a) Funkce f( ) = je prostá, neboť pro 1, D( f), 1 platí ( ) f( ) 1 1 f 1 = = (viz obr. 7.6). (b) Nechť f ( ) =. Pro 1, 1, kde 1 0 platí 1 1, avšak f( ) = = ( ) = f( ), tj. f ( ) = 1 1 1 1 1 nabývá každé své nenulové hodnoty dvakrát (její graf parabolu může rovnoběžka s osou protnout dvakrát), není tedy prostá. Je však prostá, například, na intervalu 0, ), nebo na intervalu (, 0 (pravá nebo levá polovina paraboly) (viz obr. 7.7). Platí tato důležitá vlastnost, kterou často upotřebíme v praktických úlohách: Je-li funkce f na M rostoucí nebo klesající, pak je na M prostá. Poznámka: Pozor! Opačné tvrzení neplatí!!! Pro prosté funkce se definují funkce inverzní (v jiných případech však inverzní funkci zavést nelze!). Je-li funkce f prostá, přísluší každému y H ( f ) právě jedno takové D ( f ), že platí y = f ( ). Tím je na množině H ( f ) definována 64

Obrázek 7.6 Graf funkce y = f( ) 1 = y = f = Obrázek 7.7 Graf funkce ( ) funkce, která se nazývá inverzní funkcí k funkci f a značí se f -1 (pozor, jde o jinou funkci než 1/f ). Funkce a k ní funkce inverzní si vymění vzájemně definiční obory a obory hodnot, tj. D ( f 1) = H ( f ), H ( f -1 ) = D ( f ). Z uvedeného vyplývá, že rovnice y = f ( ) je splněna, právě když platí = f 1(y). V praktických úlohách spočívá nalezení inverzní funkce ve vyjádření jako funkce y. Pokud takové vyjádření je jednoznačné, dostáváme přímo = f 1(y). K interpretaci smyslu pojmu inverze je důležité si uvědomit, že je-li funkcí f prováděn jistý početní úkon, je k ní inverzní funkcí prováděn úkon inverzní, například k funkci, která zdvojnásobuje, bude inverzní funkce dělit dvěma. 65

(a) Funkce y = f() = je rostoucí (tedy i prostá) a podle shora uvedené vlastnosti k ní eistuje inverzní 1 funkce. Ze vztahu y = lze jednoznačně vyjádřit = f ( y) y =, což je hledaná inverzní funkce. (b) K funkci y = f() =, D( f) = R neeistuje funkce inverzní, neboť f není prostá. Jak je zřejmé v tomhle případě nelze vyjádřit jednoznačně jako funkci y. Pokud ale zvolíme vhodnou množinu M D( f ), na které je f prostá, pak inverzní funkce bude eistovat! Jak již bylo zmíněno, přejdeme-li od funkce k příslušné funkci inverzní, vymění si navzájem úlohy závisle a nezávisle proměnná. Při grafické interpretaci to znamená, že nyní hodnoty proměnné y vynášíme na horizontální osu ( ) a hodnoty proměnné = f 1(y) na vertikální osu (y). V důsledku toho jsou grafy funkcí f a f 1 souměrné podle osy 1. a 3. kvadrantu (tj. podle přímky y = podle níž jsou souměrné osy, y ). Této vlastnosti využíváme při kreslení grafů inverzních funkcí. Poznámka: Abychom respektovali úmluvu, že nezávisle proměnnou označíme a závisle proměnnou y (tj. aby označení proměnných bylo shodné s označením os, na které se nanášejí), zaměníme po formálním nalezení inverzní funkce ve tvaru = f 1 (y) její označení na y = f 1 (). y = f =, D( f ) = 0, ). f je rostoucí na 0, ), tedy k ní eistuje funkce inverzní. Platí Nechť ( ) ( y) y = f 1 =, po záměně s využitím souměrnosti podle přímky y =. 1 y=. Na obr. 7.8 jsou nakresleny grafy funkcí f ( ) =, f ( ) = Obrázek 7.8 Graf funkce a 66

Cílové znalosti 1. Nulový bod funkce, geometrická interpretace.. Význačné typy funkcí. 3. Složená funkce. 4. Inverzní funkce, podmínky eistence. 67