V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že
|
|
- Vladimíra Kadlecová
- před 7 lety
- Počet zobrazení:
Transkript
1 .5. Cíle Uvedeme nní několik unkcí, z nichž většinu studenti znají již ze střední škol. Nazveme je základní elementární unkce. Konečným počtem sčítání, odčítání, násobení, dělení, skládání a případně invertování těchto unkcí lze vtvořit tzv. elementární unkce, jejichž studiem se budeme zabývat ve velké části předmětu matematika. Předpokládané znalosti Je třeba zopakovat středoškolské znalosti o unkcích a jejich graech. Zejména se jedná o unkce lineární, kvadratické, eponenciální, logaritmické a goniometrické..5.. Eponenciální unkce ( ) = e, R V této chvíli je obtížné eponenciální unkci přesně deinovat. Můžeme však říci, že základem mocnin je iracionální číslo e, K, které se nazývá Eulerovo číslo. Poznamenejme, že tuto unkci lze vjádřit ve tvaru nekonečné unkční řad: e n= n =.... n! = + +! +! + Gra eponenciální unkce je na obr.. 6
2 =ln =e Obr. Obr..5.. Logaritmickou unkcí ( ) = ln, (, ), nazýváme unkci inverzní k unkci eponenciální e (obr. ). Poznámka Lze deinovat unkci ln a {} ( ) = a = e, D = R, a (, )\, kterou nazveme eponenciální unkcí o základu a. Inverzní unkci k unkci a značíme log a, D = (, ) a nazýváme ji logaritmická unkce o základu a..5.. Konstantní unkce je deinována předpisem ( ) = C, c R. V případě, že C =, hovoříme o nulové unkci. Na obr. 4 je gra unkce ( ) =. 7
3 = = Obr. 4 Obr Mocninná unkce je unkce deinovaná předpisem Bude-li r r ln ( ) = = e, (, ), r R. deinovat předpis r N, resp. r N, resp. r =, kde n N, pak můžeme mocninnou unkci n r r ( ) = =.. K., resp. ( ) = =, resp. ( ) = n = n. 44 r rkrát Deiniční obor těchto unkcí pak můžeme rozšířit na D = R, resp. D = R \{ }, resp. pro n liché D = R, pro n sudé D =<, ). Uvedeme příklad pro některá r R :. r =, ( ) =, D = R, graem je přímka, obr. 5,.. r D =, ( ) =, = R, graem je parabola, obr. 6, r D =, ( ) =, = R, graem je kubická křivka, obr. 7, 4. r =, ( ) =, D =R \ {}, graem je rovnoosá hperbola, obr. 8, 5. r =, ( ) =, D \ {}, =R obr. 9, 6. r =, ( ) =, D =<, ), graem je část parabol, obr., 7. r =, ( ) =, D = R, graem je unkce inverzní k unkci, obr., 8
4 = = Obr. 6 Obr. 7 = = Obr. 8 Obr. 9 = = Obr. Obr. 8. r, ( ), D (, ), = = = obr., 9
5 9. r, ( ), D (, ), = = = obr.. = = Obr. Obr Goniometrické unkce:. ( ) = sin, D = R, unkce se nazývá sinus, obr. 4,. ( ) = cos, D = R, unkce se nazývá kosinus, obr. 5, - =sin - =cos Obr. 4 Obr. 5. ( ) = tg, D = R \ (k+ ) : k Z, unkce se nazývá tangens, obr. 6,
6 4. = D = { k k } ( ) cotg, R\ : Z, unkce se nazývá kotangens, obr. 7. =tg =cotg Obr. 6 Obr Cklometrické unkce:. ( ) = arcsin, D =<, >, je inverzní unkcí k unkci sin, <, >, nazývá se arkussinus, obr. 8,. ( ) = arccos, D =<, >, je inverzní k unkci cos, <, >, nazývá se arkuskosinus, obr. 9, =arcsin - =arccos - Obr. 8 Obr. 9
7 . ( ) = arctg, D = R, je inverzní unkcí k unkci tg, (, ), nazývá se arkustangens, obr., 4. ( ) = arccotg, D = R, je inverzní unkcí k unkci cotg, (, ), nazývá se arkuskotangens, obr.. =arctg =arccotg Obr. Obr. Poznámk. Mezi základní elementární unkce se řadí také unkce hperbolické e e ( hperbolický sinus, ( ) = sinh =, D = R, hpe rbolický kosinus, e + e ( ) = cosh =, D = R, sinh hperbolický tangens, ( ) = tgh =, cosh D = R, cosh hperbolický kotangens, ( ) = cotgh =, D = R \{} ) a unkce sinh hperbolometrické, které jsou inverzní k unkcím hperbolickým. V základních kurzech matematik je však nebudeme užívat.. Deinovali jsme základní elementární unkce. Funkce, které získáme sčítáním, odčítáním, násobením, dělením a skládáním základních elementárních unkcí se nazývají elementární. Součtem, rozdílem, násobením, dělením a skládáním dvou elementárních unkcí dostaneme opět unkci elementární.
8 Kontrolní otázk. Eistuje k unkci = na celém deiničním oboru unkce inverzní? a) ano, b) ne.. Je logaritmická unkce o základu a > rostoucí na celém svém deiničním oboru? a) ano, b) ne.. Která z eponenciálních unkcí o základu a je na celém svém deiničním oboru klesající? a) < a <, b) a >. 4. Je-li unkce tangens periodická, jakou má její perioda hodnotu? a), b), c) není periodická. 5. Funkce sinus je periodická. Eistuje k ní unkce inverzní? Jestliže ano, na kterém intervalu? a) ano, <, >, b) ano, <, >, c) neeistuje. 6. Který z graů unkcí je totožný s graem unkce = arccos? a) = a rcsin, b) = arcsin +, c) = arctg. Odpovědi na kontrolní otázk. b);. a);. a); 4. a); 5. a); 6. a). Úloh k samostatnému řešení. Určete deiniční obor unkcí: a) = log( + ), b) = ln( 6), c) = ln, d) =, e) = log( ), ) = ln( ln ). ln( ). Nakreslete gra unkcí: a) =, b) =, c) =, d) = log, e) = log ( ), ) = log ( ).
9 . Nalezněte periodu unkcí: a) = sin, b) = sin, c) = sin(+ 5), d) = 5cos, e) = 4cos( ), ) t + = cos Nakreslete gra unkcí: a) =sin, b) = sin, c) = cos, d) = sin, e) = sin, ) = cos, g) = cos, h) = tg, i) = cotg. 5. Určete deiniční obor unkcí: a) = arcsin( ), b) = arcsin, c) d) = arcsin(), e) g) = arcsin(cos ), h) arccos = arccos, i) = arctg +, =, ) arctg ( tg ) =, = arccotg. 6. Určete hodnotu unkce: a) arcsin( ), b) arcsin( ), c) arctg(), d) arccos( ), e) arctg( ), ) arctg(), g) arcsin, h) arccos, i) arccotg( ). 7. Nakreslete gra unkcí ( ), g( ) a porovnejte je: a) ( ) = arcsin, g( ) = arccos, b) ( ) = arccotg, g( ) = arctg. Výsledk úloh k samostatnému řešení. a) + > D = (, ); b) ( )( + ) > D = (, ) (, ) ; c) ( > > ) ( < < ) D = (,) ; d) > D = (,4) (4, ) ; e) pro každé R je ( 5) + < D = ; 5 5 ) > ln > D = (, e).. Gra viz příklad..4; unkce = log je inverzní k unkci = (gra jsou souměrné podle přímk = ).. a) p = ; 4
10 b) p = 4 ; c) p = ; d) p = ; e) p = ; ) p = Gra viz příklad a) D =<, > ; b) D = (,> ; c) + D = R { } ; d) - D =<,> ; e) D =<,4 > ; ) D = R {(k+ ), k Z} ; g) D = R ; h) c) D = (, > <, ) ; i) ; d) ; e) ; ) Přibližně 7 ; g) 4 4 totožné; b) Gra jsou totožné. D, =< >. 6. a) ; b) Nedeinovaná; ; h) Nedeinovaná; i) a) Gra jsou Kontrolní test. Určete deiniční obor unkce = ln(ln). a) (,), b) (, ), c) (, ).. Určete deiniční obor unkce arcsin =. log5 a) <, >, b) (, ), c) (,).. Najděte všechna R, pro něž platí log 4 > log8. a) (,), b) (, ), c) (, ). 4. Určete, zda je unkce a) sudá, b) lichá. + = ln 5. Určete periodu unkce = sin( ). 4 a) p =, b) p =, c) p = Určete hodnotu výrazu pro (,) sudá nebo lichá. V = arcsin( ) + arccos( ). 5
11 a) V =, b) V=, c) V=. 7. Určete inverzní unkci k dané unkci a její deiniční obor: = arccos( ). a) b) cos () = ; D =R, cos( ) () = ; D =R, c) neeistuje. 8. Určete inverzní unkci k dané unkci a její deiniční obor: = log5. 5 a) ( ) = 5, b) ( ) =, c) neeistuje. Výsledk testu. b);. c);. a); 4. b); 5. a); 6. a); 7. a); 8. a). Průvodce studiem Pokud jste správně odpověděli nejméně v 5 případech, pokračujte další kapitolou. V opačném případě je třeba prostudovat kapitolu.5. znovu. 6
h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R
.4. Cíle V této kapitole jsou deinován nejdůležitější pojm týkající se vlastností unkcí. Při dalším studiu budou tto vlastnosti často používán. Je proto nutné si jejich deinice dobře zapamatovat. Deinice.4..
VíceMatematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. /8 3. Elementární funkce. 3. Elementární funkce. Matematická analýza ve Vesmíru.
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické
Vícex (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f.
1. Funkce Deinice 1.1. Zobrazení nazýváme reálná unkce, jestliže H() R. Další speciikaci můžeme provést podle deiničního oboru zobrazení. Deinice 1.2. Reálná unkce se nazývá (1) unkce jedné reálné proměnné,
VíceElementární funkce. Polynomy
Elementární funkce 1 Elementární funkce Elementární funkce jsou níže uvedené funkce a jejich složenin : 1. Polnom.. Racionální funkce. 3. Mocninné funkce. 4. Eponenciální funkce. 5. Logaritmické funkce.
VíceFunkce. Vlastnosti funkcí
FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplín společného
VíceFUNKCE A JEJICH VLASTNOSTI
PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného
VíceMatematika 1. Matematika 1
5. přednáška Elementární funkce 24. října 2012 Logaritmus a exponenciální funkce Věta 5.1 Existuje právě jedna funkce (značíme ji ln a nazýváme ji přirozeným logaritmem), s následujícími vlastnostmi: D(ln)
Více4.2. CYKLOMETRICKÉ FUNKCE
4.. CYKLOMETRICKÉ FUNKCE V této kapitole se dozvíte: jak jsou definovány cyklometrické funkce a jaký je jejich vztah k funkcím goniometrickým; základní vlastnosti cyklometrických funkcí; nejdůležitější
VíceCyklometrické funkce
4 Cyklometrické funkce V minulé kapitole jsme zkoumali první funkci inverzní ke funkci goniometrické (tyto funkce se nazývají cyklometrické) funkci y = arcsin x (inverzní k funkci y = sin x ) Př: Nakresli
VíceP ˇ REDNÁŠKA 3 FUNKCE
PŘEDNÁŠKA 3 FUNKCE 3.1 Pojem zobrazení a funkce 2 3 Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic (x, y) A B,
Více8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!.
8. Elementární funkce I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k = k!. Vlastnosti exponenciální funkce: a) řada ( ) konverguje absolutně
VíceZákladní elementární funkce
Základní elementární funkce Základní elementární funkce Za základní elementární funkce považujeme funkce: a) eponenciální a logaritmické; b) obecné mocninné; c) goniometrické a cklometrické; d) hperbolické
VíceFUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
VíceText může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
VíceProseminář z matematiky pro fyziky
Proseminář z matematiky pro fyziky Mgr. Jan Říha, Ph.D. e-mail: riha@prfnw.upol.cz http://www.ictphysics.upol.cz/proseminar/inde.html Katedra eperimentální fyziky Přírodovědecká fakulta UP Olomouc Podmínky
Více0.1 Funkce a její vlastnosti
0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena
VíceCyklometrické funkce
4..7 Cyklometrické funkce Předpoklady: 46 Cyklometrické funkce: funkce inverzní k funkcím goniometrickým z minulé hodiny známe první cyklometrickou funkci y = arcsin x (inverzní k funkci y = sin x ). Př.
VíceMatematika (KMI/PMATE)
Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její
Vícef( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
VíceFUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
Více4. Funkce Funkce. S pojmem funkce jsme se setkali již v Kapitole 1F Zobrazení. Připomeňme základní pojmy.
. Funkce.. Funkce Verze. prosince 6 S pojmem funkce jsme se setkali již v Kapitole F Zobrazení. Připomeňme základní pojm. Zobrazení z množin X do množin Y je formálně podmnožina F kartézského součinu X
Více1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.
1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle
Vícesoubor FUNKCÍ příručka pro studenty
soubor FUNKCÍ příručka pro studenty 1 Obsah Poznámky 6 lineární funkce mocninné funkce s přirozeným exponentem o sudým o lichým s celým záporným exponentem o sudým o lichým s racionálním exponentem o druhá
VíceMatematika I (KMI/PMATE)
Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce
Více27. června Abstrakt. druhá odmocnina a pod. jsou vynechány. Také je vynechán např. tangensu.) 1 x ln x. e x sin x. arcsin x. cos x.
Základní elementární funkce Robert Mařík 7. června 00 ln e sin arcsin cos arccos tg arctg Abstrakt V tomto dokumentu jsou uvedeny základní vlastnosti nejdůležitějších základních elementárních funkcí. (Triviální
Vícey = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +
Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou
Více(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
Více1. Písemka skupina A...
. Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce
Více0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost
VíceBakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
Více4. Funkce Funkce. S pojmem funkce jsme se setkali již v Kapitole 1F Zobrazení. Připomeňme základní pojmy.
4. Funkce 4. 4. Funkce Verze. prosince 06 S pojmem funkce jsme se setkali již v Kapitole F Zobrazení. Připomeňme základní pojm. Zobrazení z množin X do množin Y je formálně podmnožina F kartézského součinu
VíceDiferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 1. Elementární funkce 1.2. Přehled elementárních funkcí 2 Lineární funkce - je každá funkce na množině R, která je dána ve tvaru y = a.x + b, kde a,b R. Pokud
VíceObecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g
Složená funkce Obecnou definici vynecháme Jednoduše řečeno: složenou funkci dostaneme, když do funkce y f dosadíme za argument funkci g Potom y f g Funkce f je vnější složka, funkce g vnitřní složka Pochopitelně
Více(Zavedení pojmu funkce, vlastnosti. Repetitorium z matematiky
Funkce Zavedení pojmu unkce, vlastnosti unkcí,lineární, kvadratické a mocninné unkce Repetitorium z matematik Podzim 01 Ivana Medková A Zavedení pojmu unkce V odorných a přírodovědných předmětech se často
VíceManagement rekreace a sportu. 10. Derivace
Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Více3.3. Derivace základních elementárních a elementárních funkcí
Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců
Více8 Limita. Derivace. 8.1 Okolí bodu. 8.2 Limita funkce
8 Limita Derivace 81 Okolí bodu Okolím bodu a nazveme otevřený interval (a r, a + r), kde a, r jsou reálná čísla Číslo r je poloměr okolí, a jeho střed Okolí bodu a lze zapsat a
Více8. Elementární funkce
Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne
VíceDůkazy tvrzení uvedených v této kapitole lze nalézt např. v[23].
7 Elementární funkce Koncem 8. století se matematici a přírodovědci shodovali na tom, že většina reálných situací se dá reprezentovat model obsahujícími pouze tzv. elementární funkce. Ze současného pohledu
Více2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je
Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)
VíceMatematika 1 pro PEF PaE
Reálné funkce 1 / 21 Matematika 1 pro PEF PaE 1. Reálné funkce Přemysl Jedlička Katedra matematiky, TF ČZU funkce Reálné funkce Základní pojmy 2 / 21 Zobrazení z množiny A do množiny B je množina f uspořádaných
Vícea základ exponenciální funkce
Předmět: Ročník: Vtvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 5. červenec 0 Název zpracovaného celku: EXPONENCIÁLNÍ A LOGARIMICKÁ FUNKCE EXPONENCIÁLNÍ FUNKCE Eponenciální unkce o základu a je každá
VíceKapitola1. Lineární lomená funkce Kvadratická funkce Mocninná funkce s obecným reálným exponentem Funkce n-tá odmocnina...
Kapitola1 Základní soubor funkcí v R Lineární funkce.......................................................... 1-1 Kvadratická funkce...................................................... 1-2 Mocninná
VíceFunkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4.
.. Funkce arcsin Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = - je číslo, které když dám na druhou tak vyjde - - - - - - y = y = Eponenciální
VíceMatematická analýza pro informatiky I.
Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz
VíceGoniometrické a hyperbolické funkce
Kapitola 5 Goniometrické a hyperbolické funkce V této kapitole budou uvedeny základní poznatky týkající se goniometrických funkcí - sinus, kosinus, tangens, kotangens a hyperbolických funkcí - sinus hyperbolický,
VíceDerivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
VíceNejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou
4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí
VíceMATEMATIKA I. Diferenciální počet funkcí jedné proměnné
Evropský polytechnický institut, s.r.o.. soukromá vysoká škola na Moravě Kunovice MATEMATIKA I. Dierenciální počet unkcí jedné proměnné RNDr. Jitka Jablonická Doc. RNDr. Daniela Hricišáková, CSc. Evropský
VícePlanimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje
Více{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou
Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(
Více7. Funkce jedné reálné proměnné, základní pojmy
, základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:
VíceSeznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodce studiem V kapitole Diferenciální počet funkcí jedné proměnné jste se seznámili s derivováním funkcí Jestliže znáte derivace
VíceSeznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.
.. Integrace metodou per partes.. Integrace metodou per partes Průvodce studiem V předcházející kapitole jsme poznali, že integrování součtu funkcí lze provést jednoduše, známe-li integrály jednotlivých
VícePřednáška 4: Derivace
4 / / 7, :5 Přednáška 4: Derivace Pojem derivace ormuloval v 7. století Isaac Newton při výpočtec poybu planet sluneční soustavy. Potřeboval spočítat úlovou ryclost planet. Její směr je dán tečnou ke dráze
VíceFunkce. b) D =N a H je množina všech kladných celých čísel,
Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (
VíceFunkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.
..6 Funkce Arcsin Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = je číslo, jehož druhá mocnina se rovná. - - - - - - y = y = Eponenciální
Vícefunkce konstantní (y = c); funkce mocninné (y = x r pro libovolné r R, patří sem tedy i
Přednáška č. 6 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 6 29. října 2007 1 / 64 Přehled elementárních funkcí Jde o pojem spíše historický než matematický. Vymezuje se několik (základních)
Více2. FUNKCE Funkce 31
Základ matematik FUNKCE 0 Základní vlastnosti Ohraničená a neohraničená funkce Monotónnost funkce, funkce rostoucí a klesající Prostá funkce Sudá a lichá funkce 7 Periodická funkce 9 Inverzní funkce 0
VícePřednáška 1: Reálná funkce jedné reálné proměnné
Přednáška : Reálná unkce jedné reálné proměnné Pojem unkce Deinice Reálnou unkcí jedné reálné proměnné rozumíme předpis y ( ) na jehož základě je každému prvku množiny D (zvané deiniční obor) přiřazen
VíceDefinice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe
Úvodní opakování. Mocnina a logaritmus Definice ( -tá mocnina). Pro každé klademe a dále pro každé, definujeme indukcí Dále pro všechna klademe a pro Později budeme dokazovat následující větu: Věta (O
VíceČíselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, }
ÚVOD DO MATEMATIKY Číselné množin Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, } Racionální čísla (Q) Čísla která lze vjádřit
Více6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina
Instrukce: Příklady řešte výhradně elementárně, bez použití nástrojů z diferenciálního a integrálního počtu. Je-li součástí řešení úlohy podmnožina reálných čísel, vyjádřete ji jako disjunktní sjednocení
Více4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE
4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak jsou definovány goniometrické rovnice a nerovnice; jak se řeší základní typy goniometrických rovnic a nerovnic. Klíčová slova této
VíceMatematika I Reálná funkce jedné promìnné
Matematika I Reálná funkce jedné promìnné RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Reálná funkce Def. Zobrazení f nazveme
Více1. Písemka skupina A1..
1. Psemka skupina A1.. Nartněte grafy funkc (v grafu oznate všechny průseky funkce s osami) 3 y y sin( ) y y log ( 1) 1 y 1 y = arccotg - 1) Urete, jestli je funkce y = - + 1 omezená zdola nebo shora?
Více2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost
.7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,
VíceMatematika 1 pro PEF PaE
Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace
VíceObsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
VíceMatematika a 2. března 2011
Přednáška č. 3 Matematika 2 Jiří Fišer 1. a 2. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 3 1. a 2. března 2011 1 / 68 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 3 1.
Vícef jsou osově souměrné podle přímky y = x. x R. Najdi
Nechť je prostá unkce v pořád klesá) a zobrazuje D na H deinovaná vztahem: D = a) b) Gra unkcí a H, H = D INVERZNÍ FUNKCE D (tj. v celém svém deiničním oboru pořád roste nebo. Pak k této unkci eistuje
VíceMATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
VíceKapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální
VícePojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε.
LIMITA FUNKCE Pojem ity unkce charakterizuje chování unkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých unkce není deinovaná Zápis ( ) L Přesněji to vyjadřuje deinice: znamená, že pro
Více. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.
Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo
Více4.2.15 Funkce kotangens
4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.
VíceMATEMATIKA 1B ÚSTAV MATEMATIKY
MATEMATIKA B Sbírka úloh Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA B Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika B - Sbírka úloh. Tato sbírka je doplněním tetu Fuchs,
VíceDERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem
Více5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky. Definice 5.1. Mějme funkci f : D R a bod x 0 R.
5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky Definice 5.1. Mějme funkci f : D R a bod 0 R. a) Číslo c R je částečná ita funkce f v bodě 0, pokud eistuje posloupnost ( n ) taková, že platí
VíceStřední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov
Protokol SADA DUM Číslo sady DUM: VY_4_INOVACE_MA_ Název sady DUM: Funkce a rovnice I. Název a adresa školy: Střední průmyslová škola, Hronov, Hostovského 90, 549 3 Hronov Registrační číslo projektu: Číslo
VíceElementární funkce. (Stručný přehled)
Elementární funkce (Stručný přehled) c Helena Říhová 006 Obsah Úvod Mocninné funkce 4. Konstantnífunkce.... 4. Celočíselnékladnémocnin... 4. Mocninskladnýmracionálnímeponentem... 5.4 Mocninsezápornýmeponentem.....
Vícearcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
VíceLimita a spojitost funkce
Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu
VíceFunkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VícePříklady k přednášce 3
Příklad k přednášce 3 1. Určete, zda závislost a daná uvedeným vztahem je funkce = f(). V případě záporné odpovědi stanovte, kterými funkcemi je možné příslušnou závislost popsat. 1. =3 2, (, + ) je funkcí,
Více( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce
MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu
VíceFunkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a
4.. Funkce kotangens Zopakuj všechny části předchozí kapitoly pro funkci kotangens. c B a A b C Tangens a kotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá
VíceÚvod, základní pojmy, funkce
Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 69 Obsah 1 Matematická logika 2 Množiny 3 Funkce,
VícePřehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.
Přehled funkcí Martina Hetmerová Gymnázium Přípotoční 1337 Praha 10 Vlastnosti funkcí Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo Zapisujeme: f:y=f(x)
Vícedx se nazývá diferenciál funkce f ( x )
6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí
VíceFunkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
VícePRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ
Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční
VícePetr Hasil. c Petr Hasil (MUNI) Množiny, číselné obory, funkce MA I (M1101) 1 / 125
Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce MA I (M1101) 1 / 125 Obsah 1 Množiny a číselné obory Množinové operace Reálná
Více1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y) pro x, y R;
3. Elementární funkce. Věta C. Existují funkce sin(x) a cos(x) z R do R a číslo π (0, ) tak, že platí: 1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y)
Více2 Reálné funkce jedné reálné proměnné
2 Reálné funkce jedné reálné proměnné S funkcemi se setkáváme na každém kroku, ve všech přírodních vědách, ale i v každodenním životě. Každá situace, kd jsou nějaký jev nebo veličina jednoznačně určen
VíceFunkce. Limita a spojitost
Funkce. Limita a spojitost skriptum J. Neustupa text Funkce (úvod) na této web stránce III.2 Fce - základní pojmy 1. Definice, def. obor D(f), obor hodnot H(f), graf 2. Fce složená, omezená, 3. Fce sudá,
Více