VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA
1 0 Typeset by L A TEX 2ε 0 c V. Tryhuk, O. Dlouhý 2004
2
Obsah Úvod 5 Cíle..................................... 5 Požadované znalosti............................ 6 Doba potřebná ke studiu.......................... 6 Klíčová slova................................ 6 1 Vybrané části vektorového počtu 7 1.1 Operace s geometrickými vektory ve V (E 3 )............. 7 Poznámka k označení......................... 7 Lineární nezávislost vektorů..................... 9 1.2 Součiny vektorů............................ 11 Skalární součin vektorů........................ 11 Vektorový součin vektorů....................... 13 Smíšený součin vektorů........................ 15 Dvojný vektorový součin vektorů.................. 17 Důležité identity........................... 17 1.3 Aplikace vektorového počtu ve sférické trigonometrii........ 18 Sinová věta pro sférický trojúhelník................. 19 První kosinová věta pro sférický trojúhelník............ 21 1.4 Lineární prostor, báze a dimenze.................. 21 1.5 Vektory v ortonormální bázi..................... 23 Skalární součin v ortonormální bázi................. 24 Vektorový součin v ortonormální bázi................ 25 Smíšený součin v ortonormální bázi................. 25 2 Některé aplikace vektorového počtu 27 2.1 Vektory v souřadnicové soustavě prostoru E 3............ 27 2.2 Rovina v E 3.............................. 28 2.3 Přímka v E 3.............................. 31 2.4 Úlohy metrické............................ 33 Vzdálenost bodu od roviny...................... 33 Vzdálenost bodu od přímky..................... 34 Úhel dvou rovin............................ 34
4 OBSAH Úhel dvou přímek........................... 35 Úhel přímky a roviny......................... 35 2.5 Úlohy polohy............................. 36 Vzájemná poloha dvou rovin..................... 36 Vzájemná poloha přímky a roviny.................. 36 Vzájemná poloha dvou přímek.................... 37 Příčky a osa mimoběžek.......................... 41 2.6 Vlastní čísla a vlastní vektory.................... 42 Rejstřík 53 Literatura 53
Úvod Cíle Cílem našeho textu není přesné formální vybudování základů vektorové algebry a analytické geometrie v trojrozměrném prostoru. Naopak, chceme pouze vytvořit doplněk textů již napsaných pro studenty kombinované formy studia, který bude reagovat na potřeby studijního programu geodézie a kartografie. V úvodní části modulu se budeme věnovat vektorové algebře, v níž zvolíme poněkud odlišný přístup od modulu BA01 M02 určeného pro obecné zaměření kombinované formy studia. Dáme přednost geometrickému a fyzikálnímu popisu vektorových operací, které navíc nebudeme studovat od začátku v ortonormální bázi. V odpovídajících číselně vyjádřených odstavcích textu jsou stanoveny následující cíle: 1.1 Připomenout základní operace s geometrickými vektory. Je potřebné pochopit geometrickou interpretaci pojmů vektory kolineární (nekolineární), vektory komplanární (nekomplanární) a naučit se s nimi pracovat. 1.2 Jedná se o nejdůležitější odstavec celého modulu. Je potřebné pochopit skalární, vektorový i smíšený součin vektorů včetně vytvoření geometrické představy o významu a možnostech použití těchto pojmů. Jedná se o základní stavební prvky dalších následujících odstavců modulu. 1.3 Odstavec obsahuje základní potřebné pojmy sférické trigonometrie, se kterými je potřebné se do detailů seznámit. Odvozování vzorců není samoúčelné, je zkouškou pochopení obsahu odstavce 1.2. 1.4 Pojmy používané v prvních třech odstavcích zobecníme na úroveň, která se standardně používá nejen v matematické literatuře. Potřebné je vytvořit si představu o obsahu pojmu lineární prostor a především pochopit pojmy báze a dimenze lineárního prostoru. 1.5 Studijní zaměření geodézie a kartografie pracuje s vektory nezávisle na volbě souřadnicových soustav. V odstavci se seznámíte s ortonormálními bázemi ve třírozměrném prostoru a aritmetikou počítání s vektory v ortonormální bázi.
6 OBSAH 1.6 Cílem odstavce je prohloubit pochopení analytické geometrie v prostoru. Důsledně jsou aplikovány skalární, vektorový a smíšený součin vektorů na metodiku řešení úloh i výpočetní postupy. Přístup se odlišuje od pojetí používaného na středních školách. Pečlivě si proto promyslete a propočítejte i řešené příklady tohoto odstavce. 1.7 Prostudujte si motivační příklad, který pro vás může být v budoucnu užitečný. Odstavec obsahuje základní pojmy nezbytné pro zvládnutí výpočtu vlastních čísel a vlastních vektorů matice. Je potřebné zvládnout techniku výpočtu. V jednom z dalších modulů se seznámíte s rozklady polynomů, které vám umožní zvolit si i jinou metodiku řešení příkladů. Požadované znalosti Znalost geometrických vektorů a základů analytické geometrie v prostoru v rozsahu látky probírané na středních školách. Doba potřebná ke studiu Čas potřebný ke zvládnutí tohoto modulu je odhadnut pro průměrného studenta jako hodnota nejméně?? hodin. Klíčová slova Geometrické vektory, skalární součin vektorů, vektorový součin vektorů, smíšený součin vektorů, lineární nezávislost vektorů, reálný lineární prostor, sférický trojúhelník, souřadnice vektoru, přímka v prostoru, rovina v prostoru, úlohy polohy, úlohy metrické. Na konci modulu zařazen Rejstřík, ve kterém jsou další klíčová slova přehledně uspořádána i s odkazy na odpovídající stránky.
Kapitola 1 Vybrané části vektorového počtu 1.1 Operace s geometrickými vektory ve V (E 3 ) Poznámka k označení Aniž bychom se zabývali přesnou definicí afinního prostoru A 3, budeme nejprve studovat tzv. afinní vlastnosti euklidovského prostoru E 3. Euklidovským prostorem E 3 přitom budeme rozumět bodový prostor, v němž: každému bodu A E 3 je jednoznačně přiřazena uspořádaná trojice [a 1, a 2, a 3 ] reálných čísel, které nazýváme souřadnicemi bodu A a píšeme A = [a 1, a 2, a 3 ], každým dvěma bodům A, B E 3, kde A = [a 1, a 2, a 3 ], B = [b 1, b 2, b 3 ], je přiřazena euklidovská vzdálenost ρ(a, B) bodů A, B, pro kterou platí ρ(a, B) = 3 i=1 (a i b i ) 2. Každé uspořádané dvojici bodů (A, B) přiřadíme orientovanou úsečku s počátečním bodem A a koncovým bodem B a budeme ji nazývat umístěním vektoru u = AB. Můžeme pak také psát B = A + u nebo B A = u. Přitom vektorem u budeme rozumět třídu orientovaných úseček, které mají týž směr a velikost. Tuto vlastnost můžeme také popsat tak, že orientované úsečky AB, CD patří do jedné třídy, jestliže úsečky (A, D) a (B, C) mají týž střed. B à D A C
8 Vybrané části vektorového počtu Množinu všech vektorů pak nazýváme vektorovým zaměřením prostoru E 3 a označujeme ji V (E 3 ). Pro takto zavedené pojmy platí: a) Pro libovolný bod A E 3 a libovolný vektor u V (E 3 ) existuje jediný bod B E 3 takový, že AB= u. b) Je-li AB= u, BC= v, pak AC= u + v se nazývá součet vektorů u, v. B AB= u BC= v A 3 C AC= u + v Je-li u = AA, pak vektor u se nazývá vektor nulový, značí se o a má délku rovnou nule. Je-li u = AB, pak vektor u = BA (změněná orientace) se nazývá vektor opačný k vektoru u. Úhlem nenulových vektorů u = AB, v = AC nazýváme úhel ϕ polopřímek AB, AC měřený v mezích 0 ϕ π. Poznámka: Prostor bodů v trojrozměrném prostoru E 3 spolu s vektorovým zaměřením V (E 3 ), v nichž platí a) a b) se často nazývá afinním prostorem a značí se A 3. Věta 1. Pro libovolné tři vektory u, v, w ve V (E 3 ) platí 1. u + v = v + u, 2. ( u + v ) + w = u + ( v + w ), 3. u + o = u, 4. ke každému vektoru u existuje opačný vektor u tak, že u + ( u ) = o.
1.1 Operace s geometrickými vektory ve V (E 3 ) 9 Součin vektoru s reálným číslem Má-li u = AB délku u a je-li γ R libovolné číslo, pak klademe γ u = o, pokud γ = 0 nebo u = o, γ u = v, kde u o, v = γ u a vektor v je souhlasně (nesouhlasně) rovnoběžný s vektorem u v případě γ > 0 (γ < 0.) A u B v = AC= γ u = 2 u pro γ = 2 > 1 > 0, v = 2 u C Věta 2. Nechť α, β R jsou libovolná čísla a u, v libovolné vektory ve V (E 3 ). Pak platí 1. α(β u) = αβ u, 2. α( u + v ) = α u + α v, 3. (α + β) u = α u + β u, 4. 1 u = u. Lineární nezávislost vektorů Poznámka: Všimněme si, že pro vektory z V 3 = V (E 3 ) platí: (ι) u, v V 3 = u + v V 3 (součet vektorů z V 3 je vektor ve V 3 ). (ιι) u V 3, α R = α u V 3 (násobek vektoru z V 3 je vektor ve V 3 ). (ιιι) Operace sčítání vektorů a násobení vektoru reálným číslem mají vlastnosti uvedené ve větách 1, 2. Vektory kolineární (nekolineární) Nenulové vektory u, v, pro které existují taková umístění, že leží na jedné přímce, nazýváme kolineární vektory. Nulový vektor považujeme za kolineární s každým vektorem. Pro kolineární vektory u, v, platí: a) Je-li u o, pak existuje právě jedno číslo k R takové, že v = k u.
10 Vybrané části vektorového počtu b) Rovnice k u + l v = o je splněna alespoň pro jednu dvojici čísel k, l R, přičemž čísla k, l nejsou současně rovna nule. Řekneme naopak, že vektory u, v jsou nekolineární, když rovnice k u+l v = o je splněna pouze tehdy, když k = 0 a současně l = 0. Příklad 1.1.1 Vektory x 1, x 2 = 2 x 1 jsou kolineární, protože vektor x 2 je násobkem vektoru x 1. V jiném pohledu, platí rovnice 2 x 1 + x 2 = o a rovnice k x 1 + l x 2 = o má nenulové řešení k = 2, l = 1. Příklad 1.1.2 Vektory x 1, x 2 jsou nekolineární. Zjistěte, zda jsou vektory u = x 1 + x 2, v = x 1 x 2, rovněž nekolineární. Řešení: Předpokládejme, že existuje nenulové reálné číslo k takové, že u = k v, tj. vektory u, v jsou kolineární. Pak platí x 1 + x 2 = k( x 1 x 2 ) a odtud (1 k) x 1 + (1 + k) x 2 = o. Protože vektory x 1, x 2 jsou nekolineární, musí platit 1 k = 0 a současně 1 + k = 0, což není možné. Neplatí proto náš předpoklad a vektory u, v jsou nekolineární. Vektory komplanární (nekomplanární) Řekneme, že nenulové vektory u, v, w jsou komplanární, jestliže existují taková jejich umístění, že leží v jedné rovině. Pokud je některý z vektorů u, v, w nulovým vektorem, pak tuto trojici vektorů považujeme také za komplanární. Pro komplanární vektory u, v, w platí: a) Jsou-li u, v nekolineární vektory, pak existuje právě jedna dvojice čísel k, l R taková, že w = k u + l v. b) Rovnice k u + l v + m w = o je splněna alespoň pro jednu trojici čísel k, l, m R, přičemž čísla k, l, m nejsou současně rovna nule. Trojici vektorů u, v, w nazveme nekomplanární, když je rovnice k u + l v + m w = o splněna pouze pro k = l = m = 0. Příklad 1.1.3 Vektory x 1, x 2, x 3 jsou nekomplanární. Zjistěte, zda jsou vektory u = x 1 + x 2 + x 3, v = x 1 x 2 + x 3, w = x 1 + 3 x 2 + x 3, rovněž nekomplanární. Řešení: Sestavíme rovnici α 1 u + α 2 v + α 3 w = o. Dosadíme-li do rovnice vyjádření vektorů u, v, w, máme α 1 ( x 1 + x 2 + x 3 ) + α 2 ( x 1 x 2 + x 3 ) + α 3 ( x 1 + 3 x 2 + x 3 ) = = (α 1 + α 2 + α 3 ) x 1 + (α 1 α 2 + 3α 3 ) x 2 + (α 1 + α 2 + α 3 ) x 3 = o a c 1 = α 1 + α 2 + α 3 = 0, c 2 = α 1 α 2 + 3α 3 = 0, c 3 = α 1 + α 2 + α 3 = 0, protože x 1, x 2, x 3 jsou podle zadání úlohy nekomplanární vektory. Soustava rovnic
1.2 Součiny vektorů 11 α 1 + α 2 + α 3 = 0, α 1 α 2 + 3α 3 = 0 má obecné řešení α 1 = 2t, α 2 = α 3 = t R. Pro t 0, například t = 1, můžeme vybrat nenulové řešení α 1 = 2, α 2 = α 3 = 1. Vektory u, v, w jsou proto komplanární a platí rovnice 2 u + v + w = o. Proto je w = 2 u v lineární kombinací vektorů u, v, jak se můžeme přesvědčit provedením zkoušky. Nekolineární vektory x 1, x 2 x 2 x 1 nelze umístit na jedné přímce. Nekomplanární vektory x 1, x 2, x 3 x 3 x 2 x 1 nelze umístit do jedné roviny. 1.2 Součiny vektorů Skalární součin vektorů Definice 1.2.1 Skalárním součinem nenulových vektorů u, v V (E 3 ) rozumíme číslo (skalár) u v = u v cos ϕ, kde ϕ = ( u, v ) 0, π je úhel vektorů u, v a u, v jsou jejich délky. Je-li alespoň jeden z vektorů nulový, klademe u v = 0. Pro skalární součin platí následující tvrzení: Věta 3. Je-li α R a u, v, w V (E 3 ), pak 1. u v = v u, 2. u ( v + w ) = u v + u w, 3. (α u) v = α( u v), 4. u u 0 ( u u = 0 u = o). Poznámka: Skalární součin nenulových vektorů lze využít při řešení následujících úloh. 1. Vyšetřování kolmosti nenulových vektorů: Platí přímo z definice, že u v = 0 ϕ = π 2.
12 Vybrané části vektorového počtu 2. Výpočet délky nenulového vektoru: u = u u = u. Číslo u = u u se nazývá euklidovská délka vektoru u. 3. Výpočet úhlu nenulových vektorů: Přímo ze vzorce obdržíme vztah cos ϕ = u v u v, ϕ 0, π. 4. Nalezení kolmého průmětu v u vektoru v do vektoru u : v u = u v u. (1.1) u 2 Z pravoúhlého troúhelníku v obrázku v v ϕ u v u můžeme pro u 0 = u psát: u v u = v cos ϕ u 0 = v u v u v u u = u v u 2 u. Všimněte si, že uvedený vztah platí i pro ϕ ( π, π), neboť pak cos ϕ < 0 2 a dojde ke změně orientace jednotkového vektoru u 0 na opačný vektor. 5. Práce A, kterou vykoná síla F stálého směru a velikosti po přímé dráze s je dána vztahem A = F s. Poznámka: Pomocí kolmých průmětů vektorů se můžeme lehce přesvědčit o vlastnosti 2 ve větě 3. v + w w v u v u w u
1.2 Součiny vektorů 13 Platí ( v + w ) u = v u + w u. Odtud ( v + w ) u = v + w cos ( v + w, u ) u 0 = v cos ( v, u ) u 0 + w cos ( w, u ) u 0. Odtud v + w cos ( v + w, u ) = v cos ( v, u ) + w cos ( w, u ) a u ( v + w ) = u v + w cos ( v + w, u ) = = u ( v cos ( v, u ) + w cos ( w, u )) = u v + u w. Příklad 1.2.1 Řešení: Vypočítejte u v, jestliže u = 4, v = 5, ( u, v ) = 2π/3. u v = u v cos ( u, v ) = 4 5 cos 2π 3 = 4 5 ( 1 2 ) = 10. Příklad 1.2.2 Vypočítejte a + b, jestliže a = 4, b = 5, ( a, b ) = 2π/3. Řešení: Pomocí Věty 3 určíme, že a + b 2 = ( a + b ) ( a + b ) = a a + 2 a b + b b = a 2 + 2 a b + b 2. Proto a + b 2 = 16 20 + 25 = 21 a a + b = 21 s využitím výsledku předcházejícího příkladu. Vektorový součin vektorů Definice 1.2.2 Vektorovým součinem vektorů u, v V (E 3 ) rozumíme vektor označovaný jako u v. Je-li alespoň jeden z vektorů nulový nebo jsou-li vektory u, v kolineární, klademe u v = o. V opačném případě požadujeme, aby měl vektor u v následující vlastnosti: 1. Vektor u v je kolmý k oběma vektorům u, v. 2. Vektory u, v, u v tvoří v tomto pořadí pozitivní trojici vektorů (platí pravidlo pravé ruky). 3. Délka vektoru u v je rovna obsahu plochy sestrojené nad vektory u, v, tj. u v = u v sin ϕ, kde ϕ = ( u, v ) 0, π je úhel vektorů u, v.
14 Vybrané části vektorového počtu u v u v = u v sin ϕ = P v P obsah plochy ϕ u Vektorový součin. u v směr palce v směr prstů u Pravidlo pravé ruky pro pořadí u, v, u v. Pro vektorový součin platí následující tvrzení: Věta 4. Je-li α R a u, v, w V (E 3 ), pak 1. u v = v u, 2. α ( u v) = (α u) v = u (α v), 3. ( u + v ) w = u w + v w, 4. w ( u + v ) = w u + w v. Upozornění: Některá pravidla pro násobení reálných čísel u vektorového součinu neplatí! neplatí: u v = v u (viz platné pravidlo u v = v u), neplatí: ( u v) w = u ( v w), neplatí: u v = o ( u = o nebo v = o). Poznámka: Vektorový součin nenulových vektorů lze využít při řešení následujících úloh. 1. Vyšetřování kolinearity nenulových vektorů u, v: u v = o (ϕ = 0 nebo ϕ = π). 2. Výpočet obsahu plochy sestrojené nad vektory u, v. (Výpočet obsahu trojúhelníku.) 3. Nalezení vektoru kolmého ke dvěma zadaným nenulovým vektorům.
1.2 Součiny vektorů 15 Příklad 1.2.3 Vektory u = AB, v = AC mají délky u = 1, v = 3, a svírají úhel ϕ = ( u, v ) = π/4. Určete obsah trojúhelníku ABC. Řešení: P = 1 2 u v = 1 2 u v sin ϕ = 1 2 1 3 sin π 4 = 3 2. 4 Smíšený součin vektorů b ` c a c v b P = b c Uvažujme nejprve pozitivní trojici vektorů b, c, a a rovnoběžnostěn, sestrojený nad těmito vektory. Objem rovnoběžnostěnu je součinem obsahu P základny a výšky v, V = P v. Obsah základny je P = b c. Výška je průmět délky vektoru a do vektoru b c, proto (viz úloha 4. skalárního součinu) v = a b c = a cos ( a, b c ) = a ( b c). (1.2) b c Objem V rovnoběžnostěnu je proto v tomto případě vyjádřen tzv. smíšeným součinem V = a ( b c) vektorů b, c, a. Přejdeme k obecnému případu. Definice 1.2.3 Nechť a, b, c V (E 3 ). Číslo [ a, b, c ] = a ( b c) nazveme smíšeným součinem vektorů a, b, c (v tomto pořadí).
16 Vybrané části vektorového počtu Poznámka: Víme, že c b = b c. Proto [ a, c, b ] = a ( c b) = a ( b c) = [ a, b, c ]. Lze ukázat, že vzájemnou výměnou dvou sousedních vektorů ve vzorci pro smíšený součin se změní znaménko smíšeného součinu. Například [ a, b }{{}, c ] = [ b, a, c }{{} ] = [ b, c }{{}, a ] = [ c, b, a ] = [ c, a }{{} }{{}, b ] = [ a, c, b ] Poznámka: Z geometrického pohledu vidíme, že smíšený součin nenulových vektorů lze využít při řešení následujících úloh. 1. Výpočet objemu rovnoběžnostěnu setrojeného nad vektory a, b, c V (E 3 ): V = [ a, b, c ]. 2. Vyšetřování komplanárnosti vektorů: Nenulové vektory a, b, c jsou komplanární právě tehdy, když je [ a, b, c ] = 0. 3. Stanovení pozitivnosti trojice vektorů: a, b, c je pozitivní trojice vektorů, když [ a, b, c ] > 0 (platí pravidlo pravé ruky), a, b, c je negativní trojice vektorů, když [ a, b, c ] < 0 (neplatí pravidlo pravé ruky), Příklad 1.2.4 Rovnoběžnostěn je určen vektory a, b, c a víme, že a = 2, b = 1, c = 2, ( b, c ) = π/4, vektor a svírá se základnou určenou vektory b, c úhel α = π/6. Vypočítejte objem rovnoběžnostěnu. Řešení: Víme, že V = [ a, b, c ]. Platí: [ a, b, c ] = a ( b c ) = a b c cos ( a, b c ) = 2 b c cos π 3 = = 2 2 b c = Výsledek příkladu je V = 1. 2 2 b c sin ( b, c ) = 2 2 1 2 sin π 4 = 1.
1.2 Součiny vektorů 17 Dvojný vektorový součin vektorů Jde o vektorový součin trojice vektorů tvaru a ( b c ). Je jasné, že výsledkem je vektor d, který je kolmý k vektoru b c, a je tedy komplanární s dvojicí vektorů b, c. Dá se ukázat, že pro koeficienty lineární kombinace vektorů b, c platí: a ( b c ) = ( a c) b ( a b) c. (1.3) Na základě tohoto vztahu lze odvodit další užitečné vztahy pro sférickou trigonometrii. Uvažujme například nenulové vektory a, b, c, d. Pak vektorový součin ( a } {{ } b ) ( c d ) = e ( c d ) }{{} = ( e d) c ( e c) d = [ a, b, d ] c [ a, b, c ] d, e (1.3) a skalární součin ( a } {{ } b ) ( c d ) = e ( c d ) = c ( d e ) = c ( d ( a b )) = e = }{{} (1.3) c (( d b) a ( d a) b ) = ( a c )( d b ) ( b c )( a d ). Potřebné vztahy pro sférickou trigonometrii si uvedeme v následujícím odstavci textu. Důležité identity Věta 5. Nechť a, b, c, d, u, v, w V (E 3 ). Pak platí (1) ( a b) ( c d) = a c a d b c b d = ( a c)( b d) ( b c)( a d), (2) a ( b c) = ( a c) b ( a b) c, (3) ( a b) ( c d) = [ a, b, d] c [ a, b, c ] d, (4) [ a, b, c ] [ u, v, w ] = a u a v a w b u b v b w c u c v c w. Zajímavost: V identitě (1) položme a = c = u, b = d = v. Pak ( u v) ( u v) = ( u u)( v v) ( v u)( u v), tj.
18 Vybrané části vektorového počtu u v 2 = u 2 v 2 ( u v) 2 0. Odtud ihned plyne známá Cauchyova identita: ( u v) 2 u 2 v 2. Jiný způsob odvození plyne z definice skalárního součinu u v = u v cos ϕ a vlastnosti vektorového součinu u v = u v sin ϕ, protože pak ( u v) 2 = u 2 v 2 cos 2 ϕ, a součtem opět tj. u v 2 = u 2 v 2 sin 2 ϕ ( u v) 2 + u v 2 = u 2 v 2, u v 2 = u 2 v 2 ( u v) 2 0.) 1.3 Aplikace vektorového počtu ve sférické trigonometrii Sférický trojúhelník (schematicky na obrázcích). a b c b O α a c a C A γ b α a = ( b, c ) β B c A α b C γ c a β B a a b b a a c c V prostoru E 3 zvolme body O, A, B, C tak, aby vektory a = OA, b = OB, c = OC byly nekomplanární a jednotkové, tj. a = b = c = 1. Opíšeme-li ze středu O jednotkovou kouli, pak body A, B, C leží na kulové ploše poloměru jedna a tvoří vrcholy sférického trojúhelníku. Rovina procházející body O, A, B protne kulovou plochu v tzv. hlavní kružnici
1.3 Aplikace vektorového počtu ve sférické trigonometrii 19 a kratší část hlavní kružnice mezi body A, B vytvoří stranu c sférického trojúhelníku. Podobným způsobem vytvoříme strany a, b sférického trojúhelníku. Úhel mezi stranami b, c při vrcholu A sférického trojúhelníku označíme α. Podobně značí β, γ úhly při vrcholech B, C. Tyto úhly tvoří odchylky stěn trojbokého jehlanu určeného body O, A, B, C. Základními prvky sférického trojúhelníku rozumíme vrcholy A, B, C, strany a, b, c a úhly α, β, γ sférického trojúhelníku. Mezi prvky sférického trojúhelníku platí následující vztahy: (5) a = ( b, c ) b = ( c, a ) c = ( a, b ) (6) α = ( a b, a c) β = ( b c, b a) γ = ( c a, c b) (7) cos a = b c cos b = c a cos c = a b (8) sin a = b c sin b = c a sin c = a b (9) cos α = ( a b) ( a c) a b a c cos β = ( b c) ( b a) b c b a cos γ = ( c a) ( c b) c a c b Vzorce (5), (6) jsou patrné ze schematického znázornění na předcházejícím obrázku vlevo. Protože a = b = c = 1, zjednoduší se vzorce pro skalární i vektorový součin. Například platí a b = a b cos ( a, b ) = cos ( a, b ) = cos c, a b = a b sin ( a, b ) = sin ( a, b ) = sin c. Takto obdržíme snadno pomocí vektorů a, b, c všechny vztahy (7) a (8). Vzorce (9) jsou důsledkem (6) a vzorce pro vyjádření úhlu vektorů pomocí skalárního součinu vektorů. Sinová věta pro sférický trojúhelník Použijeme vzorec (3) Věty 5: ( a b) ( c d) = [ a, b, d] c [ a, b, c ] d.
20 Vybrané části vektorového počtu Vektory a, b, c jsou vektory naší konstrukce. Vzorec obsahuje vektor d, který můžeme volit libovolně. Položme nejprve ve vzorci d = a. Získáme a úpravou ( a b) ( c } {{ a } ) = [ a, b, a ] c [ a, } {{ } b, c ] a = a c =0 [ a, b, c ] a = ( a b) ( a c). V euklidovské normě pak [ a, b, c ] a = [ a, b, c ] a }{{} =1 = a b a c sin α = sin c sin b sin α }{{} (8) = ( a b) ( a c) = }{{} 6 s výsledkem [ a, b, c ] = sin c sin b sin α. (1.4) Podobným způsobem lze pokračovat volbami d = b a d = c a ukázat, že můžeme zvolit cestu cyklické záměny : a b c a, a b c a, α β γ α. Ve vzorci, se kterým budeme pracovat, postupně nahrazujeme objekty (vektory, úhly, strany) těmi objekty, na které ukazuje šipka. Vzorec (1.4) má tvar [ a, b, c ] = sin c sin b sin α. První cyklickou záměnou získáme [ b, c, a ] = sin a sin c sin β, druhou cyklickou záměnou pak [ c, a, b ] = sin b sin a sin γ. (Další cyklická záměna by zopakovala vzorec (1.4).) Výměnou pořadí vektorů ve smíšeném součinu se nejvýše mění znaménko a s ohledem na absolutní hodnotu smíšeného součinu jsou čísla na levé straně všech tří získaných vzorců stejná. Proto platí rovnosti 1 sin c sin b sin α = sin a sin c sin β = sin b sin a sin γ, sin a sin b sin c tj. (10) sin α sin a = sin β sin b = sin γ sin c vzhledem k tomu, že sin a sin b sin c 0. Tyto poslední získané rovnosti jsou matematickým zápisem sinové věty pro sférický trojúhelník. Slovním vyjádřením sinové věty je formulace: Ve sférickém trojúhelníku poměry sinů stran ku sinům protilehlých úhlů jsou si rovny.
1.4 Lineární prostor, báze a dimenze 21 První kosinová věta pro sférický trojúhelník Použijeme vzorec (1) Věty 5: ( a b) ( c d) = ( a c)( b d) ( b c)( a d). Opět položme ve vzorci d = a. Získáme Odtud pomocí (7) pak ( a b) ( c } {{ a } ) = ( a c)( b a) ( b c)( a }{{} a ). a c a 2 =1 b c = ( a c)( b a) + ( a b) ( a c), cos a = cos b cos c + a b a c cos α. Vzorce (8) vedou k první kosinové větě pro stranu a: (11) cos a = cos b cos c + sin b sin c cos α. Cyklickou záměnou a b c a, α β γ α získáme postupně první kosinové věty pro zbývající strany b, c : (12) cos b = cos c cos a + sin c sin a cos β, (13) cos c = cos a cos b + sin a sin b cos γ. Poznámka: Je-li γ = π/2, je sférický trojúhelník pravoúhlý a vzorec (13) dává tvar Pythagorovy věty pro pravoúhlý sférický trojúhelník: (14) cos c = cos a cos b. (Pro malé pravoúhlé sférické trojúhelníky pak platí vzorec c 2. = a 2 + b 2.) 1.4 Lineární prostor, báze a dimenze Poznámka: Pojem vektorového zaměření V (E 3 ) (včetně jeho vlastností daných Větami 1 a 2) se v matematice zobecňuje na pojem lineární prostor nebo též vektorový prostor. Geometrické vektory vytvářejí přirozený model lineárního prostoru a umožňují nám pochopení obsahu tohoto pojmu. Porovnejme v následující definici axiomy I1 I4 (zákony pro sčítání vektorů, existence nulového a opačného vektoru) s obsahem Věty 1 a axiomy II1, II2 (zákony pro násobení vektorů) spolu s III1, III2 (distributivní zákony) s obsahem Věty 2.
22 Vybrané části vektorového počtu Definice 1.4.1 prostorem, když Množinu M = {x, y, z,...} nazveme (reálným) lineárním x, y M = x + y M (na M je definováno sčítání prvků), α R, x M = αx M (na M je definováno násobení skalárem α R), pro každé x, y M, α R a operace sčítání a násobení skalárem jsou pro každé x, y, z M a každé α, β R vázány axiomy: I1. x + y = y + x, I2. (x + y) + z = x + (y + z), I3. existuje nulový prvek o M takový, že x + o = x, I4. ke každému prvku x existuje opačný prvek x tak, že platí x + ( x) = o, II1. 1 x = x, II2. α(βx) = (αβ)x, III1. (α + β)x = αx + βx, III2. α(x + y) = αx + αy. Prvky x, y, z,... nazýváme vektory. Také pojmy kolinearity (nekolinearity) a komplanarity (nekomplanarity) se zobecňují v lineárním prostoru na tzv. lineární závislost (lineární nezávislost) vektorů. Jsou-li x 1, x 2,..., x n vektory a c 1, c 2,..., c n R čísla, pak vek- Definice 1.4.2 tor x = c 1 x 1 + c 2 x 2 + + c n x n nazveme lineární kombinací vektorů x 1, x 2,..., x n. Vektory x 1, x 2,..., x n nazveme lineárně nezávislé, když c 1 x 1 + c 2 x 2 + + c n x n = o c 1 = c 2 = = c n = 0, tj. žádný z vektorů nelze zapsat jako lineární kombinaci vektorů zbývajících. V opačném případě jsou vektory x 1, x 2,..., x n lineárně závislé. Protože máme definován pojem lineární nezávislosti vektorů, můžeme zavést užitečné pojmy báze a dimenze lineárního prostoru. Definice 1.4.3 Vektory x 1, x 2,..., x n tvoří bázi lineárního prostoru M, když jsou lineárně nezávislé a každý další vektor x M je již jednoznačnou lineární kombinací vektorů x 1, x 2,..., x n, tj. x M = x = c 1 x 1 + c 2 x 2 + + c n x n (c 1,..., c n R). (1.5) Počet n vektorů báze se nazývá dimenze lineárního prostoru M a koeficienty c 1,..., c n R lineární kombinace (1.5) se nazývají souřadnice vektoru x v uspořádané bázi x 1, x 2,..., x n.
1.5 Vektory v ortonormální bázi 23 Příklad 1.4.1 Vektorové zaměření V (E 3 ) je lineárním prostorem dimenze tři. Namísto zápisu M = {x, y, z,...} používáme zápis V (E 3 ) = { x, y, z,...}. Příklad 1.4.2 Pravidla pro počítání s reálnými čísly nám umožňují ukázat, že množina M = R n uspořádaných n tic s prvky x = (x 1, x 2,..., x n ), y = (y 1, y 2,..., y n ) a operacemi sčítání x + y = (x 1, x 2,..., x n ) + (y 1, y 2,..., y n ) = (x 1 + y 1, x 2 + y 2,..., x n + y n ) a násobení reálným číslem αx = α(x 1, x 2,..., x n ) = (αx 1, αx 2,..., αx n ) je tzv. aritmetickým lineáním prostorem, který má dimenzi n. Nulovým prvkem je uspořádaná n tice o = (0, 0,..., 0) a opačným vektorem k vektoru x = (x 1, x 2,..., x n ) je vektor x = ( x 1, x 2,..., x n ). 1.5 Vektory v ortonormální bázi Nechť e 1, e 2, e 3 je uspořádaná pozitivní soustava vzájemně kolmých ( e i e j = 0 pro i j) a jednotkových ( e i = 1) vektorů (i, j {1, 2, 3}). Sestavíme-li pro α 1, α 2, α 3 R rovnici α 1 e 1 + α 2 e 2 + α 3 e 3 = o, pak postupné skalární násobení rovnice vektory e 1, e 2, e 3 vede k výsledku α 1 = α 2 = α 3 = 0. Například násobení vektorem e 1 dává výsledek α 1 e 1 e 1 } {{ } e 1 2 =1 +α 2 e 2 e } {{ } 1 0 +α 3 e 3 e 1 } {{ } 0 = o e }{{} 1 α 1 = 0. 0 Vektory e 1, e 2, e 3 jsou proto lineárně nezávislé, tvoří tzv. ortonormální bázi E = e 1, e 2, e 3 prostoru V (E 3 ) a každý vektor x V (E 3 ) je jejich lineární kombinací x = x 1 e 1 + x 2 e 2 + x 3 e 3 (x 1, x 2, x 3 R). Ortonormálních bází je v prostoru V (E 3 ) nekonečný počet (liší se od sebe posunutím a otočením soustavy).vždy uvažujeme jednu konkrétní soustavu, ke které se vztahují souřadnice vektoru x V (E 3 ). Připomeneme si výsledky pro skalární a vektorové součiny vektorů báze E, vyplývající z dřívějších definic.
24 Vybrané části vektorového počtu Lze vyjádřit skalární součiny: e 1 e 1 = e 1 2 = 1 e 1 e 2 = 0 e 1 e 3 = 0 e 2 e 1 = 0 e 2 e 2 = e 2 2 = 1 e 2 e 3 = 0 e 3 e 1 = 0 e 3 e 2 = 0 e 3 e 3 = e 3 2 = 1 podle definice ortonormální báze. Podobně vektorové součiny jsou e 3 = e 1 e 2 e 2 = e 3 e 1 e 1 = e 2 e 3 e 1 e 1 = o e 1 e 2 = e 3 e 1 e 3 = e 2 e 2 e 1 = e 3 e 2 e 2 = o e 2 e 3 = e 1 e 3 e 1 = e 2 e 3 e 2 = e 1 e 3 e 3 = o podle definice vektorového součinu (použijte v obrázku pravidlo pravé ruky ). Skalární součin v ortonormální bázi S ohledem na pravidla pro počítání se skalárním součinem (Věta 3) můžeme počítat a b = (a 1 e 1 + a 2 e 2 + a 3 e 3 ) (b 1 e 1 + b 2 e 2 + b 3 e 3 ) = Získali jsme vzorec = a 1 b 1 e 1 e } {{ } 1 +a 1 b 2 e 1 e 2 +a } {{ } 1 b 3 e 1 e 3 + } {{ } 1 0 0 +a 2 b 1 e 2 e } {{ } 1 +a 2 b 2 e 2 e 2 +a } {{ } 2 b 3 e 2 e 3 + } {{ } 0 1 0 +a 3 b 1 e 3 e } {{ } 1 +a 3 b 2 e 3 e 2 +a } {{ } 3 b 3 e 3 e 3 = a } {{ } 1 b 1 + a 2 b 2 + a 3 b 3. 0 0 1 a b = a 1 b 1 + a 2 b 2 + a 3 b 3 pro vektory a = a 1 e 1 +a 2 e 2 +a 3 e 3, b = b 1 e 1 +b 2 e 2 +b 3 e 3, uvažované v ortonormální bázi E.
1.5 Vektory v ortonormální bázi 25 Vektorový součin v ortonormální bázi Podobným způsobem lze využít Větu 5 pro výpočet vektorového součinu vektorů a = a 1 e 1 + a 2 e 2 + a 3 e 3, b = b 1 e 1 + b 2 e 2 + b 3 e 3 v ortonormální bázi E. Rozepsání vektorového součinu dává vektor a b = (a 1 e 1 + a 2 e 2 + a 3 e 3 ) (b 1 e 1 + b 2 e 2 + b 3 e 3 ) = = a 1 b 1 e 1 e } {{ } 1 +a 1 b 2 e 1 e 2 +a } {{ } 1 b 3 e 1 e } {{ } 3 o e 3 +a 2 b 1 e 2 e 1 } {{ } +a 2 b 2 e 2 e } {{ } 2 e 3 o e 2 + +a 2 b 3 e 2 e } {{ } 3 + e 1 +a 3 b 1 e 3 e } {{ } 1 +a 3 b 2 e 3 e 2 +a } {{ } 3 b 3 e 3 e } {{ } 3 e 2 e 1 o = (a 2 b 3 a 3 b 2 ) e 1 + (a 3 b 1 a 1 b 3 ) e 2 + (a 1 b 2 a 2 b 1 ) e 3. Tento výsledek můžeme zapsat jako symbolický determinant třetího řádu, který při výpočtu rozvineme podle prvního řádku: = a b = e 1 e 2 e 3 a 1 a 2 a 3 = (a 2 b 3 a 3 b 2 ) e 1 (a 1 b 3 a 3 b 1 ) e 2 + (a 1 b 2 a 2 b 1 ) e 3. b 1 b 2 b 3 Příklad 1.5.1 Najděte vektor kolmý k vektorům a = e 1 2 e 2 + e 3, b = 2 e1 + e 2 e 3. Řešení: d = a b = e 1 e 2 e 3 1 2 1 2 1 1 = e 1 + 3 e 2 + 5 e 3. Řešením úlohy je každý vektor kolineární s vektorem d. Smíšený součin v ortonormální bázi Uvažujeme smíšený součin [ a, b, c ] = a ( b c) pro vektory a = a 1 e 1 + a 2 e 2 + a 3 e 3, b = b 1 e 1 + b 2 e 2 + b 3 e 3, c = c 1 e 1 + c 2 e 2 + c 3 e 3 v ortonormální bázi E a víme, že d = b c = (b 2 c 3 b 3 c 2 ) e } {{ } 1 +(b 3 c 1 b 1 c 3 ) e } {{ } 2 +(b 1 c 2 b 2 c 1 ) e } {{ } 3 = d 1 e 1 +d 2 e 2 +d 3 e 3. d 1 d 2 d 3
26 Vybrané části vektorového počtu Skalární součin a ( b c) = a d = = a 1 d 1 + a 2 d 2 + a 3 d 3 = a 1 (b 2 c 3 b 3 c 2 ) + a 2 (b 3 c 3 b 1 c 3 ) + a 3 (b 1 c 2 b 2 c 1 ) = = a 1 b 2 c 3 + a 2 b 3 c 1 + a 3 b 1 c 2 a 1 b 3 c 2 a 2 b 1 c 3 a 3 b 2 c 1. Smíšený součin proto můžeme zapsat jako determinant třetího řádu [ a, b, c ] = a 1 a 2 a 3 b 1 b 2 b 3. c 1 c 2 c 3 Příklad 1.5.2 Vypočítejte objem rovnoběžnostěnu sestrojeného nad vektory a = e 1, b = e 1 3 e 3, c = 2 e 1 + e 2 + e 3. Tvoří vektory a, b, c pozitivní trojici vektorů? Řešení: [ a, b, c ] = 1 0 0 1 0 3 2 1 1 = 1 0 3 1 1 = 3 > 0. Vektory a, b, c tvoří pozitivní trojici vektorů, protože [ a, b, c ] > 0. Objem rovnoběžnostěnu sestrojeného nad vektory a, b, c je [ a, b, c ] = 3 = 3 (jednotky 3 ). Příklad 1.5.3 Jsou dány vektory a = e 1 + e 3, b = e 2 e 3, c = e 1 + e 2. Vypočítejte a ( b c) a) podle vzorce pro počítání vektorového součinu v souřadnicích báze E, b) pomocí vzorce (2) Věty 5. Řešení: a) Nejprve najdeme d = b c = e 1 e 2 e 3 0 1 1 1 1 0 = e 1 e 2 e 3. Pak b) Vzorec má tvar a ( b c) = a d = e 1 e 2 e 3 1 0 1 1 1 1 a ( b c) = ( a c) b ( a b) c. = e 1 + 2 e 2 e 3. Skalární součiny a c = (1 e 1 + 0 e 2 + 1 e 3 ) (1 e 1 + 1 e 2 + 0 e 3 ) = 1 1 + 0 1 + 1 0 = 1, a b = (1 e 1 + 0 e 2 + 1 e 3 ) (0 e 1 + 1 e 2 1 e 3 ) = 1 0 + 0 1 + 1 ( 1) = 1. Proto a ( b c) = b ( 1) c = b + c = e 2 e 3 + e 1 + e 2 = e 1 + 2 e 2 e 3.
Kapitola 2 Některé aplikace vektorového počtu 2.1 Vektory v souřadnicové soustavě prostoru E 3 Zvolíme-li v E 3 pevný bod O a uspořádanou pozitivní ortonormální bázi e 1, e 2, e 3 ve V (E 3 ), pak dostaneme tzv. kartézský souřadnicový systém a označíme jej O; e 1, e 2, e 3. Bod O nazýváme počátkem a přímky určené bodem O a postupně vektory e 1, e 2, e 3 nazýváme souřadnicovými osami x, y, z. Je konvence označovat tuto speciální bázi jako i, j, k namísto e 1, e 2, e 3. S každým bodem A je možné uvažovat polohový vektor (rádiusvektor) r A = OA = x A i + y A j + z A k bodu A. Zápis vektoru r A = OA budeme zkracovat na tvar OA = x A i + y A j + z A k = (xa, y A, z A ), čísla x A, y A, z A nazveme souřadnicemi bodu A a píšeme A = [x A, y A, z A ]. Dvěma různými body A = [x A, y A, z A ], B = [x B, y B, z B ] je pak určen vektor AB = OB OA = (x B x A ) i+(y B y A ) j+(z B z A ) k = (x B x A, y B y A, z B z A ). z y j k O i 1 OA A = [x A, y A, z A ] x A AB OA OB O B
28 Některé aplikace vektorového počtu 2.2 Rovina v E 3 Skutečnost, že rovina ρ je v prostoru E 3 určena bodem A = [x A, y A, z A ] ρ a dvěma nekolineárními vektory u = (u 1, u 2, u 3 ), v = (v 1, v 2, v 3 ) ležícími v rovině ρ budeme zapisovat ρ = [A; u, v ]. Můžeme použít několik různých přístupů k popisu roviny (stanovení podmínky, za které je obecný bod X = [x, y, z] bodem roviny ρ). Uvedeme dva z takových přístupů............................................................................. Libovolný bod X = [x, y, x] ρ právě, když vektory AX, u, v jsou komplanární. ρ ` X ρ ` vektory u, v leží v ρ ` v A AX X ρ u To lze vyjádřit dvěma způsoby: 1. AX = t u + s v (t, s R jsou parametry) jsou parametrické rovnice roviny ρ, které rozepisujeme do souřadnic x = x A + tu 1 + sv 1, y = y A + tu 2 + sv 2, z = z A + tu 3 + sv 3. Z těchto rovnic umíme vyčíst souřadnice bodu A ρ i vektorů u, v roviny ρ. 2. Pro komplanární vektory je smíšený součin [ AX, u, v ] = 0. Proto [ AX, u, v ] = x x A y y A z z A u 1 u 2 u 3 = v 1 v 2 v 3 = (x x A ) (u 2 v 3 u 3 v 2 ) (y y A ) (u 1 v 3 u 3 v 1 )+(z z A ) (u 1 v 2 u 2 v 1 ) = = ax + by + cz + d = 0 a výsledkem je obecná rovnice roviny ρ.
2.2 Rovina v E 3 29............................................................................ Vektor n = (n 1, n 2, n 3 ) o kolmý k rovině ρ se nazývá normálový vektor roviny ρ. Z vlastností vektorového součinu víme, že vektor u v je kolmý ke každému z vektorů u, v ležících v rovině ρ, proto je kolmý k rovině ρ. Je zřejmé, že za normálový vektor roviny můžeme volit libovolný nenulový vektor kolineární s vektorem u v. n = k( u v) ` v ρ A AX u ` ` X ρ Libovolný bod X = [x, y, x] ρ právě, když vektory AX, n jsou kolmé. Podmínku kolmosti vektorů vyjadřuje skalární součin AX n = (x x A, y y A, z z A ) (n 1, n 2, n 3 ) = = n 1 x + n 2 y + n 3 z (n 1 x A + n 2 y A + n 3 z A ) = ax + by + cz + d = 0. Vidíme, že koeficienty a, b, c obecného tvaru rovnice roviny ρ jsou souřadnice normálového vektoru roviny ρ, tj. n = (a, b, c), kde vektor n je kolineární s vektorem u v............................................................................. Příklad 2.2.1 Rovina ρ má obecnou rovnici roviny x + 2z + 1 = 0. Najděte bod A a normálový vektor roviny ρ. Řešení: Obecná rovnice roviny ρ má tvar ax + by + cz + d = 0, kde normálový vektor n = (a, b, c). Zadání úlohy proto napíšeme ve tvaru 1x + 0y + 2z + 1 = 0 a proto n = (1, 0, 2). Bodem roviny je libovolný bod A = [x A, y A, z A ], který splňuje rovnici x A + 2z A + 1 = 0. Protože rovnice nezávisí na y, lze volit pro jednoduchost y A = 0 a například volbou x A = 1 získáme z rovnice z A = 0. Bod A = [ 1, 0, 0] ρ. Poznámka: Rovnice roviny x + 2z + 1 = 0 posledního příkladu nezávisí na y, pro každé y je rovnice stejná, proto je rovina rovnoběžná
30 Některé aplikace vektorového počtu se souřadnicovou osou y. To je vidět také na normálovém vektoru n = (1, 0, 2), který má druhou souřadnici nulovou (situaci graficky znázorněte). Podobně rovnice x = 3 je v E 3 obecnou rovnicí roviny, která je rovnoběžná se souřadnicovými osami y i z. Příklad 2.2.2 Body A = [1, 1, 1], B = [0, 1, 2], C = [ 2, 3, 1] jsou body roviny ρ. Najděte obecnou rovnici roviny ρ a) Užitím vektorového součinu vektorů. b) Užitím smíšeného součinu vektorů. Řešení: Rovina ρ = [A; u, v ], kde A = [1, 1, 1] a vektory u = AB = ( 1, 0, 1), v = AC = ( 3, 2, 2) jsou nekomplanární. i j k a) Vektor u v = 1 0 1 = 2 i 5 j 2 k = ( 2, 5, 2) je kolineární 3 2 2 s normálovým vektorem roviny. Proto můžeme zvolit například n = (a, b, c) = (2, 5, 2). Bod A = [1, 1, 1] ρ : 2x + 5y + 2z + d = 0. Proto je d = 9 a hledaná rovnice je ρ : 2x + 5y + 2z 9 = 0. b) Vektory AX, u, v jsou pro body X ρ komplanární. Proto smíšený součin [ AX, u, v ] = 0, tj. x 1 y 1 z 1 1 0 1 3 2 2 = 2(x 1) 5(y 1) 2(z 1) = 0. Úpravou získané rovnice obdržíme výsledek ρ : 2x + 5y + 2z 9 = 0. Cvičení 2.2.1 Ukažte, že 3x + 6y + 2z 13 = 0 je obecnou rovnicí roviny, která vytíná na souřadnicových osách úseky v poměru 2 : 1 : 3 a prochází bodem A = [1, 2, 1]. Jaké jsou délky úseků na osách? Návod: Situaci si graficky znázorněte. Průsečíky hledané roviny se souřadnicovými osami jsou body A = [2q, 0, 0], B = [0, q, 0], C = [0, 0, 3q], kde q = 0 je délka úseku. Rovina je proto určena například bodem A a vektory u = AB, v = AC. Jedním z výpočetních postupů předcházejícího příkladu obdržíme požadovaný výsledek.