Zkoušková písemná práce č. 1 z předmětu 01MAB3

Podobné dokumenty
Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:

3. Lineární diferenciální rovnice úvod do teorie

I. TAYLORŮV POLYNOM ( 1

I. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 1. října 2019

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

ZS 2018/19 Po 10:40 T5

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

6. FUNKCE A POSLOUPNOSTI

1 Základní pojmy a vlastnosti

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a a N. n=1

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.

Mocninné řady - sbírka příkladů

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:

ŘADY Jiří Bouchala a Petr Vodstrčil

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Kapitola 4 Euklidovské prostory

1 Uzavřená Gaussova rovina a její topologie

(3n + 1) 3n Příklady pro samostatnou práci

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

NMAF061, ZS Zápočtová písemná práce skupina A 16. listopad dx

GEOMETRIE I. Pavel Burda

Matematika I, část II

Posloupnosti a číselné řady. n + 1. n n n n. n n n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b b n) = 1 b

5. Posloupnosti a řady

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

1.2. NORMA A SKALÁRNÍ SOUČIN

1. Číselné obory, dělitelnost, výrazy

Přednáška 7, 14. listopadu 2014

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení

PříkladykecvičenízMMA ZS2013/14

1.3. POLYNOMY. V této kapitole se dozvíte:

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Masarykova univerzita Přírodovědecká fakulta

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Matematická analýza I

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

množina všech reálných čísel

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

14. B o d o v é o d h a d y p a r a m e t r ů

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

1 Nekonečné řady s nezápornými členy

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

4. B o d o v é o d h a d y p a r a m e t r ů

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A

= + nazýváme tečnou ke grafu funkce f

6. Posloupnosti a jejich limity, řady

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A

12. N á h o d n ý v ý b ě r

SIGNÁLY A LINEÁRNÍ SYSTÉMY (ČASOVÉ ŘADY)

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

Odhady parametrů 1. Odhady parametrů

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n

7. Analytická geometrie

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg České Budějovice

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A

( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N.

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Analytická geometrie

n-rozměrné normální rozdělení pravděpodobnosti

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI

Základy matematiky pracovní listy

Náhodný výběr 1. Náhodný výběr

Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta

Iterační metody řešení soustav lineárních rovnic

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

11. přednáška 16. prosince Úvod do komplexní analýzy.

Zimní semestr akademického roku 2015/ listopadu 2015

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

Komplexní čísla. Definice komplexních čísel

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018

KMA/G2 Geometrie 2 9. až 11. cvičení

Zkoušková písemná práce č. 1 z předmětu 01MAB3

Užití binomické věty

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

5 Křivkové a plošné integrály

2. Náhodná veličina. je konečná nebo spočetná množina;

Základní požadavky a pravidla měření

Analytická geometrie

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

20. Eukleidovský prostor

1 Základy Z-transformace. pro aplikace v oblasti

1 Základní matematické pojmy Logika Množiny a jejich zobrazení... 7

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

Geometrické modelování. Diferenciáln

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Transkript:

Katedra matematiky Fakulty jaderé a fyzikálě ižeýrské ČVUT v Praze Příjmeí a jméo 1 2 3 4 5 BONUS CELKEM (13 bodů) Zkoušková písemá práce č. 1 z předmětu 01MAB3 14. leda 2016, 9:00 11:00 Pro kvadratickou plochu x 2 4xy + 5y 2 + 2xz + 2yz + 10z 2 + 2y + 4z = 3 určete hlaví a vedlejší sigaturu a ormálí tvar včetě afií trasformace (x, y, z) T = M (a, b, c) T + (r, s, t) T, která ji a teto tvar převádí. Jaký je ázev této kvadriky? Pokud je kvadrika cetrálí, určete její střed. (10 bodů) Rozhoděte, zda platí rovost d dx + Korektě a velmi detailě zdůvoděte!! (10 bodů) Nalezěte obecé řešeí difereciálí rovice ( 1) +1 1 + ( ) 2x2 + 4 = ( 1) +1 1 x R. 2 2x2 + 4 2 x 2 y ( 5x 2 + 4x ) y + ( 6x 2 + 10x + 6 ) y = 0 i difereciálí rovice y 6y + 12y 8y = 0. Nápověda: Rovice jsou sestaveé tak, že mají eprázdý průik fudametálích systémů. (10 bodů) Nalezěte Maclauriovu řadu fukce a její obor kovergece. f (x) = l ( x + 1 + x 2) (7 bodů) Představte si, že cestujete po prostoru spojitých fukcí C ( 0, 1 ), kde je defiová skalárí souči f g = 1 0 f (x) g (x) dx f, g C ( 0, 2π ), který idukuje (geeruje) příslušou ormu a metriku. Chcete se dostat z bodu θ do bodu h a a mapě zjistíte, že můžete cestovat bud přes f, ebo přes g. Přitom x 0, 1 platí Která z těchto dvou cest je kratší? θ (x) = 0, h (x) = x 2, f (x) = x + 1, g (x) = 2x.

Pokyy k vypracováí: Na začátku máte k dispozici 10 papírů. O další papíry si v případě potřeby eváhejte říci hlídajícímu. Odevzdávejte pouze papíry, které obsahují fiálí řešeí příkladů (ikoliv pomocé pozámky apod.) Začíejte každý příklad a ovém papíru. Na každý papír apište do pravého horího rohu svoje jméo a do levého horího rohu výrazě vyzačte číslo příkladu. Pište čitelě a myšleky formulujte srozumitelě! Příklad: Vypočítejte obor kovergece mocié řady + Správá argumetace: Nejprve poloměr kovergece: +1 L = lim = lim 1 + 1 = 1 + + = R = 1 = 1 L = O = / 1, 1/ (kde "/" je čárkovaá závorka - zatím evíme, zda kulatá či hraatá) a zbývá vyšetřit krají body: pro x = 1: + 1 = +..diverguje - eí splěa utá podm. kovergece. pro x = 1: + ( 1) diverguje ze stejého důvodu =. x Špatá (zcela zmateá) argumetace: 1 R = lim +1 = 1 + 1 = 1 kraje: divg. (to je vidět) (zde lze je "tušit", jak je to asi myšleo) Opravující mají právo vyloučit z opravováí písemé práce, resp. jejich části, které esplňují uvedeé pokyy. Bodové hodoceí takové práce, resp. její části, je 0 bodů.

Katedra matematiky Fakulty jaderé a fyzikálě ižeýrské ČVUT v Praze Příjmeí a jméo 1 2 3 4 5 BONUS CELKEM (9 bodů) Zkoušková písemá práce č. 2 z předmětu 01MAB3 21. leda 2016, 9:00 11:00 Sestavte mociou řadu, jejíž součet je rove itegrálu I (x) = x 0 1 e t2 dt a určete její obor kovergece O. Dále rozhoděte, zda uvedeá řada stejoměrě koverguje a O. Velmi pečlivě zdůvoděte všechy kroky. (9 bodů) Načrtěte možiu M ( ) R 2, ρ 2 zadaou předpisem M = (A B) \ (A B), kde {( A = 1, 1) (0, 2), B = ) x, 2x 2 R 2 x R}. Poté ačrtěte a pomocí matematických formulí (tj. podobě jako v defiici samoté M) popište možiy C = M 0, D = M, E = der ( M 0), F = (der (M)) 0. Nakoec ajděte předpis pro metriku χ (x, y) tak, aby χu 5 ((0, 1)) = F. Pokyy k áčrtkům: Nakreslete osy souřadé soustavy. Plou čarou vyzačte hraici možiy, která do í patří, přerušovaou čarou hraici, která do í epatří. Kde je to potřebé, vyzačte plým kolečkem bod, který do možiy patří, prázdým kolečkem bod, který do í epatří. Plochu patřící do možiy vyšrafujte. (11 bodů) Pro kvadratickou plochu x 2 + 12z + 6xz 5 2y + 17z 2 + 4x + 2y 2 2xy = 0 v prostoru R 3 staovte hlaví a vedlejší sigaturu, ormálí tvar a ázev. Najděte vektory příslušé polárí báze. Rozhoděte, zda jde o plochu cetrálí a pokud ao, příslušý střed vypočítejte. Pozámka: Numerické chyby se v tomto příkladě etolerují! (9 bodů) Nalezěte obecé řešeí difereciálí rovice x 2 y 2x (1 + x) y + 2 (1 + x) y = 8x 3 e 2x. Nápověda: Můžete použít fakt, že příslušou rovici s ulovou pravou straou řeší fukce v (x) = x. t 2 Pokračováí a další stráce!

(12 bodů) Nalezěte ortoormálí bázi podprostoru [ ] p0, p 1, p 2 λ C ( 0, + )) kde p 0 (x) = 3, p 1 (x) = π + ex, p 2 (x) = e + πx + eπx 2. Skalárí souči je a C ( 0, + )) zavede vztahem + f g = xe x f (x) g (x) dx. Nápověda: 1) Jak vypadají prvky lieárího obalu [ p 0, p 1, p 2 ]λ? 2) Čemu se rová I = 0 + 0 x e x dx? Pokyy k vypracováí: Na začátku máte k dispozici 10 papírů. O další papíry si v případě potřeby eváhejte říci hlídajícímu. Odevzdávejte pouze papíry, které obsahují fiálí řešeí příkladů (ikoliv pomocé pozámky apod.) Začíejte každý příklad a ovém papíru. Na každý papír apište do pravého horího rohu svoje jméo a do levého horího rohu výrazě vyzačte číslo příkladu. Pište čitelě a myšleky formulujte srozumitelě! Příklad: Vypočítejte obor kovergece mocié řady + Správá argumetace: Nejprve poloměr kovergece: +1 L = lim = lim 1 + 1 = 1 + + = R = 1 = 1 L = O = / 1, 1/ (kde "/" je čárkovaá závorka - zatím evíme, zda kulatá či hraatá) a zbývá vyšetřit krají body: pro x = 1: + 1 = +..diverguje - eí splěa utá podm. kovergece. pro x = 1: + ( 1) diverguje ze stejého důvodu =. x Špatá (zcela zmateá) argumetace: 1 R = lim +1 = 1 + 1 = 1 kraje: divg. (to je vidět) (zde lze je "tušit", jak je to asi myšleo) Opravující mají právo vyloučit z opravováí písemé práce, resp. jejich části, které esplňují uvedeé pokyy. Bodové hodoceí takové práce, resp. její části, je 0 bodů.

Katedra matematiky Fakulty jaderé a fyzikálě ižeýrské ČVUT v Praze Příjmeí a jméo 1 2 3 4 5 BONUS CELKEM (8 bodů) Zkoušková písemá práce č. 3 z předmětu 01MAB3 1. úora 2016, 9:00 11:00 Abelovým kritériem vyšetřete stejoměrou kovergeci řady + a R. Je možé použít i Weierstrassovo kritérium? (10 bodů) Mezi formálími řešeími difereciálí rovice ( 1) (2)!! 2 (2 + 1)!! 2 + x 2 y = 3 y2 x 2 6 y x 3 3 y2 x 2 + 6 y x 3 je i kružice o poloměru R = 5. Nalezěte její střed. (12 bodů) Rozhoděte, zda kvadratická forma může mít polárí bázi ve tvaru q (x, y, u, v) = 2u 2 + 2uv + 5v 2 6vx + 2x 2 8uy 4vy + 2xy y 2 B P = { (1, 0, 0, 1) T, (2, 1, 1, 2) T, (7, 2, 1, 5) T, w }. Pokud ao, určete ezámý vektor w a staovte sigaturu formy q. Pozámka: Numerické chyby se v tomto příkladě etolerují! (9 bodů) Necht H = je prostor se skalárím součiem f C ( 0, + )) f g = 1 120 + 0 + 0 f 2 (x) e x dx < + f (x) g (x) e x dx, který idukuje (geeruje) příslušou ormu a metriku. Nalezěte možiu M = {m N 0 o U 6 ( f m )}, kde o je ulová fukce o (x) = 0 a f m (x) = x 3 2 m. Dále určete, čemu se rová f m0 ( 4) pro m 0 = mi (M). (11 bodů) Nalezěte součet číselé řady + ( 1) 2 2.

Pokyy k vypracováí: Na začátku máte k dispozici 10 papírů. O další papíry si v případě potřeby eváhejte říci hlídajícímu. Odevzdávejte pouze papíry, které obsahují fiálí řešeí příkladů (ikoliv pomocé pozámky apod.) Začíejte každý příklad a ovém papíru. Na každý papír apište do pravého horího rohu svoje jméo a do levého horího rohu výrazě vyzačte číslo příkladu. Pište čitelě a myšleky formulujte srozumitelě! Příklad: Vypočítejte obor kovergece mocié řady + Správá argumetace: Nejprve poloměr kovergece: +1 L = lim = lim 1 + 1 = 1 + + = R = 1 = 1 L = O = / 1, 1/ (kde "/" je čárkovaá závorka - zatím evíme, zda kulatá či hraatá) a zbývá vyšetřit krají body: pro x = 1: + 1 = +..diverguje - eí splěa utá podm. kovergece. pro x = 1: + ( 1) diverguje ze stejého důvodu =. x Špatá (zcela zmateá) argumetace: 1 R = lim +1 = 1 + 1 = 1 kraje: divg. (to je vidět) (zde lze je "tušit", jak je to asi myšleo) Opravující mají právo vyloučit z opravováí písemé práce, resp. jejich části, které esplňují uvedeé pokyy. Bodové hodoceí takové práce, resp. její části, je 0 bodů.

Katedra matematiky Fakulty jaderé a fyzikálě ižeýrské ČVUT v Praze Příjmeí a jméo 1 2 3 4 5 BONUS CELKEM (9 bodů) Zkoušková písemá práce č. 4 z předmětu 01MAB3 9. úora 2016, 9:00 11:00 Nalezěte dvě řešeí exaktí difereciálí rovice (cy bx) y = ax + by, která jsou ve tvaru přímky procházející bodem (0, 0). Určete podmíku pro parametry a, b, c R + ve tvaru závislosti b = b (a, c) tak, aby uvedeé dvě přímky byly a sebe kolmé při skalárím součiu ( ) 1 1 u u = u T u. 1 2 Nápověda: Prozradili jsme vám typ rovice. Chtěli jsme vám tím usadit práci? (15 bodů) Řešte difereciálí rovici 5 a j x j y ( j 1) (x) = b pro a = (24, 0, 12, 4, 1) T, b = 120 a x > 0. Nápověda: Někde uhodete, že ěco je rovo 1 a +2. (6 bodů) j=1 Necht g C ( a, b ) a g a,b g. Dokažte, že v Hilbertově prostoru C ( a, b ) se skalárím součiem f g = b a f (x) g (x) dx a příslušou ormou a metrikou, které jsou tímto skalárím součiem idukováy (geerováy), platí (10 bodů) lim g = g. + Nalezěte všechy hodoty parametru µ R, pro které je kvadratická forma egativě defiití. (10 bodů) q (x, y, z) = x 2 y 2 z 2 4µ (xy + xz + yz) V metrickém prostoru ( R 2, ρ J ) s modifikovaou skokovou (jump) metrikou defiovaou jako ρ j (x, y) = 2 y 1 x 1 + 2 y 2 x 2 vykreslete tvary okolí U 5 ((0, 0)) a U 6 ((0, 0)) a rozhoděte, zda jsou to v tomto prostoru možiy otevřeé či uzavřeé.

Pokyy k vypracováí: Na začátku máte k dispozici 10 papírů. O další papíry si v případě potřeby eváhejte říci hlídajícímu. Odevzdávejte pouze papíry, které obsahují fiálí řešeí příkladů (ikoliv pomocé pozámky apod.) Začíejte každý příklad a ovém papíru. Na každý papír apište do pravého horího rohu svoje jméo a do levého horího rohu výrazě vyzačte číslo příkladu. Pište čitelě a myšleky formulujte srozumitelě! Příklad: Vypočítejte obor kovergece mocié řady + Správá argumetace: Nejprve poloměr kovergece: +1 L = lim = lim 1 + 1 = 1 + + = R = 1 = 1 L = O = / 1, 1/ (kde "/" je čárkovaá závorka - zatím evíme, zda kulatá či hraatá) a zbývá vyšetřit krají body: pro x = 1: + 1 = +..diverguje - eí splěa utá podm. kovergece. pro x = 1: + ( 1) diverguje ze stejého důvodu =. x Špatá (zcela zmateá) argumetace: 1 R = lim +1 = 1 + 1 = 1 kraje: divg. (to je vidět) (zde lze je "tušit", jak je to asi myšleo) Opravující mají právo vyloučit z opravováí písemé práce, resp. jejich části, které esplňují uvedeé pokyy. Bodové hodoceí takové práce, resp. její části, je 0 bodů.

Katedra matematiky Fakulty jaderé a fyzikálě ižeýrské ČVUT v Praze Příjmeí a jméo 1 2 3 4 5 BONUS CELKEM (16 bodů) Zkoušková písemá práce č. 5 z předmětu 01MAB3 17. úora 2016, 9:00 11:00 Načrtěte co ejpřesěji kuželosečku, která představuje formálí řešeí difereciálí rovice s počátečí podmíkou y 2y (x + 2y) = ; y ( 2) = 1. x 2 8y 2 Nápověda: Při tvorbě áčrtku může pomoci zalost středu kvadriky (pokud existuje), průsečíků s osami (pokud existují), vektorů polárí báze, asymptot (pokud existují) apod. Zvažte sami, co z toho se bude ejlépe hodit! (8 bodů) Vypočítejte + =0 2 5. (12 bodů) Nalezěte ezámé vektory u, u v souboru tak, aby platily ásledující podmíky: (1) S je polárí bází kvadratické formy S = ( ( 1, 1, 1) T, u, u ) q (x 1, x 2, x 3 ) = 7x 2 3 2x2 2 + 2x 1x 2 + 2x 1 x 3 8x 2 x 3, (2) Při stadardím skalárím součiu a R 3 je u e 1 = 0. Určete sigaturu formy q. V závislosti a parametru µ R poté diskutujte, jakou kvadriku defiuje rovice q (x) µ = 0. Pozámka: Určeí ázvu kvadriky v závislosti a µ je výzamě hodoceo. Pokud si epamatujete ázvy podle tvaru Q, můžete použít metodu řezů. (9 bodů) Necht jsou v pro každé x, y R 2 defiováa zobrazeí ω J (x, y) = 2 y 1 x 1 + 2 y 2 x 2, ρ J (x, y) = 2 y 1 x 1 + 2 y 2 x 2. Ověřte, zda ω J a ρ J jsou metriky, a postup detailě kometujte. (7 bodů) Nalezěte fukci f : R R, pro kterou platí a dále f (1) = 6, f (1) = 5, f (1) = 4, f (1) = 3 f (k) (1) = 2 k N, k > 3.

Pokyy k vypracováí: Na začátku máte k dispozici 10 papírů. O další papíry si v případě potřeby eváhejte říci hlídajícímu. Odevzdávejte pouze papíry, které obsahují fiálí řešeí příkladů (ikoliv pomocé pozámky apod.) Začíejte každý příklad a ovém papíru. Na každý papír apište do pravého horího rohu svoje jméo a do levého horího rohu výrazě vyzačte číslo příkladu. Pište čitelě a myšleky formulujte srozumitelě! Příklad: Vypočítejte obor kovergece mocié řady + Správá argumetace: Nejprve poloměr kovergece: +1 L = lim = lim 1 + 1 = 1 + + = R = 1 = 1 L = O = / 1, 1/ (kde "/" je čárkovaá závorka - zatím evíme, zda kulatá či hraatá) a zbývá vyšetřit krají body: pro x = 1: + 1 = +..diverguje - eí splěa utá podm. kovergece. pro x = 1: + ( 1) diverguje ze stejého důvodu =. x Špatá (zcela zmateá) argumetace: 1 R = lim +1 = 1 + 1 = 1 kraje: divg. (to je vidět) (zde lze je "tušit", jak je to asi myšleo) Opravující mají právo vyloučit z opravováí písemé práce, resp. jejich části, které esplňují uvedeé pokyy. Bodové hodoceí takové práce, resp. její části, je 0 bodů.

Katedra matematiky Fakulty jaderé a fyzikálě ižeýrské ČVUT v Praze Příjmeí a jméo 1 2 3 4 5 BONUS CELKEM (12 bodů) Zkoušková písemá práce č. 6 z předmětu 01MAB3 10. květa 2016, 9:20 11:20 Pro kvadratickou plochu 2x + x 2 6y 2xy + 2y 2 + 4z 4xz 2yz + 12z 2 = 0 určete hlaví a vedlejší sigaturu a ormálí tvar včetě afií trasformace (x, y, z) T = M (a, b, c) T + (r, s, t) T, která ji a teto tvar převádí. Jaký je ázev této kvadriky? Pozámka: Numerické chyby se v tomto příkladě etolerují! (11 bodů) Nalezěte součet číselé řady + ( 1) 4 2 2. (9 bodů) Nalezěte obecé řešeí difereciálí rovice x 2 y 2x (1 + x) y + 2 (1 + x) y = 8x 3 e 2x. Nápověda: Můžete použít fakt, že příslušou rovici s ulovou pravou straou řeší fukce v (x) = x. (6 bodů) Heavisideova fukce θ je defiováa jako 1 x > 0, θ (x) = 0 x 0. Necht je zadá metrický prostor ( R 2, ρ ) s metrikou defiovaou vztahem ρ (x, y) = x 2 y 2 + θ ( x 1 y 1 ). Vykreslete tvar okolí U 1 ((2, 3)) a rozhoděte, zda v prostoru ( R 2, ρ ) platí implikace ( ) lim x = x = ( 0 N) ( > 0 ) (x = x). + Svoje tvrzeí správě zdůvoděte. (12 bodů) S použitím vhodých zalostí z teorie mociých a Taylorových řad odvod te tvar Maclauriových řad fukcí f (x) = si x a g (x) = arcta x. Odvod te rověž příslušé obory kovergece a dokažte, že součty těchto řad jsou a jejich oborech kovergece skutečě rovy fukcím f (x) a g (x).

Pokyy k vypracováí: Na začátku máte k dispozici 10 papírů. O další papíry si v případě potřeby eváhejte říci hlídajícímu. Odevzdávejte pouze papíry, které obsahují fiálí řešeí příkladů (ikoliv pomocé pozámky apod.) Začíejte každý příklad a ovém papíru. Na každý papír apište do pravého horího rohu svoje jméo a do levého horího rohu výrazě vyzačte číslo příkladu. Pište čitelě a myšleky formulujte srozumitelě! Příklad: Vypočítejte obor kovergece mocié řady + Správá argumetace: Nejprve poloměr kovergece: +1 L = lim = lim 1 + 1 = 1 + + = R = 1 = 1 L = O = / 1, 1/ (kde "/" je čárkovaá závorka - zatím evíme, zda kulatá či hraatá) a zbývá vyšetřit krají body: pro x = 1: + 1 = +..diverguje - eí splěa utá podm. kovergece. pro x = 1: + ( 1) diverguje ze stejého důvodu =. x Špatá (zcela zmateá) argumetace: 1 R = lim +1 = 1 + 1 = 1 kraje: divg. (to je vidět) (zde lze je "tušit", jak je to asi myšleo) Opravující mají právo vyloučit z opravováí písemé práce, resp. jejich části, které esplňují uvedeé pokyy. Bodové hodoceí takové práce, resp. její části, je 0 bodů.

Katedra matematiky Fakulty jaderé a fyzikálě ižeýrské ČVUT v Praze Příjmeí a jméo 1 2 3 4 5 BONUS CELKEM (11 bodů) Řešte Cauchyovu úlohu Zkoušková písemá práce č. 7 z předmětu 01MAB3 25. květa 2016, 9:00 11:00 x 4 y 2x 3 y 8x 2 y + 20xy = 72, y (1) = 8, y (1) = 2, y (1) = 64. Nápověda: Možá vám pomůže číslo 2. (11 bodů) Vypočítejte + 0 + 4 x 7 e 7 4 4 x 4 dx. Nezapomeňte ověřit, že všechy provedeé úpravy jsou platé. Nápověda: Platí + 1 = π4. 4 90 (12 bodů) Rozhoděte, zda kvadratická forma může mít polárí bázi ve tvaru q (x, y, u, v) = 2v 2 + 2uv + 5u 2 6ux + 2x 2 4uy 8vy + 2xy y 2 B P = { (1, 0, 1, 0) T, (2, 1, 2, 1) T, (7, 2, 5, 1) T, w }. Pokud ao, určete ezámý vektor w a staovte sigaturu formy q. Pozámka: Numerické chyby se v tomto příkladě etolerují! (10 bodů) V metrickém prostoru ( R 2, ρ J ) s modifikovaou skokovou (jump) metrikou defiovaou jako ρ j (x, y) = 2 x 1 y 1 + 2 x 2 y 2 vykreslete tvary okolí U 5 ((0, 0)) a U 6 ((0, 0)) a rozhoděte, zda jsou to v tomto prostoru možiy otevřeé či uzavřeé. (6 bodů) Ozačme symbolem A možiu všech omezeých fukcí f : 1, 1 R. Rozhoděte, zda platí: (1) Zobrazeí N ( f ) := sup x 1,1 f (x) je ormou a A. (2) Bilieárí forma H ( f, g) := 1 f (x) g (x) dx je skalárím součiem a A. Svá tvrzeí detailě odůvoděte. 1

Pokyy k vypracováí: Na začátku máte k dispozici 10 papírů. O další papíry si v případě potřeby eváhejte říci hlídajícímu. Odevzdávejte pouze papíry, které obsahují fiálí řešeí příkladů (ikoliv pomocé pozámky apod.) Začíejte každý příklad a ovém papíru. Na každý papír apište do pravého horího rohu svoje jméo a do levého horího rohu výrazě vyzačte číslo příkladu. Pište čitelě a myšleky formulujte srozumitelě! Příklad: Vypočítejte obor kovergece mocié řady + Správá argumetace: Nejprve poloměr kovergece: +1 L = lim = lim 1 + 1 = 1 + + = R = 1 = 1 L = O = / 1, 1/ (kde "/" je čárkovaá závorka - zatím evíme, zda kulatá či hraatá) a zbývá vyšetřit krají body: pro x = 1: + 1 = +..diverguje - eí splěa utá podm. kovergece. pro x = 1: + ( 1) diverguje ze stejého důvodu =. x Špatá (zcela zmateá) argumetace: 1 R = lim +1 = 1 + 1 = 1 kraje: divg. (to je vidět) (zde lze je "tušit", jak je to asi myšleo) Opravující mají právo vyloučit z opravováí písemé práce, resp. jejich části, které esplňují uvedeé pokyy. Bodové hodoceí takové práce, resp. její části, je 0 bodů.