a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.



Podobné dokumenty
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

Připomenutí co je to soustava lineárních rovnic

Co je obsahem numerických metod?

Numerické metody a programování. Lekce 4

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Aplikovaná numerická matematika - ANM

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Soustavy lineárních rovnic-numerické řešení

Numerické metody a programování

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

1 0 0 u 22 u 23 l 31. l u11

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda

Numerické metody lineární algebry

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).

Vlastní čísla a vlastní vektory

0 0 a 2,n. JACOBIOVA ITERAČNÍ METODA. Ax = b (D + L + U)x = b Dx = (L + U)x + b x = D 1 (L + U)x + D 1 b. (i) + T J

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Arnoldiho a Lanczosova metoda

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Vlastní číslo, vektor

stránkách přednášejícího.

Úlohy nejmenších čtverců

Numerické metody lineární algebry

Základy maticového počtu Matice, determinant, definitnost

1 Projekce a projektory

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

Numerické řešení soustav lineárních rovnic

Vlastní čísla a vlastní vektory

Numerické řešení soustav lineárních rovnic

Symetrické a kvadratické formy

1 Linearní prostory nad komplexními čísly

Soustavy linea rnı ch rovnic

[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici

Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

0.1 Úvod do lineární algebry

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

DRN: Soustavy linárních rovnic numericky, norma

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

15 Maticový a vektorový počet II

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

8 Matice a determinanty

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

1 Vektorové prostory.

Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n,

Matematika I A ukázkový test 1 pro 2014/2015

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Operace s maticemi. 19. února 2018

1 Mnohočleny a algebraické rovnice

EUKLIDOVSKÉ PROSTORY

Podobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak,

Základy matematiky pro FEK

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

Soustava m lineárních rovnic o n neznámých je systém

(u, v) u. v. cos φ =

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy lineárních rovnic

Podobnostní transformace

Soustavy lineárních rovnic

Vlastní čísla a vlastní vektory

(Cramerovo pravidlo, determinanty, inverzní matice)

AVDAT Vektory a matice

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

2. Schurova věta. Petr Tichý. 3. října 2012

0.1 Úvod do lineární algebry

11 Analýza hlavních komponet

Cvičení z Numerických metod I - 12.týden

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

2.6. Vlastní čísla a vlastní vektory matice

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Numerická matematika Banka řešených příkladů

Matematika B101MA1, B101MA2

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

Kapitola 11: Vektory a matice:

Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců

Operace s maticemi

[1] LU rozklad A = L U

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Singulární rozklad. Petr Tichý. 31. října 2013

P 1 = P 1 1 = P 1, P 1 2 =

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Interpolace, ortogonální polynomy, Gaussova kvadratura

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

1 Mnohočleny a algebraické rovnice

Lineární algebra - I. část (vektory, matice a jejich využití)

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

CHARAKTERISTICKÉ VEKTORY

1 Determinanty a inverzní matice

Moderní numerické metody

DEFINICE Z LINEÁRNÍ ALGEBRY

Kapitola 11: Vektory a matice 1/19

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.

Princip řešení soustavy rovnic

6 Samodružné body a směry afinity

Transkript:

Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační matice rozhodovaly o konvergenci příslušné iterační metody. S úlohou na vlastní čísla se setkáme i v aplikacích při řešení řady technických a fyzikálních problémů. Úlohu na vlastní čísla si připomeneme na příkladu. Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové řešení, a určete toto řešení, kde matice 2 A = 2 2. 2 Řešíme tedy soustavu (A λi) v = 2 λ 2 2 2 λ v v 2 v 3 = Aby homogenní soustava měla nenulové řešení, musí být determinant soustavy nulový. Hledáme proto taková λ, aby det(a λi) = λ 3 + 6λ 2 λ + 6 =. Dostali jsme algebraickou rovnici stupně 3 a pouze pro její kořeny = 3, λ 2 = 2, λ 3 = nazývané vlastní čísla matice A, bude mít uvažovaná soustava nenulové řešení. Ke každému vlastnímu číslu λ i můžeme najít nenulové řešení homogennísoustavy Např. pro = 3 řešíme soustavu (A λ i I) v =. 2 Matice soustavy je samozřejmě singulární a proto bude existovat celý systém řešení v závislosti na parametru r IR. Každý vektor, r, r] T řeší danou soustavu. Ze systému vybereme jednoho zástupce, např. v () =,, ] T, a říkáme, že v () je vlastní vektor odpovídající vlastnímu číslu. Podobně bychom nalezli vlastní vektory odpovídající vlastním číslům λ 2 a λ 3. v v 2 v 3 =..

Definice: Je dána čtvercová matice A řádu n. Vlastní čísla, λ 2,..., λ n jsou kořeny charakteristické rovnice p A (λ) = det(a λi) =. Ke každému vlastnímu číslu λ i existuje alespoň jedno nenulové řešení soustavy rovnic Av = λ i v. Toto řešení v nazveme vlastním vektorem. Poznámka: Charakteristický polynom je stupně n n vlastních čísel. Definice: Matici Λ = diag(, λ 2,..., λ n ) nazýváme spektrální maticí matice A. Poznámka: Vlastní čísla horní trojúhelníkové matice jsou rovna jejím diagonálním prvkům, neboť charakteristický polynom má tvar: p A (λ) = (a λ)(a 22 λ)... (a nn λ). Úlohy na nalezení vlastních čísel rozdělíme do dvou skupin: Úplný problém vl. čísel úloha najít všechna vlastní čísla Částečný problém vl. čísel úloha najít pouze některá vl. čísla (obvykle s nejmenší nebo největší abs. hodnotou). Příklad: Určete vlastní čísla a vlastní vektory těchto matic: A = C = 2 2 2 2 2 2, B =, D = 2 2 2 2 2 2,. Řešení: Všechny zadané matice mají stejný charakteristický polynom p A (λ) = p B (λ) = p C (λ) = p D (λ) = (2 λ) 3, Vidíme, že λ = 2 je trojnásobné vl. číslo všech čtyř matic. 2

Vlastní vektory A: v () = (,, ) T v (2) = (,, ) T v (3) = (,, ) T B: v () = (,, ) T v (3) = (,, ) T Pozn.: B λi = C: v () = (,, ) T v (2) = (,, ) T Pozn.: matice A λi je nulová, tj. systém všech řešení rovnice A λi = je lin. kombinací v (), v (2), v (3). D: v () = (,, ) T Pozn.: D λi = Poznámka: Počet lineárně nezávislých vlastních vektorů může být menší než je řád matice. Věnujme se nejprve metodám na řešení úplného problému. Metody rozdělíme takto: ) metody založené na výpočtech vlastních čísel pomocí charakteristického polynomu Nevýhodné pro velká n (řád matice A), protože je obtížné vypočítat p A (λ) = det(a λi) z definice determinantu. 2) metody využívající podobnosti matic Tato kategorie metod využívá faktu, že podobné matice mají stejná vlastní čísla. Princip: konstruujeme posloupnost navzájem podobných matic, která konverguje k matici, jejíž vlastní čísla se dají jednoduchým způsobem určit. 3) smíšené metody založené na převodu obecné matice na matici třídiagonální (např. Givensova, Householderova a Lanczosova metoda) a následný efektivní výpočet kořenů charakteristického polynomu této upravené matice. 3

Metoda LU-rozkladu (LR-transformace, LR-algoritmus) A = LU... rozklad matice A na dolní trojúhelníkovou matici L a horní trojúhelníkovou matici U, kde na diagonále matice L jsou pro jednoznačnost rokladu jednotky. Sestrojíme matici B, která bude podobná matici A. B = UL (U = L A B = UL = L AL). Postup: Sestrojíme posloupnost matic A k : (i) A = A, k = (ii) provedeme LU rozklad matice A k = L k U k (iii) sestrojíme matici A k+ = U k L k (iv) je-li matice A k+ horní trojúhelníková konec, jinak k = k + a jdi na (ii) Poznámka: Dá se ukázat, že když matice B k = L L... L k konvergují k regulární matici, potom matice A k také konvergují, a to k horní trojúhelníkové matici s vlastními čísly na diagonále. Platí A k+ = L k A k L k U k a tedy A k+ = L k L k... L A L L... L } {{ k } B B k+ k+ Poznámka: Je-li matice A symetrická a pozitivně definitní, provádíme LU-rozklad ve smyslu Choleského rozkladu, tj. A = LL T. Potom lze ukázat, že A k konverguje k diagonální matici. Nevýhody: - pomalá konvergence posloupnosti A k - velký počet operací pro matice větších řádů - nelze realizovat pro obecné matice A Poznámka: Jestliže pro dostatečně velké k je A k horní trojúhelníková matice, potom vlastní vektory jsou (přibližně) sloupce matice B k = L L... L k. 4

Metody ortogonálních transformací Použijeme podobný princip jako v předchozím případě, tj. sestrojíme posloupnost podobných matic A, A, A 2... tak, že A k+ = Q T k A k Q k, k =,, 2.... Požadujeme, aby posloupnost A k konvergovala k matici, jejíž vlastní čísla lehce určíme. Ortogonální matici Q k vybíráme speciálním postupem. Výhodou tohoto algoritmu je numerická stabilita. Poznámka: Pro obecnou matici používáme metodu QU-rozkladu (QR-transformace). A = QU Q... ortogonální matice (QQ T = I, tj. Q T = Q ) B = UQ U... horní trojúhelníková matice (U = Q A B = Q AQ B = Q T AQ). Motivační příklad: Příkladem ortogonální matice je matice rovinné rotace o úhel α: ] cos α sin α Q(α) = sin α cos α ozn = ] c s. s c Pro matici A = 2 3 ] stanovte matici B = Q T (α)aq(α) tak, aby b 2 =. Řešení: Rozepíšeme si prvky matice B: b b 2 b 2 b 22 ] = c s ] s c 2 3 ] ] c s = s c ] ] 2c + s c + 3s c s = = 2s + c s + 3c s c 2c = 2 + cs + cs + 3s 2 2cs s 2 + c 2 ] + 3cs 2cs + c 2 s 2 + 3cs 2s 2 cs cs + 3c 2. Pro splnění podmínky b 2 = musí platit 2cs s 2 + c 2 + 3cs = cs s 2 + c 2 =, 5

tj. cos } α{{ sin α} sin 2 α + cos 2 α =. 2 sin 2α + cos 2α cos 2α = sin 2α 2 2 = tan 2α α =., 5535 Po dosazení dostaneme, že B = 3, 68, 389 ]. B je diagonální matice s vlastními čísly na diagonále a stejná vlastní čísla má i matice A. Poznámka: Podobně jako v předchozí metodě, pro dostatečně velké k je A k horní trojúhelníková matice a vlastní vektory jsou (přibližně) sloupce matice Q Q... Q k. Poznámka: Pro symetrickou matici A vede uvedený postup na tzv. metodu Jacobiovy diagonalizace. 6

Speciální případ QR-transformace Jacobiova diagonalizace Věta: Je-li A reálná symetrická matice, potom existuje ortogonální matice Q tak, že Q T AQ = Λ (diagonální matice s vlastními čísly na diagonále spektrální matice). Princip: Matici Q získáme součinem matic Q p,q (α), kde Q p,q (α) =... cos α......... sin α......... sin α......... cos α... p-tý řádek q-tý řádek p-tý sloupec q-tý sloupec a α volíme tak, abychom vynulovali prvek v pozici p, q a tedy i v pozici q, p. Q = p,q Q p,q (α) postupně vynulujeme všechny nediagonální prvky. Poznámka: Při výpočtech nemusíme určovat úhel α, ale lze odvodit přímé vzorce. Poznámka: Zbývá zvolit strategii na volbu indexů p a q. Nejjednodušší je postupně nulovat všechny mimodiagonální prvky (podobně jako v Gaussově eliminační metodě pro řešení soustavy lineárních rovnic). Uvědomme si ale, že se získané nuly z předchozího kroku obecně nezachovají. Další možností je nulovat vždy mimodiagonální prvek, který je největší v absolutní hodnotě (zde je třeba v každé iteraci vyhledat tento prvek, což zpomalí výpočet). Iterační proces zastavíme, je-li norma trojúhelníkové matice pod diagonálou menší než zadaná tolerance. 7

Pro řešení Částečného problému si uvedeme dvě metody. Mocninná metoda Chceme určit vl. číslo matice A s největší absolutní hodnotou (dominantní vlastní číslo). Předpoklady:. A má n-lineárně nezávislých vlastních vektorů 2. existuje jediné dominantní vlastní číslo 3. vlastní čísla lze seřadit: > λ 2 λ 3... λ n. Odvození:. Zvolíme y () jako lin. kombinaci vl. vektorů y () = α v + α 2 v 2 +... + α n v n. 2. Sestrojíme posloupnost y (k) = Ay (k ), tj. y (k) = A k y (). y (k) = α A k v + α 2 A k v 2 +... + α n A k v n. 3. Platí: Av i = λ i v i, potom y (k) = α λ k v + α 2 λ k }{{} 2v 2 +... + α n λ k nv n. dominantní vl. číslo (vytkneme) 4. dostaneme: y (k) = λ k α v + k λi α i v i ε k ]. 5. analogicky pro y (k+) 6. vybereme j-tou složku y (k) a y (k+), vydělíme je a provedeme limitní přechod y (k+) j lim k y (k) j = lim k λ k+ (α v,j + ε k+,j ) λ k (α v,j + ε k,j ) }{{} = 8

Příklad: Mocninnou metodou stanovte dominantní vlastní číslo matice A, kde A = a y () =,, ] T. Řešení: Použijeme iterační formuli y (k+) = Ay (k), pro k =,,... y () = 2; 3; 2] T λ () = y() 2 y () 2 = 3, y (2) = 5; 7; 5] T λ (2) = 7 3 2, 3333, y (3) = 2; 7; 2] T λ (3) = 7 7 2, 4285, y (4) = 29; 4; 29] T λ (4) = 4 7 2, 47, y (5) = 7; 99; 7] T λ (5) = 99 4 2, 446. Poznámka: Zastavovací podmínka použijeme ve tvaru λ (k+) λ (k) < δ. Poznámka: Nejlepší aproximaci dostaneme, dělíme-li složky, které mají největší absolutní hodnotu. Poznámka: Abychom zamezili přetečení, resp. podtečení při zobrazení čísel v počítači je vhodné v každém kroku normovat vektor y (k) (norma y (k) roste, resp. klesá pro vlastní číslo v absolutní hodnotě větší, resp. menší než ). Poznámka: Nevýhody mocninné metody: - odhad chyby - konvergence (obvykle v praxi nevíme, zda jsou splněny předpoklady mocninné metody) - volba y () (bude-li vektor y () takovou lineární kombinací vlastních vektorů, že koeficient u vlastního vektoru odpovídajícího dominantnímu vlastnímu číslu bude roven, potom mocninná metoda nevypočte dominantní vlastní číslo) 9

Metoda Rayleighova podílu Pro použití metody Rayleighova podílu budeme navíc předpokládat, že matice A je symetrická (reálná). Potom musí být vlastní vektory ortonormální, tj. ( v T i v j = pro i j a v T i v i = ). Odvození: 6. krok z odvození mocninné metody nahradíme vyjádřením součinu y (k)t y (k) y (k)t y (k) = λ k a součinu y (k)t y (k+)t y (k)t y (k+) = λ k Dostáváme: α v T + α v T + y (k)t Ay (k) lim k y (k)t y (k) ε T k k ] λi α i v T i. λ k α v + 2k ] = λ 2k α 2 + αi 2 λi ε T k ε k ε T k k ] λi α i v T i. λ k+ α v + 2k+ ] = λ 2k+ α 2 + αi 2 λi ε T k ε k+ = lim k y (k)t y (k+) y (k)t y (k) = λ2k+ λ 2k ε k k ] λi α i v i = ε k+ k+ ] λi α i v i = ε T k ε k+ ) (α 2 + (α 2 + ε T k ε k ) =. Poznámka: Součin ε T k ε k konverguje k nule (pro k ) zhruba dvakrát rychleji než ε k k nulovému vektoru metoda Rayleighova podílu bude rychlejší než mocninná metoda.

Příklad: Metodou Rayleighova podílu určete dominantní vlastní číslo matice A, kde A = a y () = ; ; ] T. Řešení: y () = 2; 3; 2] T λ () = y()t y () y ()T y () = 7 3 y (2) = 5; 7; 5] T λ (2) = 4 7 2, 47, 2, 3333, y (3) = 2; 7; 2] T λ (3) = 6+9+6 = 239 25+49+25 99 2, 447.