SIGNÁLY A LINEÁRNÍ SYSTÉMY (ČASOVÉ ŘADY)

Rozměr: px
Začít zobrazení ze stránky:

Download "SIGNÁLY A LINEÁRNÍ SYSTÉMY (ČASOVÉ ŘADY)"

Transkript

1 SIGNÁLY A LINEÁRNÍ SYSTÉMY (ČASOVÉ ŘADY) prof. Ig. Jiří Holčík, CSc. Kameice 3, 4. patro, dv.č.424 INVESTICE Istitut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a aalýz

2 IV. FREKVENČNÍ TRASFORMACE FUNKCE SPOJITÉ V ČASE

3 ČASOVÁ ŘADA Preferece politických stra v ČR v období od 8/24 do 3/28

4 OSCILACE

5 HARMONICKÁ FUNKCE tříparametrickou harmoickou fukci lze graficky vyjádřit pomocí dvou bodů v roviách amplituda x úhlový kmitočet a počátečí fáze x úhlový kmitočet: C 1 C 1 (ω) a φ 1 φ 1 (ω); spektrum amplitud spektrum počátečích fází

6 HARMONICKÁ FUNKCE x(t) 1.cos(2π.1t + π/2).

7 HARMONICKÁ FUNKCE x(t) 1.cos(2π.1t + π/2) + 5.cos(2π.15t)

8 !!! FREKVENČNÍ SPEKTRUM!!! Frekvečí spektrum fukce je vyjádřeí rozložeí amplitud a počátečích fází jedotlivých harmoických složek, ze kterých se fukce skládá, v závislosti a frekveci.! ZAPAMATOVAT NA VĚKY!

9 ZVOLNA DO FOURIEROVY ANALÝZY Fourierova aalýza saha vyjádřit (rozložit, rozviout) fukci jako součet jedoduchých fukcí (harmoických sigálů, složek). počty těchto harmoických složek, jejich amplitudy, frekvece a fázové posuy jedozačě charakterizují aalyzovaou fukci. Fourierova řada Fourierův itegrál, Fourierova trasformace Fourierovy řady mohou být vyjádřey buď v trigoometrickém ebo komplexím tvaru. zpracovávat můžeme spojité i diskrétí sigály. 9

10 TAYLORŮV TAYLORŮV ROZVOJ ROZVOJ Nechť fukce f(x) má v okolí U(x ) bodu x derivace až do řádu +1 včetě Taylorova řada ) x ( f ) x ( ' f ) ( Taylorova řada ) x ( R ) x x (!... ) x x ( 1! ) x ( f ) x ( f Maclauriova řada, tj. Taylorova řada pro x Maclauriova řada, tj. Taylorova řada pro x ) x ( R x ) ( f... x ) ( ' f ) ( f ) x ( f ) ( ! 1! V 1

11 TAYLORŮV ROZVOJ FUNKCE y si(x) PRO x

12 ZVOLNA DO FOURIEROVY ANALÝZY FOURIEROVY ŘADY pozali jsme, že fukci je možé vyjádřit jako mociou řadu jiou možostí je vyjádřit fukci jako trigoometrickou řadu (tj. jako součet harmoických fukcí (sigálů)). pomocí trigoometrických řad lze vyjádřit obsáhlejší třídu fukcí ež mociými řadami. 12

13 13

14

15

16

17

18

19

20

21

22 ZVOLNA DO FOURIEROVY ANALÝZY FOURIEROVY ŘADY Trigoometrická řada f(x) a 2 + (a cosx + b ) six 1 uvedeý vztah můžeme psát pouze tehdy, jestliže řada a pravé straě koverguje. koverguje-li řada, potom je její součet periodickou fukcí proměé x s periodou 2π. 22

23 ZVOLNA DO FOURIEROVY ANALÝZY FOURIEROVY ŘADY každou periodickou fukci f(x) f(x+kx), která splňuje tzv. Dirichletovy podmíky lze vyjádřit uvedeou trigoometrickou řadou, kde se koeficiety (amplitudy) a, b vypočítají ze vztahů π 1 a f(x)cosx dx, π π,1, 2,K π 1 π b f(x)six dx, 1, 2, 3, K π π 23

24 ZVOLNA DO FOURIEROVY ANALÝZY FOURIEROVY ŘADY každou periodickou fukci f(x) f(x+kx), která splňuje tzv. Dirichletovy podmíky lze vyjádřit uvedeou trigoometrickou řadou, kde se koeficiety (amplitudy) a, b vypočítají ze vztahů π 1 a f(x)cosx dx, π π,1, 2,K π 1 π b f(x)six dx, 1, 2, 3, K π π co tyhle vztahy zameají? jak je iterpretovat? 24

25 ZVOLNA DO FOURIEROVY ANALÝZY FOURIEROVY ŘADY Dirichletovy podmíky Fukce musí být absolutě itegrovatelá přes jedu periodu tj. x+ X x f (x) dx < ; Fukce musí mít a itervalu (x; x + X) koečý počet espojitostí a koečý počet maxim i miim. Dirichletovy podmíky jsou postačující, ikoliv uté. Všechy fyzikálě realizovatelé fukce splňují D.p. 25

26 ZVOLNA DO FOURIEROVY ANALÝZY FOURIEROVY ŘADY uvedeá trigoometrická řada s koeficiety určeými z výše uvedeých vztahů se azývá (trigoometrická) Fourierova řada (příslušá k fukci f). Fourierova řada se zjedoduší, je-li fukce f lichá ebo sudá. Pro lichou fukci platí a b f(x) π 2 f(x)six dx π b six + b si2x + b si3 x +K 26

27 ZVOLNA DO FOURIEROVY ANALÝZY FOURIEROVY ŘADY Pro sudou fukci platí π 2 a b π f(x)cosx dx a f(x) + a1cos x + a2 cos2x + a3 cos3x 2 +K 27

28 ZVOLNA DO FOURIEROVY ANALÝZY FOURIEROVY ŘADY Příklad 1: Rozviňme fukci f(x) x ve Fourierovu řadu. Fukce f(x) je lichá, a proto a. Koeficiety b spočítáme ze vztahu b π 2 x six dx π Itegrací per partes dostaeme π x six dx π x 1 cosx + cosx dx ( 1) + π 1 π 28

29 ZVOLNA DO FOURIEROVY ANALÝZY FOURIEROVY ŘADY Koeficiet b je tedy b ( 1) + 1 Výsledá Fourierova řada má tvar 2 f(x) 1 1 x 2 six si2x + si3x K 2 3

30 ZVOLNA DO FOURIEROVY ANALÝZY FOURIEROVY ŘADY Příklad 2: Rozviňme ve Fourierovu řadu fukci f(x) c pro π < x < c pro < x < π 3

31 ZVOLNA DO FOURIEROVY ANALÝZY FOURIEROVY ŘADY Fukce f(x) je lichá, a proto a. Koeficiety b spočítáme takto b π c six dx six π π dx 2c π [ cosx] π Pro sudé je b, pro liché je b 4c π Výsledá Fourierova řada má tvar f(x) 4c 1 1 six + si3x + si5x + π 3 5 K 31

32 ZVOLNA DO FOURIEROVY ANALÝZY FOURIEROVY ŘADY Zevšeobecěí pro fukce s periodou T. Fourierova řada (příslušá k fukci f) má tvar f(t) a 2π 2π + a cos t + b si t 2 1 T T T 2 2π a f(t)cos t dt, T T,1, 2,K b T 2 2π f(t)si t dt, 1, 2, 3,K K T T 32

33 HARMONICKÁ FOURIEROVA ŘADA kde výraz s ( t ) c + ( Ω + ϕ ) c cos( t ) c 1 cos( Ωt + ϕ ) azýváme -tou harmoickou složkou fukce s(t) 2 2 c a + b, ϕ arctg b a

34 OSCILACE

35 FOURIEROVA ŘADA V KOMPLEXNÍM TVARU každou periodickou fukci f(t+kt)f(t), (která vyhovuje Dirichletovým podmíkám), můžeme rozložit ve Fourierovu řadu j Ω t f ( t) c& e Ω 2 π / T kde c jsou komplexí Fourierovy koeficiety c& 1 / 2 T T / 2 T f( t). e jωt Ω úhlový kmitočet základí harmoické složky (základí harmoická); dt

36 FOURIEROVA ŘADA V KOMPLEXNÍM TVARU pro je 1 / 2 T T / 2 c& f( t). e T 2 jωt dt 1 T / 2 c& f ( t ). dt, T T / 2 což je středí hodota fukce f(t). Pro reálé fukce f(t) je ë - ë*.

37 PŘÍKLADY SPEKTRUM OBDÉLNÍKOVÉHO PULSU

38 PŘÍKLADY SPEKTRUM OBDÉLNÍKOVÉHO PULSU Pomocý výpočet: I( ω ) a e ± j ωt dt a Pro je I() 2a Pro I(ω) e ± jω ± j ωt a a e j ωa e jω j ωa 2 e. ω j ωa e 2j j ωa si ω a 2a. ω.a

39 PŘÍKLADY SPEKTRUM OBDÉLNÍKOVÉHO PULSU

40 PŘÍKLADY SPEKTRUM OBDÉLNÍKOVÉHO PULSU Šířka impulsů ϑ,výška D, perioda T c T / 2 ϑ/ 2. T T / 2 ϑ/ 2 ϑ/ 2 1 jωt 1 jωt D s( t). e dt D e dt e T T T ϑ/ 2 D ϑ ϑ ϑ ϑ Sa Ω D.. Sa Ω T 2 2 T 2 jωt dt

41 PŘÍKLADY SPEKTRUM OBDÉLNÍKOVÉHO PULSU

42 PŘÍKLADY SPEKTRUM OBDÉLNÍKOVÉHO PULSU Co se stae, když posueme obdélíkový puls z předešlého příkladu tak, aby ástupá hraa obdélíka byla v počátku časové osy?

43 PŘÍKLADY SPEKTRUM OBDÉLNÍKOVÉHO PULSU Co se stae, když posueme obdélíkový puls z předešlého příkladu tak, aby ástupá hraa obdélíka byla v počátku časové osy? c& T 1 jωt 1 jωt A s(t).e dt A.e dt e T T T A. T jωϑ / 2 A 2 e.e.. T jω A 2ϑ..si( Ωϑ / 2).e T Ωϑ jωϑ / 2 ϑ 1.e jω e 2 jωϑ / 2 jωϑ jωϑ / jω.e jωϑ / 2 ϑ jωt dt A 1..1 T jω A 2 e.. T Ω Aϑ si(ωϑ/ 2)..e T Ωϑ/ 2 A 1 e T j Ω jωϑ ( e ) jωϑ / 2 jωϑ / 2 e 2j jωt jωϑ / 2.e ϑ jωϑ / 2 ϑ ϑ A..Sa.e T Ω 2 ϑ jω 2.

44 PŘÍKLADY SPEKTRUM OBDÉLNÍKOVÉHO PULSU Co se stae, když posueme obdélíkový puls z předešlého příkladu tak, aby ástupá hraa obdélíka byla v počátku časové osy?

45 JEDNORÁZOVÉ SIGNÁLY jedotkový skok (Heavisidova fukce) σ(t), pro t < ; 1, pro t.

46 JEDNORÁZOVÉ SIGNÁLY jedotkový impuls (Diracův impuls) - δ(t) splňuje vztah s(t). δ (t τ)dt s( τ) zjedodušeě: jedotkový impuls δ(t) je velice úzký (limitě s ulovou šířkou) a velice (limitě ekoečě) vysoký obdélíkový impulz, jehož výška je rova převráceé hodotě šířky mohutost je jedotková

47 FOURIEROVA TRANSFORMACE zavádí spektrálí popis jedorázových (aperiodických) sigálů můžeme jej získat z Fourierovy řady limitím prodloužeím periody sigálu T

48 FOURIEROVA TRANSFORMACE kmitočet základí harmoické složky Ω 2π/T když T, pak Ω dω Graficky to představuje zhušťováí spektrálích čar s prodlužující se periodou až v limitím případě je vzdáleost mezi spektrálími čarami ulová. Pro aperiodický sigál budou spektrálí čáry a sebe avazovat - Ω ω s(t) c. e j Ω t Suma ve výše uvedeém vztahu přechází v itegrál s mezemi od - do.

49 FOURIEROVA TRANSFORMACE c 1 T T / 2 T / 2 s(t).e jωt dt pro T je T 2π/dω, meze itegrálu budou pro ekoečě trvající sigál od - do. Pro T budou rověž amplitudy spojitého spektra jedorázového impulsu ekoečě malé. Dosaďme za c do vztahu a předchozím obrázku

50 FOURIEROVA TRANSFORMACE Ozačme s(t) S( ω) dω s(t).e 2 π s(t).e jωt jωt dt dt.e jωt Fourierova trasformace Fukci S(ω) azveme spektrálí fukcí sigálu. Ta už evyjadřuje skutečé zastoupeí jedotlivých harmoických složek sigálu, ýbrž je jejich poměré zastoupeí. Fourierova trasformace převádí sigál (fukci) s(t) z časové doméy a fukci S(ω) v kmitočtové oblasti.

51 FOURIEROVA TRANSFORMACE Pro časovou fukci můžeme psát vztah s(t) 1 ω j t S( ω).e. d 2 π ω zpětá Fourierova 2 trasformace

52 FOURIEROVA TRANSFORMACE VLASTNOSTI Pricip superpozice (! podmíka liearity! ) s 1 (t) + s 2 (t) ~ S 1 (ω) + S 2 (ω) a.s(t) ~ a.s(ω) Lieárí kombiaci sigálů odpovídá lieárí kombiace jejich spekter Změa zaméka Změa měřítka s(-t) ~ S*(ω) s(t/a) ~ a.s(aω), kde a >

53 FOURIEROVA TRANSFORMACE VLASTNOSTI Traslace fukce Traspozice spektra s(t-τ) τ ~ S(ω).e -jωτ S(ω-Ω) ~ s(t).e jωt Kovoluce fukcí t s1( t) s2( t) s1( x). s2( t x). dx S1( ω). S2( ω)

54 PŘÍKLADY SPEKTRUM JEDNOTKOVÉHO SKOKU Jedotkový skok σ(t) evyhovuje podmíce absolutí itegrovatelosti, emá Fourierův itegrál. Pomůžeme si pomocí fukce A.e -βt. Pro A1 a β je tato fukce ekvivaletí jedotkovému skoku. Platí tedy, že S(ω)1/jω.

55 PŘÍKLADY SPEKTRUM JEDNOTKOVÉHO SKOKU s(t) s(t) S( ω ) A.e βt A.e βt A β + jω.e pro t pro t < jωt dt

56 PŘÍKLADY SPEKTRUM OBDÉLNÍKOVÉHO IMPULSU s(t) A.σ(t) A. σ(t-τ) S( ω) e A. 1 1 j ωτ A..e jω jω j ωτ / 2 e jω j ωτ / 2.e 2A ωτ jωτ / 2.si ω 2 si A. τ..e jωτ / 2 ωτ 2 jωτ / 2. e ωτ 2

57 PŘÍKLADY SPEKTRUM OBDÉLNÍKOVÉHO IMPULSU S( ω) A. τ.sa ( ωτ ) 2 Průchody ulou pro ωτ/2 kπ, k1,2,, resp. 2πfτ/2 kπ a tedy f k/ττ

58 ! SHRNUTÍ!! URČITĚ SI ZAPAMATOVAT! spojitý periodický sigál má diskrétí frekvečí spektrum pro rozklad jsme použili Fourierovu řadu; spojitý jedorázový sigál má spojité frekvečí spektrum pro rozklad jsme použili Fourierovu trasformaci.! A VĚDĚT PROČ!

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. FREKVENČNÍ TRASFORMACE SPOJITÉ

Více

1 Základy Z-transformace. pro aplikace v oblasti

1 Základy Z-transformace. pro aplikace v oblasti Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné

Více

1 Základní pojmy a vlastnosti

1 Základní pojmy a vlastnosti Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Fourierova transformace ve zpracování obrazů

Fourierova transformace ve zpracování obrazů Fourierova trasformace ve zpracováí obrazů Jea Baptiste Joseph Fourier 768-83 6. předáška předmětu Zpracováí obrazů Martia Mudrová 24 Motivace Proč používat Fourierovu trasformaci? základí matematický

Více

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace Aalýza a zpracováí sigálů 4. Diskrétí systémy,výpočet impulsí odezvy, kovoluce, korelace Diskrétí systémy Diskrétí sytém - zpracovává časově diskrétí vstupí sigál ] a produkuje časově diskrétí výstupí

Více

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové: Užitečé zdroje příkladů jsou: Materiály ke cvičeím z Kalkulu 3 od Kristýy Kucové: http://www.karli.mff.cui.cz/~kucova/historie8. php K posloupostem řad a fukcí Ilja Čerý: Iteligetí kalkulus. Olie zde:

Více

Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály

Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály Aalýza a zpracováí sigálů 3. Číselé řady, jejich vlastosti a základí operace, áhodé sigály Diskrétí sigál fukce ezávislé proměé.!!! Pozor!!!! : sigáleí defiová mezi dvěma ásledujícími vzorky ( a eí tam

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

(3n + 1) 3n Příklady pro samostatnou práci

(3n + 1) 3n Příklady pro samostatnou práci ... 4. 5. 6. 0 0 0 a q koverguje pro q < geometrická řada diverguje harmoická řada koverguje srovejte s teleskopickou řadou + + utá podmíka kovergece + 4 + + 7 ití srovávací kritérium, srováí s ití podílové

Více

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad

Více

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji

Více

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet

Více

I. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =

I. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) = Taylorovy řady ěkterých fukcí: I. TAYLORŮV POLYNOM Pro R platí: si) = 2+ = ), cos) = 2 2+)! = ), 2)! e = =.! Pro, : log + ) = = ) Pro, ) a a R: + ) a = a ) =, kde ) a = a a ) a 2) a +).!. Nalezěte Taylorův

Více

Fourierova transformace ve zpracování obrazů

Fourierova transformace ve zpracování obrazů Jea Baptiste Joseph Fourier 768-83 Fourierova trasforace ve zpracováí obrazů 6. předáška předětu Zpracováí obrazů Martia Mudrová 24 Motivace Proč používat Fourierovu trasforaci? základí ateatický ástroj

Více

23. Mechanické vlnění

23. Mechanické vlnění 3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze

Více

1 Uzavřená Gaussova rovina a její topologie

1 Uzavřená Gaussova rovina a její topologie 1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení

Více

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,

Více

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace

Více

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) = NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:

Více

= + nazýváme tečnou ke grafu funkce f

= + nazýváme tečnou ke grafu funkce f D E R I V A C E F U N KCE Deiice. (derivace Buď ukce,!. Eistuje-li limitu derivací ukce v bodě a začíme ji (. lim ( + lim Deiice. (teča a ormála Přímku o rovici y ( v bodě, přímku o rovici y ( (, kde (

Více

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

je vstupní kvantovaný signál. Průběh kvantizační chyby e { x ( t )}

je vstupní kvantovaný signál. Průběh kvantizační chyby e { x ( t )} ČÍSLICOVÉ ZPRACOVÁNÍ ZVUKOVÝCH SIGNÁLŮ Z HLEDISKA PSYCHOAKUSTIKY Fratišek Kadlec ČVUT, fakulta elektrotechická, katedra radioelektroiky, Techická 2, 66 27 Praha 6 Úvod Při číslicovém zpracováí zvukových

Více

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické 5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí

Více

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí

Více

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0 Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada

Více

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019 Jméo: Příklad 2 3 Celkem bodů Bodů 0 8 2 30 Získáo 0 Uvažujte posloupost distribucí {f } + = D (R defiovaou jako f (x = ( δ x m, kde δ ( x m začí Diracovu distribuci v bodě m Najděte limitu f = lim + f

Více

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n. Matematická aalýza II předášky M. Málka cvičeí A. Hakové a R. Otáhalové Semestr letí 2005 6. Nekoečé řady fukcí V šesté kapitole pokračujeme ve studiu ekoečých řad. Nejprve odvozujeme základí tvrzeí o

Více

11. přednáška 16. prosince Úvod do komplexní analýzy.

11. přednáška 16. prosince Úvod do komplexní analýzy. 11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám

Více

MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY MB202. Diferenciální a integrální počet B

MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY MB202. Diferenciální a integrální počet B MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY Sbírka příkladů do cvičeí MB0 Difereciálí a itegrálí počet B jaro 08 Mgr. Jakub Juráek Obsah Polyomy, racioálí lomeé fukce, iterpolace Limity a spojitost fukce

Více

Mocninné řady - sbírka příkladů

Mocninné řady - sbírka příkladů UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Mocié řady - sbírka příkladů Vedoucí bakalářské práce: Mgr. Iveta Bebčáková, Ph.D.

Více

4. Návrh číslicových filtrů s nekonečnou impulzní odezvou

4. Návrh číslicových filtrů s nekonečnou impulzní odezvou P.Skalický- Digitálí filtrace a sigálové procesory Praha - /995 4. Návrh číslicových filtrů s ekoečou impulzí odezvou Návrh číslicových filtrů můžeme rozdělit do těchto tří fází:. Určeí vlastostí avrhovaého

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n Jméo: Příklad 3 Celkem bodů Bodů 8 0 30 Získáo [8 Uvažujte posloupost distribucí f } D R defiovaou jako f [δ kde δ a začí Diracovu distribuci v bodě a Najděte itu δ 0 + δ + této poslouposti aeb spočtěte

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Zkoušková písemná práce č. 1 z předmětu 01MAB3

Zkoušková písemná práce č. 1 z předmětu 01MAB3 Katedra matematiky Fakulty jaderé a fyzikálě ižeýrské ČVUT v Praze Příjmeí a jméo 1 2 3 4 5 BONUS CELKEM (13 bodů) Zkoušková písemá práce č. 1 z předmětu 01MAB3 14. leda 2016, 9:00 11:00 Pro kvadratickou

Více

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ STEJNOMĚRNÁ KONVERGENCE Ztím ebylo v těchto textech věováo příliš pozorosti kovergeci fukcí, t jko limit poslouposti ebo součet řdy. Jik byl kovergece poslouposti fukcí ebo řdy brá jko bodová kovergece.

Více

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

Interference. 15. prosince 2014

Interference. 15. prosince 2014 Iterferece 15. prosice 014 1 Úvod 1.1 Jev iterferece Mějme dvě postupé vly ψ 1 z,t) = A 1 cosωt kz +ϕ 1 ) a ψ z,t) = A cosωt kz +ϕ ). Uvažujme yí jejich superpozici ψ = ψ 1 +ψ a podívejme se, jaká bude

Více

4. B o d o v é o d h a d y p a r a m e t r ů

4. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0

I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0 8. Elemetárí fukce I. Expoeciálí fukce Defiice: Pro komplexí hodoty z defiujeme expoeciálí fukci předpisem ) e z = z k k!. Vlastosti expoeciálí fukce: a) řada ) koverguje absolutě v C; b) pro z = x + jy

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Diskrétní Fourierova transformace

Diskrétní Fourierova transformace Disrétí Fourierova trasformace Záladí idea trasformace x Trasformace Zpracováí v časové oblasti Zpracováí v trasform. oblasti x Iverzí Trasformace Spojitá Fourierova trasformace f j πft x t e dt Disrétí

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Příklady k přednášce 3 - Póly, nuly a odezvy

Příklady k přednášce 3 - Póly, nuly a odezvy Příklady k předášce 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 06 9--6 Schurův doplěk - odvozeí Automatické řízeí - Kyberetika a robotika Obecě ( + l) ( + l) ( + l) ( + m) ( + m) ( + m) I 0

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

Příklady k přednášce 3 - Póly, nuly a odezvy

Příklady k přednášce 3 - Póly, nuly a odezvy Příklady k předášce 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 08 9-6-8 Nuly přeou Automatické řízeí - Kyberetika a robotika Pro přeo G ( ) = ( + ) ( + ) pólem = a ulou z = porovejme odezvy

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ig. Jiří Holčík, CSc. holcik@i.ui.c @i.ui.c,, Keice 3, 4. ptro, dv.č.44.44 INVESTICE Istitut DO iosttistiky ROZVOJE VZDĚLÁVÁNÍ lý IX. Z TRANSFORMACE SYSTÉMY S DISKRÉTNÍM

Více

5 Křivkové a plošné integrály

5 Křivkové a plošné integrály - 7 - Křivkové a plošé itegrály 5 Křivkové a plošé itegrály 51 Křivky Pozámka V této kapitole se budeme zabývat obecými křivkami v Vždy však můžeme položit = 2 či = a přejít tak k speciálím případům roviy

Více

3 - Póly, nuly a odezvy

3 - Póly, nuly a odezvy 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud

Více

Nauka o Kmitání Přednáška č. 4

Nauka o Kmitání Přednáška č. 4 Nauka o Kmitání Přednáška č. 4 Odezva lineárního systému na obecnou periodickou budící funkci Ing. Antonín Skarolek, Ph.D. Katedra mechaniky, pružnosti a pevnosti Technická Univerzita v Liberci 213 Ustálená

Více

3. ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI. 3.1 Základní elementární funkce. Nejprve uvedeme základní elementární funkce: KONSTANTNÍ FUNKCE

3. ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI. 3.1 Základní elementární funkce. Nejprve uvedeme základní elementární funkce: KONSTANTNÍ FUNKCE ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI Základí elemetárí fukce Nejprve uvedeme základí elemetárí fukce: KONSTANTNÍ FUNKCE Nechť a je reálé číslo Potom kostatí fukcí rozumíme fukce f defiovaou předpisem ( f

Více

Lineární a adaptivní zpracování dat. 8. Modely časových řad I.

Lineární a adaptivní zpracování dat. 8. Modely časových řad I. Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

Investice do rozvoje vzdělávání

Investice do rozvoje vzdělávání Lieárí systémy a modely časových řad Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů Lieárí systémy a modely časových řad Istitute of Biostatistics ad Aalyses Cíl,

Více

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

12 VZORKOVACÍ TEORÉM 1

12 VZORKOVACÍ TEORÉM 1 2 VZORKOVACÍ TEORÉM 2 Vzorkovací teorém Půvab vzorkovacího teorému spočívá v tom že umožňu vyjádřit spojité fukce jistého typu hodotami těchto fukcí vzorky v určitých izolovaých bodech. Přitom ejde o ějakou

Více

Příklady k přednášce 5 - Identifikace

Příklady k přednášce 5 - Identifikace Příklady k předášce 5 - Idetifikace Michael Šebek Automatické řízeí 05 3-3-5 Automatické řízeí - Kyberetika a robotika Jiá metoda pro. řád bez ul kmitavý Hledáme ω Gs () k s + ζω s + ω Aplikujeme u( )

Více

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor.

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor. 5 PŘEDNÁŠKA 5: Jedorozměrý a třírozměrý harmoický oscilátor. Půjde o spektrum harmoického oscilátoru emá to ic společého se spektrem atomu ebo se spektrálími čarami atomu. Liší se to právě poteciálem!

Více

n-rozměrné normální rozdělení pravděpodobnosti

n-rozměrné normální rozdělení pravděpodobnosti -rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici

Více

I. TAYLORŮV POLYNOM ( 1

I. TAYLORŮV POLYNOM ( 1 I. TAYLORŮV POLYNOM Připomeňme si defiice elemetárích fukcí: a si( = 2+ = ( (2+! b cos( = 2 = ( (2! c e = =!. Dokažte, že Taylorův polyom k-tého řádu v bodě pro fukce f je rove polyomu P : (tyto výsledky

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

Fourierova transformace

Fourierova transformace Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

Osnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky

Osnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky Pulsní kódová modulace, amplitudové, frekvenční a fázové kĺıčování Josef Dobeš 24. října 2006 Strana 1 z 16 Základy radiotechniky 1. Pulsní modulace Strana 2 z 16 Pulsní šířková modulace (PWM) PAM, PPM,

Více

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( ) DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce

Více

Měřící technika - MT úvod

Měřící technika - MT úvod Měřící techika - MT úvod Historie Už Galileo Galilei zavádí vědecký přístup k měřeí. Jeho výrok Měřit vše, co je měřitelé a co eí měřitelým učiit platí stále. - jedotá soustava jedotek fyz. veliči - símače

Více

5. Posloupnosti a řady

5. Posloupnosti a řady Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru

Více

Komplexní čísla, komplexně sdružená čísla, opačná komplexní čísla, absolutní hodnota (modul) komplexního čísla. z 2 z 1

Komplexní čísla, komplexně sdružená čísla, opačná komplexní čísla, absolutní hodnota (modul) komplexního čísla. z 2 z 1 Komplexí čísla, komplexě sdružeá čísla, opačá komplexí čísla, absolutí hodota (modul) komplexího čísla Defiice komplexího čísla Komplexí číslo je uspořádaá dvojice reálých čísel = (, ) (, ). je reálá,

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx. Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta

Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta Matematika přehled vzorců pro maturaty (zpracoval T. Jáský) Úpravy výrazů a r. a s = a r+s a r = ar s as a r s = a r.s a. b r = a r b r a b r = ar b r a. b a b = a b = a. b ( a) m = a m m a m. = a a k.

Více

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.). STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY

3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY 3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY Modulací nazýváme proces při kterém je jedním signálem přetvář en jiný signál za účelem př enosu informace. Př i amplitudové modulaci dochází k ovlivňování amplitudy nosného

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více