4. Základní statistické pojmy.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "4. Základní statistické pojmy."

Transkript

1 4. Základí statistické pojmy. 4. Úvodí iformace Statistika je často představováa jako pouhý sběr čísel ebo jim podobých údajů. Původí výzam toho slova skutečě souvisí se sběrem iformací o státu ( z latiského status stát ) počtu obyvatel, sídel, o výběru daí atd. I des existují istituce, které se zabývají takovýmto sběrem dat, v ČR je to Český statistický úřad. Sbírá a zveřejňuje ěkteré iformace o obcích, průmyslu, ekoomice, o demografickém rozvoji státu. Pod pojmem statistika des však mííme mohem více, statistika se v jistém slova smyslu stala jazykem pro práci s daty, pro jejich zpracováí a iterpretaci. Ze statistiky se stala rozviutá vědecká metoda aalýzy dat, která achází široké uplatěí v přírodích i společeských vědách i ve společosti vůbec. Při vlastí praxi uplatňujeme dva způsoby přístupu k údajům. Především je to přístup k iformacím vějšího prostředí a posléze aše reflexe a tyto údaje ve formě zobecěí. Například při porováváí sledovaosti televizích kaálů eoslovujeme všechy domácosti, ale z pečlivě vybraých domácostí a jejich sledovaosti televize čiíme závěry platé pro všechy domácosti. Proces zobecňováí pozatků azýváme iduktivím způsobem usuzováí ( idukcí ) apř. zobecěí sledovaosti ve výběru a všechy domácosti. Schopost přijímat ové pozatky a z ich se učit a vyvozovat závěry jsou jedím ze základích rysů lidského uvažováí. Druhým způsobem uvažováí je pricip deduktivího přístupu k údajům ( dedukce ). Při deduktivím přístupu čiíme závěry z obecých zákoitostí. Závěry myšlekových procesů iduktivího charakteru jsou ovlivěy postojem subjektu. Iduktiví statistika se zabývá způsoby jak přeášet závěry takovýchto procesů, umožňuje z pozorovaých dat vytvářet obecé závěry s určeím jejich spolehlivosti. Výpočty takových spolehlivostí jsou založey a pozatcích teorie pravděpodobosti a jsou proto objektiví. 4. Statistický soubor a výběry Jedím ze základích pojmů, s kterými se budeme setkávat stále jsou populace ( statistický soubor ) a výběr. Populace je možia všech prvků, které jsou předmětem daého statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický soubor jsou buď dáy prostě výčtem ebo mají určité společé vlastosti - tzv. idetifikačí zaky - umožňující určit, zda prvek do daého statistického souboru patří ebo epatří. Idetifikačí zaky tedy statistický soubor mohou vymezovat. Z hlediska velikosti je zřejmé, že většia populací bude mít koečý rozsah, ekoečý rozsah budou mít takové populace, které jsou určey zakem, který můžeme hypoteticky ekoečěkrát opakovat ( apř. měříme hmotost po pokusu, teplotu atd. ). Podle počtu sledovaých zaků je potom takováto populace jedorozměré či vícerozměrá ( sledujeme dva a více zaků apř. teplotu, tlak; komuikativost, iteligeci atd. ). Pro vlastí popsáí populací se používá metoda parametrů charakteristik. Jde o číselé hodoty, které jsou většiou pevá čísla. Jejich hodota eí záma a je uto ji zjistit či odhadou vhodými statistickými metodami. Zaky, které sledujeme v populaci mají obecě buď charakter kvatitativí ( lze je vyjádřit číslem apř. délka, hmotost, teplota ) a kvalitativí ( jsou většiou vyjádřey textem ). Kvatitativí zaky dělíme dále a spojité výsledky zkoumáí mohou abývat hodot ěkterého itervalu ( teplota, délka ) a diskrétí jestliže existuje je koečě moho možých stavů zaku ( apř. počet dětí v rodiě, počet vykvetlých rostli atd. ).

2 K vlastímu měřeí kvatitativích údajů používáme buď itervalových ebo poměrových stupic. Jestliže chceme zjistit je rozdíl mezi kvalitativími hodotami, používáme itervalovou stupici ( v takovýchto stupicích je počátek vole apř. C, stupice výšky tóu, stupice bolesti atd. ). Při takovémto způsobu měřeí je většiou esmyslé ozačeí prvek a má hodotu zaku x větší ež prvek b, eboť počátek je možo volit růzě ( apř. teplota ). Pokud chceme měřit údaje ve vztahu k pevým jedotkám ( váha, vzdáleost ) používáme stupici poměrovou. Kvalitativí zaky se sažíme také měřit, používáme k tomu omiálí ( pojem ) a ordiálí ( pořadí ) stupici. Nomiálí stupice je složea z ejméě dvou avzájem se vylučujících tříd. Jestliže jsou třídy právě dvě azývá se dichotomická. Příklady takovéto stupice: pohlaví / mužské, žeské /; barva / modrá, zeleá, červeá, bílá /. Příkladem takovéto klasifikace je také. meziárodí stupice emocí, úrazů a příči smrti. Čísla, která jsou přiřazea jedotlivým chorobám ic evypovídají o daé chorobě. Ordiálí stupice je založea opět a eslučitelých třídách, ale ty jsou ještě avzájem uspořádáy. Příklady takovýchto stupic: ejvyšší úroveň vzděláí / egramotý, základí, středí, vysokoškolské / ; srozumitelost / žádá, malá, středí, uspokojivá, vyikající/. V tabulkách 4. a 4. íže jsou uvedey způsoby použití jedotlivých stupic. Tabulka 4. Typ stupice Použití pro data Přípusté změy Charakteristiky rozděleí Nomiálí stupice Jsme schopi rozhodout o rozdílu mezi jedotlivými prvky populace a o jejich zařazeí do tříd Permutace, přejmeováí Absolutí četost, relativí četost, modus Ordiálí stupice Navíc: Umíme určit, který prvek je meší a který větší a zařadit je do správých tříd Možo změit pomocí mootóí trasformace ( rostoucí ) Dále: Kumulativí četost, pořadí, kvatily, mediá, pořadové hodoty Itervalová stupice Navíc: Umíme staovit relativí ulový bod ( počátek ) a zjistit vztah prvků vůči ěmu ( rozdíly!) Lieárí změa - posuutí a zmešeí ebo zvětšeí ( y = a x + b ) Dále: Aritmetický průměr, směrodatá odchylka, šikmost, špičatost Poměrová stupice Tabulka 4. Navíc: Umíme staovit absolutí ulový bod ( počátek ) a zjistit vztah prvků vůči ěmu ( podíly!) Změa je zvětšeí ebo zmešeí ( kladé ) tj. y = a x ( a > ) Dále: Ostatí průměry ( harmoický, geometrický ), variačí koeficiet Typ stupice Testy Závislost, ezávislost Nomiálí stupice c - testy Kotigečí koeficiety, čtyřpolíčkový koeficiet Ordiálí stupice Dále: Pořadové testy, Kolmogor - Smirův test, U - test Pořadový korelačí koeficiet Itervalová stupice Dále: Parametrické testy odvozeé z Korelačí koeficiet, biseriálí N(,) koeficiety Poměrová stupice Stejě jako výše Stejě jako výše Pro vyšetřeí populace používáme růzý způsob přístupu k datům : Provádíme buď statistický pokus, statistické šetřeí ebo pozorovací studii. Účelem statistického pokusu je pláovitě měit faktory ( podmíky ) a sledovat jejich vliv a změu vyšetřovaých zaků. Výběr prvků s imiž experimetujme provádíme zásadě áhodě, aby edošlo k vychýleí výsledých hodot. Při tzv. kotrolovaém pokusu rozdělíme vyšetřovaé skupiy a

3 pokusé a kotrolí. U pokusé skupiy byla provedey změa, u kotrolí ikoli. Aby byl pokus dostatečě objektiví, je uto, aby obě skupiy byly rovoceé jak a začátku pokusu, tak i v jeho průběhu. Chceme li zabráit příosu subjektiví iformací volíme často pricip tzv. slepého pokusu, kdy te kdo údaje vyhodocuje ( apř. lékař ) evěděl, která skupia je kotrolí a která je pokusá. Jestliže ai vyšetřovaý subjekt eví zda je v pokusé ebo kotrolí skupiě azýváme teto pricip dvojité utajeí ebo dvojitý slepý pokus. Je vidět, že pricip áhodého výběru a rozděleí a pokusou a kotrolí skupiu zlepšuje výsledky ( odstraňujeme eobjektivitu a závislost ). Někdy ovšem eí možé získávat data maipulací s prvky populace. Neí možo provádět statistický pokus, můžeme však jedoduše pozorovat jak probíhají změy a registrovat je. Takovému přístupu říkáme statistické šetřeí ebo pozorovací studie. Používáme ho tehdy, kdy emůžeme využít pricip áhody ( případy, kdy rozložeí zaků v populaci je dáo apř. vzděláí, pohlaví a v pokusu by ebylo respektováo ; ěkdy eí možo realizovat statistický pokus z etických důvodů ( maipulace s lidmi ). Vidíme tedy, že v případě statistického šetřeí se spokojujeme s pasivím sběrem dat. Problémem takovýchto studií je, že pozorovaý jev je velmi často ovlivě ežádoucími zaky. Pro pojem úplého šetřeí tj. šetřeí provedeého a celé populaci se vžil pojem cesus ( sčítáí lidu ). Pro jeho vysoké ekoomické áklady se provádí v aší republice jedou za deset let. Každé statistické šetřeí v podobě cesu by bylo především ekoomicky velmi áročé. Ve většiě případů te, kdo chce provést statistické šetřeí má omezeé zdroje ( fiace, čas ). Někdy je k dispozici je málo údajů ( šetřeí vzácé choroby ebo zvláštího chováí pacietů ). Při dalších šetřeích bychom museli populaci zičit ( apříklad sledováí životosti výrobků ). Výběr může ést přesější výsledky ež úplé šetřeí ( při velkém možství chyb viou eodborých špatě proškoleých pozorovatelů vzike chyba eodstraitelá ). Jakákoli část populace, která dobře odráží její strukturu ( především vyšetřovaé zaky ) azveme reprezetativím výběrem. Ostatí typy výběru se azývají selektiví výběry, většiou dávají zkresleý obrázek o vyšetřovaé populaci. Příkladem selektivího výběru je vzorek vysokoškolských profesorů, z ěhož budeme usuzovat a vzdělaost celé populace. Je jisté, že struktura vzdělaosti v ašem výběru bude začě vychýlea proti celé populaci. Správé výběry pořizujeme metodami áhodého výběru ebo metodami záměrého výběru. Metoda záměrého výběru se opírá expertí staoviska k vytvořeí represetativího výběru ( prováděa často v psychologii, sociologii ). Jsou často závislé a subjektu experta. Metoda áhodého výběru umožňuje vybírat prvky populace áhodě a ezávisle a subjektech. Podle způsobu provedeí rozlišujeme ěkolik druhů áhodého výběru: Prostý áhodý výběr provádě většiou metodou losováí ( každý prvek populace může být vylosová ). Dříve se prováděl i pomocí tabulek áhodých čísel, des možo použít i vhodý geerátor áhodých čísel růzých statistických, ale i estatistických programů. Mechaický výběr jde o jistou formu prostého výběru, ejdříve áhodě očísluji prvky populace a poté zvolím pevé číslo. Všechy prvky, které získám vždy o pevý zadaý krok budou v daém výběru. Pokud eprovedeme a začátku áhodé očíslováí, ale číslováí je už vytvořeo musí dbát a to, aby krok výběru esouvisel s číslováím. Oblastí výběr. Celá populace je rozdělea do částí oblastí tak, aby se ve sledovaých zacích se od sebe velmi odlišovali, v rámci jedé oblasti jsou sledovaé zaky málo odlišé. V jedotlivých oblastech potom provedeme prostý výběr. Spojeím všech takovýchto dílčích výběrů získáme celý hledaý výběr.

4 Skupiový výběr. V případě populací, které čítají statisíce ebo milioy prvků je skoro emožé předchozími metodami vytvořit áhodý výběr. Vyžíváme proto přirozeé rozděleí populace a meší celky ebo vytváříme vlastí umělé děleí. Požadujeme, aby prvky ( skupiy ) děleí byly pokud možo stejě velké a vyšetřovaé zaky heterogeí v rámci jedé skupiy. Variabilita mezi jedotlivými skupiami by měla být co ejmeší. Vícestupňový výběr. Provádí se tehdy, kdy existuje hierarchický popis celé populace ( geografický, sociálí model ). 4.3 Popisá statistika Popisá statistika (deskriptiví statistika) se zabývá popisem stavu ebo vývoje hromadých jevů. Nejprve se vymezí soubor prvků, a ichž se bude uvažovaý jev zkoumat. Následě se všechy prvky vyšetří z hlediska studovaého jevu. Výsledky šetřeí - kvalitativí i kvatitativí, vyjádřey především číselým popisem - tvoří obraz studovaého hromadého jevu vzhledem k vyšetřovaému souboru. V předchozí části jsme studovali pojem statistického výběru. V této části budeme předpokládat, že jsme provedli výběr z populace a budeme se sažit z těchto dat získat údaje o vlastostech základího souboru. Grafické zázorěí výběrových rozděleí je uvedeo v ásledující kapitole. V této kapitole budeme využívat data z tabulky 4.3 Tabulka 4.3: Rozděleí měsíčích ákladů studetů a bydleí Pořadí Náklady Pořadí Náklady Pořadí Náklady Uveďme dále důležité pojmy, které budeme eustále využívat. Četost ( absolutí ) hodoty x i je daá počtem prvků x i ve výběru. Relativí četost hodoty x i je daá podílem absolutí četosti a celkového počtu prvků ve výběru. Kumulativí absolutí četost hodoty x i je daá součtem všech absolutích četostí prvků, které jsou meší ebo rovy prvku x i. Kumulativí relativí četost hodoty x i je dáa součtem všech relativích četostí prvků, které jsou meší ebo rovy prvku x i Míry polohy Jde o číselé hodoty pomocí, ichž určujeme polohu míst, kolem kterých jsou data ejvíce umístěy Průměr Průměr x se používá v případě kvatitativích zaků. Je velmi citlivý a odlehlé hodoty. Průměr hodot x, x,, x vypočteme takto

5 xi x + x x x = = (4.). Pro aše data je x = 4, 33. Někdy jsou data uvedea v tabulce včetě svých absolutích četostí ( počtu opakováí ), potom počítáme průměr jako tzv. vážeý průměr: k i. xi x = (4.) V tomto případě jsou data rozdělea a k skupi o k prvcích. Pokud jsou data uvedea v tabulce roztříděých dat ( původí dat jsou ahrazea příslušostí do jedoho z vybraých itervalů ) vytvoříme ejprve střed itervalu ( bude ahrazovat všecha data uvedeá v daém itervalu ) a pak z těchto hodot vytvoříme podle vztahu (4.) průměr. Tabulka 4.4 třídí rozděleí četostí: Rozpětí četost Hodota středů itervalů je 5, 75,, 45. Spočítáme li průměr podle vzorce (4.) je hodota třídího průměru rova 733,7. Je vidět, že hodota tohoto průměru velmi závisí a správé volbě rozpětí třídy. Pro vytvořeí stejě velkých tříd o počtu k z prvků je možo použít tzv. Sturgesovo pravidlo k º + 3,3. log (4.3) Například pro áš případ je = 3 a tedy hodota k º 5,8745. Tedy volíme k = 6. Uveďme dále ěkteré důležité vlastosti průměru: a) Jestliže ke každé hodotě x i ve výběru přičteme kostatu k, zvětší se o kostatu k také původí průměr ( k může být libovolé reálé číslo ). b) Násobíme li každou hodotu ve výběru x i stejou kostatou m, vypočteme ový průměr jako souči starého průměru a kostaty m c) Součet odchylek všech hodot x i ve výběru od jejich průměru x je rove ule ( x) = x (4.4) i d) Součet čtverců odchylek všech hodot od jejich průměru je meší ež součet čtverců odchylek všech hodot od libovolé jié hodoty. a x ( ) ( ) x x a x i i (4.5) Těchto vlastostí průměru využíváme také k tomu, abychom upravili vstupí hodoty jejich zmešeím ( resp. zvětšeím ) a posuutím. Průměr se používá jako číselá charakteristika protože: a) Je jedozačý

6 b) Je lieárí c) Je spolehlivou číselou hodotou. Průměr epoužijeme, jestliže a) Rozděleí je vícevrcholové b) Rozděleí má a krajích otevřeé třídy c) Údaje ejsou škálovaé metricky, ale ordiálě d) Výběr je extrémě malý e) Rozděleí je asymetrické Modus Modus xˆ je hodota, která se vyskytuje ejčastěji. Podle tabulky 4. ho můžeme zjišťovat i zaků, které jsou kvalitativí, dokoce i omiálí. Neí ovlivňová všemi prvky ve výběru. Jestliže je četost všech prvků ve výběru stejá, modus eurčujeme. Jestliže dvě ebo více avzájem sousedících hodot abývají stejé ejvětší četosti, pak aritmetický průměr z těchto hodot azveme modulem. Jestliže existují dvě avzájem esousedící hodoty s ejvětšími stejými četostmi, uvádíme obě jako modus. Rozděleí je pak dvou vrcholové ( bimodálí ). Již ze samé defiice modusu je jasé, že tato charakteristika velmi závisí a výběru a většiou velmi kolísá. Příklad Zjistěte modus šetřeí výběru barev respodetů bílá, červeá, modrá, červeá, zeleá, bílá, červeá, modrá, bílá, červeá. Odpověď : Nejčetější výskyt má a modus je červeá. Příklad Zjistěte hodotu modusu pro data z aší tabulky 4.3. Odpověď: Podle tabulky je x ˆ = 9. Jestliže jsou kvatitativí zaky uspořádáy do třídí tabulky, určíme ejdříve modálí iterval x D ( s ejvyšší četostí ) a modus staovíme iterpolací xˆ = xd + h. (4.6) + m kde h je délka modálího itervalu, je četost, x D je dolí hraice tohoto itervalu, je četost ásledujícího itervalu a m četost předchozího itervalu. Aplikujme vzorec (4.6) a data z tabulky 4.4 xˆ = xd + h. = = 583,33. + m 6 Vidíme tedy, že modus zjištěý podle vzorce (4.6) může být výrazě odlišý od modusu skutečého Kvatily a mediá Přirozeou mírou jsou kvatily. Daý výběr se ejdříve seřadí od ejmeší hodoty po ejvětší a poté určíme pro daý p% kvatil pořadové číslo jedotky p, pro které platí p p. < p <. +, (4.7) kde je počet prvků výběru. Pro hodotu p = 5% se daý kvatil ozačuje mediá ~ x. Jestliže je počet sudé číslo, vypočteme mediá jako průměrou hodotu z hodot stojících vlevo a vpravo od

7 teoretického mediáu určeého vzorcem (4.7). Mediá popisuje hodotu, která dělí daý výběr a dvě stejě velké části. V ašem příkladě je ~ x = 785 =. Další výzamé kvatity jsou : Dolí kvartil x,5 je urče jako 5% kvatil. Horí kvartil x,75 je urče jako 75% kvatil. V ašem případě je x,5 = 8 a x,75 = 3. Pro hodoty kvartilů vytváříme ještě jedu míru ( jde o míru variability ) a to kvartilové rozpětí R q = x,75 - x,5 V ašem případě je R q = 3 8 = 9. Pro hodoty p=,,,9 azýváme takto spočteé kvatily ázvy decily. Pro hodoty p =,,3,,99 azýváme podobě kvatily jako percetily. Pomocí kvartilů je také možo velmi přehledě zázorit data v grafu s ázvem Box Plot. Pomocí ěho můžeme rozdělit data z výběru a vitří, vější a odlehlá. Vytváříme ho ásledujícím způsobem: Základím prvkem grafu je obdélík, jehož hray tvoří hodoty dolího a horího kvartilu uvitř tohoto obdélíku je 5% hodot výběru. Uvitř je svislou čarou vyzače mediá, popř. tečkou průměr ( křížkem modus). Z obdélíku vedou dvě úsečky kolmé k hraám, jejichž délka je dáa vzdáleostí vitřích hradeb od hray obdélíku. Vitří hradby se vypočtou tímto předpisem h D = x,5,5. ( x,75 x,5 ) (4.8) h H = x,75 +,5. ( x,75 x,5 ) (4.9) V ašem případě jsou h D = 8,5. 9 = -8 a h H = 3+,5.9 =5865. Dále se počítají vější hradby H D = x,5.(,5. ( x,75 x,5 )) (4.) H H = x,75 +.(,5. ( x,75 x,5 )) (4.) V ašem případě je H D = 8-3.9= a H H = = 873. Hradby slouží pro idetifikaci dat ve výběru. Hodoty uvitř vitřích hradeb jsou hodoty přilehlé; hodoty mezi vitřími a vějšími hradbami jsou hodoty vější a hodoty vě vějších hradeb jsou hodoty vzdáleé ebo jiak odlehlé. Do grafu se zakresluje i miimum a maximum jako body Jestliže máme data uvedea v třídí tabulce musíme p% kvatil počítat pomocí lieárí iterpolace x p xd p D =, (4.) x x H D H D

8 kde x D je dolí a x H je horí mez itervalu v ěmž leží daý kvatil; D je kumulativí relativí četost odpovídající x D a H je kumulativí relativí četost odpovídající x H.Zjistěme hodotu kvatilu pro áš případ tabulky 4.4: ~ x 5,5,33 = ~ x = 854,67. 5,57,33 Použití mediáu je vhodé při rozděleích s otevřeými třídami, pro ordiálí hodoty, pro velmi symetrická rozděleí Geometrický průměr Provádí se je pro hodoty ve výběru, které jsou kladé. Jeho ozačeí je G a spočítá se jako tá odmocia ze součiu hodot x i. Používáme ho, jak je zřejmé z defiice, a kvatifikovatelé zaky měřeé a poměrové stupici. Používá se k určeí průměré změy velikosti, jestliže předpokládáme, že tato změa je kostatí ( multiplikativě ). G = x. x.. (4.3) L x Harmoický průměr Harmoický průměr H zjistíme jako podíl počtu hodot a součtu převráceých hodot výběru. H = (4.4) xi 4.3. Míry variability Pomocí je měr polohy elze přesě popsat výběr, protože moho dat má stejé ebo přibližě stejé hodoty jedotlivých parametrů měr polohy, přesto jsou a prví pohled odlišé. Na obrázku íže je uvede případ tří skupi dat, která mají stejý průměr, modus, mediá a přesto jsou odlišá. Odlišost vidíme v soustředěí hodot kolem průměru. Toto soustředěí budeme studovat pomocí růzých měr variability.,8,7,6,5,4,3,, Variačí rozpětí Variačí rozpětí R se vypočte jako rozdíl mezi ejvětší a ejmeší hodotou výběru. R = x max x mi (4.5) Pokračujme dále v ašem příkladě, hodota R = = 3

9 Výhodou této míry je jedoduchost určeí a porozuměí. Je však málo stabilí vzhledem k počtu čleů výběru. Používá se proto je u malých výběrů ( ). Výrazě závisí a velikosti výběru. Proto emůžeme mezi sebou porovávat jedotlivé hodoty variačího rozpětí z růzě velkých výběrů. Nedává spolehlivé odhady rozptylu základího souboru Průměrá odchylka Průměrou odchylku e výběru defiujeme jako aritmetický průměr z absolutích hodot odchylek všech hodot výběru od průměru xi x e = (4.6) Uvádíme ji je pro úplost. Je málo stabilí vzhledem k velikosti výběru a dává espolehlivé odhady pro rozptyl Rozptyl a směrodatá odchylka Nejužívaější mírou variability je rozptyl ( resp. směrodatá odchylka ). Pomocí ěho měříme velikost čtverců odchylek jedotlivých hodot výběru od průměru. Ozačujeme ho většiou symbolem s a azýváme ho výběrovým rozptylem s =. ( x i x ), (4.7) i = Všiměme si, že při výpočtu edělíme součet odchylek čtverců hodotou ( jako při defiici klasického rozptylu ), ale hodotou ( azývaou také počtem stupňů volosti ). Je to provedeo proto, že získáme lepší odhad skutečého rozptylu s populace. Výběrová směrodatá odchylka se ozačuje symbolem s a je rova odmociě z výběrového rozptylu s =. ( x i x), (4.8) Pro vlastí výpočet se hodí i jiá forma vzorce (4.7) xi xi s = x x =, i =,, L, (4.9) Použijeme li vzorce a určeí rozptylu pro data z tabulky 4.3 získáme s = 9733,448 a hodota s = 9,8. Jsou li hodoty x i výběru uvedeé včetě četostí i potom přejde vzorec (4.6) a k k s =. i. ( xi x) =. i. xi. x, 4.) kde k je počet všech růzých hodot ve výběru a je celkový počet prvků výběru. Jestliže jsou data uvedea pomocí tříděí do itervalů apř. data z tabulky 4.4, potom většiou hodoty x i zameají středy třídích itervalů a i počet dat v tomto itervalu. Pokud jsou třídí itervaly ekvidistatí ( mají pevou délku ) s rozměrem h bude výpočet podle vzorce (4.) zatíže chybou. Tuto chybu opravujeme pomocí tzv. Sheppardovy korekce h s kor = s (4.)

10 Použijeme li opět aše data z tabulky 4.4 získáme : Nekorigovaé hodoty s = 5 a s =,49; Korigovaé hodoty s kor = 98666,7 a s kor = 99,799. Velmi často astává případ, že celý výběr je z určitých důvodů rozděle do k dílčích částí. V i té části je počet prvků rove i, průměr je rove x i a výběrový rozptyl s i. Potom můžeme počítat celkový výběrový rozptyl s jako k k s =. ( i ). si + i. ( xi x) (4.) Z předchozího vzorce vyplývá, že celkový výběrový rozptyl s můžeme rozložit a dvě části a vitroskupiový a meziskupiový. Vitroskupiovým výběrovým rozptylem sledujeme variabilitu uvitř jedotlivých skupi a meziskupiovým výběrovým rozptylem variabilitu mezi těmito skupiami. Takovéto metody rozděleí celkové variability a ezávislé části budeme dále využívat v části Aalýza rozptylu ( ANOVA ). Výběrový rozptyl ezávisí a zvětšeí či zmešeí všech hodot výběru o kostatu. Jestliže všechy hodoty výběru zvětšíte m - krát, zvětší se výběrový rozptyl m krát. Těchto vlastostí velmi často využíváme pro úpravu původí tabulky dat tím, že všechy hodoty posueme - volba ového počátku a výrazě zmešíme ( zvětšíme ) volba ové jedotky Variačí koeficiet Nechť má výběr čleů s průměrem x a směrodatou odchylkou s. Potom variačí koeficiet výběru v je daý vztahem s v =.% (4.3) x Používáme ho, když chceme porovat variabilitu růzých zaků ve výběru ebo mezi růzými výběry Charakteristiky tvaru rozděleí Výběrová míra šikmosti Jde o číselý údaj, který vypovídá o o souměrosti či esouměrosti tvaru rozděleí. Ozačuje se symbolem a. a = ( x x ) 3 i 3, (4.4) s. kde je počet čleů výběru, s je hodota výběrové směrodaté odchylky, x je průměr a x i je kokrétí hodota výběru. Je li rozděleí souměré, je hodota a =. Rozděleí je tím esousměrější, čím se hodota a více liší od uly. Je li jeho hodota kladá, potom je rozděleí zešikmeo kladě ( ve výběru je větší kocetrace meších hodot ). Je li jeho hodota záporá, potom je zešikmeo záporě (ve výběru je větší kocetrace větších hodot). Pokračujme s aším příkladem, s daty z tabulky 4.3. Níže vidíme data v grafu.

11 Polygo četostí 3,5 3,5,5, Hodota míry šikmosti pro aše hodoty a =. Je tedy kladá a data jsou zešikmea kladě Výběrová míra špičatosti. Tato míra popisuje stupeň kocetrace hodot zaku kolem charakteristiky úrově ( kolem průměru ). Stejé ahuštěí prostředích i krajích hodot vede k plochosti ( hodota míry je potom záporá ), větší ahuštěí prostředích hodot se projevuje špičatostí rozděleí( hodota míry je kladá. Tato míra porovává daé rozděleí s ormovaým ormálím rozděleím N(,) ( má hodotu špičatosti rovu ule ). Vypočte se podle vztahu 4 ( xi x) = 4 b 3, (4.5) s. ozačuje se symbole b. Hodota špičatosti pro aše data z tabulky 4.3 je rova,93. Rozděleí je ploché, což je vidět i z polygou četostí. 4.4 Grafické zobrazeí dat Pro presetaci statistických údajů je velmi působivé používat růzé grafické způsoby. Každý typ grafického zobrazeí hodot má svoje omezeí, ale zároveň i svoje výhody. Kromě klasických typů se k zobrazováí statistických dat hodí speciálí grafy, jede typ jsme už měli možost vidět v části Kvatily a mediá šlo o tzv. Box Plot eboli Krabicový graf. V dalším si ukážeme možé grafy pro presetaci údajů. Běžé grafy 4.4. Bodový graf Zázorňuje hodoty pomocí bodů,většiou v pravoúhlé soustavě. Používá se většiou k zachyceí závislostí právě dvou statistických zaků. Při více ež dvou zacích jeho jedoduchost mizí a stává se méě přehledým. Nelze pomocí ěho vystihout data s větší četostí. Graf 4. velikost ákladů v závislosti a pořadí

12 Náklady Náklady Spojicový graf Jestliže chceme zázorit velké možství hodot, chceme li vystihout průběh časové řady hodí se k tomu více spojicový graf. Používá se také k vyjádřeí předpokladu o spojitosti vyšetřovaého zaku. Jestliže se pomocí ěho vyjadřuje rozložeí absolutích ebo relativích četostí ve výběru, azýváme se polygo četostí. Graf 4. sloupcový graf, vyjadřuje změu ákladů Náklady Po změě Sloupcový graf Sloupcový graf vyjadřuje jedoduché závislosti mezi dvěma hodotami, velmi často jsou jedotlivé prvky výběru seskupováy do tříd. Existuje ěkolik typů těchto grafů klasické sloupcové, sloupcové s procetím rozložeím, trojrozměré sloupcové grafy. Klasická ukázka je uvedea v grafu 4.3 Graf 4.3- rozděleí ákladů do tříd

13 Sloupcový graf četostí četost Histogram Svou defiicí je to sloupcový graf, který se používá k zázorěí absolutích ebo relativích četostí (většiou )spojitého zaku. Sloupce v grafu jsou zásadě vertikálí,šířka sloupce odpovídá velikosti třídy a celková plocha sloupce odpovídá četosti prvků třídy ve výběru Histogram Kruhový graf Zobrazuje hodoty jako výseče v kruhu a tím se zachytí struktura výběru. Předchozí data jsou zobrazea v kruhovém grafu ( koláč, výsečový graf ) takto 9% % 9% 6% 6% % 38% % Speciálí statistické grafy Jedím z užívaých grafických způsobů je dříve uvedeý histogram. V současé době existuje moho profesioálích způsobů presetace statistických dat. V části Kvatily 6%

14 a mediá jsme zavedli velmi užitečý typ Box Plot český ekvivalet ázvu je Krabicový graf. Statistických grafů existuje velké možství, zaměříme se a ěkteré speciálí Kvatilový graf Jde typ grafu, kterým můžeme přehledě zázorit data, porovat je se zámými rozděleími, ajít vybočující hodoty atd. Na osu x aášíme pořadovou pravděpodobost teoretického rozděleí, a osu y skutečé kvatily daých dat. Na grafu íže je uvedeo porováí výběru s N(,). Data se s hodotami teoretického rozděleí eshodují, zjevě 3 - N(,) výběr - -3,,4,6,8 vybočují a krajích. Teto typ grafu se velmi často užívá pro prví porováí údajů především s ormálím ormovaým rozděleím. Dříve se k takovému porováí používal tzv. pravděpodobostí papír, des ho provádíme s pomocí počítače. Mezi základí statistická vyšetřováí patří rozhodutí, zda daý výběr patří ebo epatří k rozdělím symetrickým. K takovému rozhodutí ám pomáhá ásledující typ grafu: Graf polosum Jeho kostrukce je založea a myšlece, že u symetrického rozděleí je aritmetický průměr kvatilu p% a kvatilu (-p)% stejý a je rove mediáu. Níže je uvede daý graf pro data vyšetřovaá v předchozí části. Symetrická rozděleí jsou tedy charakterizováa přímkou y= x%. Celkově je zřejmé,že data pochází ze symetrického rozděleí

15 4.4.8 Graf symetrie Pomocí tohoto grafu je možo sledovat zak symetrie výběru. Na osu x aášíme u P hodoty i i pro Pi = a a osu y stejé hodoty jako u předchozího grafu tedy hodoty + ( x x ) ( + i) ( i) osa x 5,37 5,,7,,7,3,37 Opět je zřejmé, že hodoty výběru jsou symetrické, s výjimkou krajích hodot. Pomocí dalšího grafu je možo srovávat parametr špičatosti s rozděleím N(,) Graf špičatosti Za předpokladu symetrie je pro ormálí rozděleí grafem přímka. Pokud leží body a přímce s eulovou směricí, je hodota této směrice odhadem výběrového parametru špičatosti. Opět je zřejmé, že data odpovídají symetrii, avíc můžeme z grafu odhadout výběrovou špičatost.,4,35,3,5,,5,,5 4, 4, 4,3 4,4 4,5 4,6

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

Příklady k přednášce 9 - Zpětná vazba

Příklady k přednášce 9 - Zpětná vazba Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

ANALÝZA SRÁŽKOVÝCH MAXIM

ANALÝZA SRÁŽKOVÝCH MAXIM Rožovský, J., Litschma, T. (ed): Semiář Extrémy počasí a podebí, Bro,. březa 4, ISBN 8-8669-2- Marie Budíková, Ladislav Budík Summary Aalysis of precipitatio maxima ANALÝZA SRÁŽKOVÝCH MAXIM Database of

Více

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 2. část. Ing. Danuše Mlčková

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 2. část. Ing. Danuše Mlčková Středí průmslová škola zeměměřická GEODETICKÉ VÝPOČTY. část Ig. Dauše Mlčková Úvod Tet avazuje a. část, je urče pro studet. až 4. ročíku středích průmslových škol se zaměřeí a geodézii. Jedá se o přepracovaou

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

3.1 OBSAHY ROVINNÝCH ÚTVARŮ

3.1 OBSAHY ROVINNÝCH ÚTVARŮ 3 OBSAHY ROVINNÝCH ÚTVARŮ Představa obsahu roviého obrazce byla pro lidi důležitá od pradávých dob ať již se jedalo o velikost a přeměu polí či apříklad rozměry základů obydlí Úlohy a výpočet obsahu základích

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ Vlastosti úloh celočíselého programováí VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ PRINCIP ZESILOVÁNÍ NEROVNOSTÍ A ZÁKLADNÍ METODY. METODA VĚTVENÍ A HRANIC. TYPY ÚLOH 1. Úloha lieárího programováí: max{c

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

3 - Póly, nuly a odezvy

3 - Póly, nuly a odezvy 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud

Více

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla

Více

Obsah. Opravy pro toto vydání: opravy2.proflakace.cz

Obsah. Opravy pro toto vydání: opravy2.proflakace.cz Obsah Úvod... 5 Základí pojmy... 7. Tříděí dat... 7. Míry úrově polohy... 8.3 Míry variability... 8 Počet pravděpodobosti.... Průik a sjedoceí jevů.... Náhodá veličia... 6.3 Rozděleí áhodé veličiy... 8

Více

Variabilita měření a statistická regulace procesu

Variabilita měření a statistická regulace procesu Variabilita měří a statistická rgulac procsu Ig. Darja Noskivičová, CSc. Katdra kotroly a řízí jakosti, VŠB-TU Ostrava Abstrakt: Efktivost využití statistických mtod pro aalýzu a řízí procsů j odvislá

Více

Máme dotazníky. A co dál? Martina Litschmannová

Máme dotazníky. A co dál? Martina Litschmannová Máme dotazíy. A co dál? Martia Litschmaová. Úvod S dotazíy se setáváme běžě. Vídáme je v oviách, v časopisech, jsou součásti evaluačích zpráv (sebehodoceí šol, ), výzumých zpráv, Využívají se v sociologii,

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

Statistika. Poznámky z přednášek

Statistika. Poznámky z přednášek Statistika Pozámky z předášek Materiál obsahuje pozámky ze předášek plus to co se musíme doučit včetě ukázkových příkladů, které se objevily a předášce, ebo z aplikace etstorage. J.T. OBSAH Úvodí stráka

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Diskrétní matematika

Diskrétní matematika Diskrétí matematika Biárí relace, zobrazeí, Teorie grafů, Teorie pravděpodobosti Diskrétí matematika látka z I semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia Obsah Biárí relace2

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více