Dynamický výpočet vačkového hřídele Frotoru

Rozměr: px
Začít zobrazení ze stránky:

Download "Dynamický výpočet vačkového hřídele Frotoru"

Transkript

1 Zápočeská univerzit v Plzni Fkult plikovných vě Kter mechniky ynmický výpočet včkového hříele Frotoru Výzkumná zpráv č. 5//7 Řešitel: oc. r. Ing. Jn upl Plzeň, únor 7

2 Úvo: Cílem přeložené zprávy je vyšetření kinemticko-geometrických poměrů n loptkách vzuchového stroje náslený ynmický výpočet nmáhání včkového hříele v jenotlivých rozhrních mezi uchyceními loptek n hříeli. Pro prověření různých vrint návrhu byl vytvořen prmetrický moel příslušné progrmové vybvení pro zobrzení tvru vzuchové komory nimci pohybu loptek ve vzuchové komoře. To znmená, že připrvený progrmový moul umožňuje opertivně regovt n kvntittivní změny vstupních prmetrů, jkými jsou npř. počet párů loptek, poloměr říicí kružnice (kružnice, po které se pohybují střey loptek), élky loptek, otáčky, élky pouzer loptek hmotnost loptek t. Geometrie včkového hříele Obr. N obr. je znázorněn včkový hříel vzuchového stroje, jehož excentricky umístěné válcové včky unášejí střey loptek tk, že jeen pár loptek má střey hmotnosti vžy nvzájem n opčné strně říicí kružnice kžý pár loptek je v nvzájem kolmé poloze viz obr.. Kinemtické poměry mezi pohybem střeu otáčením loptky jsou nstveny tk, že úhlová rychlost střeu je vkrát větší, než úhlová rychlost ruhotné rotce loptky. N obr. je zeleně znázorněn trjektorie koncových boů loptek tvořící konchoiu moře kružnice se střeem v prvém krjním bou říicí kružnice poloměrem rovným élce poloviny loptky.

3 Obr. opovíá rozměrům: Obr.. m polovin élky loptky. m poloměr říicí kružnice (nejmenší kružnice n obr. ) * poloměr rotoru unášejícího loptky (prostření kružnice n obr. ) poloměr největší kružnice n obr. (snhou je, by se konchoi co nejvíce blížil kružnici ovnice říicí kružnice, která má n obr. 3 poloměr, určíme jko trjektorii (prmetricky závislý riusvektor - prmetrem je úhel ) bou E, který opovíá střeu loptky. ovnice konchoiy se snno určí pole obr. 3, protože opovíá trjektorii bou A.

4 Obr. 3 Trjektorie všech význmných boů n obr. 3 se mohou npst ve tvru: A r, B r, C r, r.. E r Pro kreslení nimci pohybu jené loptky byl zprcován jenouchý progrmový moul nim.m, který je vylistován n násleujících řákách. % nim.m % progrmek pro kresleni trjektorie koncoveho bou vzuchoveho stroje Fi:pi/:4*pi;.;.; %.;

5 %.5; %4*; -*; k; hol off MAMAmoviein(length(Fi)); for fifi kk; xk*(fi); yk*(fi); x*(fi); y*(fi); plot(xk,yk) xis([ ]) xis('equl') hol on x*(fi)*(fi/); y*(fi)*(fi/); x*(fi)-*(fi/); y*(fi)-*(fi/); plot(x,y,'bo') vekx[x x]; veky[y y]; plot(vekx,veky,'r') xkonch*(fi)*(fi/); ykonch*(fi)*(fi/); plot(xkonch,ykonch,'g') xkruz*(fi); ykruz*(fi); xkruz*(fi); ykruz*(fi); plot(xkruz,ykruz,'b') xstr*(fi)-; ystr*(fi); plot(xstr,ystr,'b') xis([ ]) MAMA(:,k)getfrme; hol off en movie(mama,5); Jen pozice loptky při nimci je znázorněn n obr. 4

6 Obr. 4 Konchoi vžy nemusí být tk blízká křivk kružnici. N obr. 5 je npř. znázorněn zeleně konchoi pro. m, přičemž osttní veličiny mjí zchovné honoty jko n obr Obr. 5

7 Tento příkl všk slouží jen jko ukázkový nemá prktický význm. N obr., 3 5 je vžy vykreslen jen jeen pár loptek. Pro nimci pohybu jenoho páru loptek slouží progrmový moul nim.m, který je zprcován v prostřeí MATLAB je vylistován n násleujících řákách. % nim.m % vzuchovy stroj % progrmek pro nimci pohybu vou priruzenych loptek Fi:pi/:4*pi;.;.; -*; k; hol off MAMAmoviein(length(Fi)); for fifi kk; xk*(fi); yk*(fi); plot(xk,yk) xis([-3/* 3/* -3/* 3/*]) xis('equl') hol on x*(fi); y*(fi); x-x; y-y; x*(fi)*(fi/); y*(fi)*(fi/); x*(fi)-*(fi/); y*(fi)-*(fi/); x-*(fi)*(fi/); y-*(fi)-*(fi/); x3-*(fi)-*(fi/); y3-*(fi)*(fi/); vekx[x x]; veky[y y]; plot(vekx,veky,'r') plot(x,y,'bo') plot(x,y,'bo') vekx[x x3]; veky[y y3]; plot(vekx,veky,'r') xkonch*(fi)*(fi/); ykonch*(fi)*(fi/); plot(xkonch,ykonch,'g') xkruz*(fi); ykruz*(fi); xkruz*(fi); ykruz*(fi); plot(xkruz,ykruz,'b') xstr*(fi)-; ystr*(fi); plot(xstr,ystr,'b') xis([-3/* 3/* -3/* 3/*]) MAMA(:,k)getfrme; hol off en movie(mama,5);

8 Protože všechny prmetry včkového hříele jsou volitelné tuíž i počet párů loptek n, byl pro tento účel zprcován moul nim.m, který slouží k nimci pohybu včkového hříele s volitelným počtem párů loptek. Tento moul je vylistován n násleujících řákách. % nim.m % vzuchovy stroj % progrmek pro nimci pohybu vou priruzenych loptek Fi:pi/:4*pi;.;.; -*; %.5; % velmi zjimve %*; % myslim, ze je to krioi % pocet vojic loptek n; k; hol off MAMAmoviein(length(Fi)); for fifi kk; xk*(fi); yk*(fi); plot(xk,yk) xis([-3/* 3/* -3/* 3/*]) xis('equl') hol on for fifi:pi/n:fi(n-)*pi/n x*(fi); y*(fi); x-x; y-y; x*(fi)*(fi/); y*(fi)*(fi/); x*(fi)-*(fi/); y*(fi)-*(fi/); x-*(fi)*(fi/); y-*(fi)-*(fi/); x3-*(fi)-*(fi/); y3-*(fi)*(fi/); vekx[x x]; veky[y y]; plot(vekx,veky,'r') plot(x,y,'bo') plot(x,y,'bo') vekx[x x3]; veky[y y3]; plot(vekx,veky,'r') en xkonch*(fi)*(fi/); ykonch*(fi)*(fi/); plot(xkonch,ykonch,'g') xkruz*(fi);

9 ykruz*(fi); xkruz*(fi); ykruz*(fi); plot(xkruz,ykruz,'b') xstr*(fi)-; ystr*(fi); plot(xstr,ystr,'b') xis([-3/* 3/* -3/* 3/*]) MAMA(:,k)getfrme; hol off en movie(mama,5); Jen poloh stroje pro počet párů loptek n je znázorněn n obr Obr. 6 N všech obrázcích mlé kružnice ležící prvielně rozloženy n obvou říící kružnice jsou pohybující se střey loptek. Kyby se ostřeivé síly o vojic loptek přenášely n včkový hříel v jené rovině (kolmé n osu včkového hříele), pk by se tyto síly o loptek v páru nvzájem vyrušily v přípě rovnoměrné rotce, ky včkový hříel i excentrický buben konjí rovnoměrnou rotci, by neocházelo ke smykovému ohybovému nmáhání včkového hříele. Pk by mteriál byl nmáhán jen elementárními ostřeivými silmi. Protože se všk ostřeivé síly o jenoho páru loptek nepřenáší n včkový hříel v jené rovině, vzniká o kžého páru loptek vojice sil. Tto vojice sil má svoji opčnou prtnerku n ruhé strně hříele (včkový hříel je symetrický pole jené roviny kolmé n jeho osu), tkže výslený moment vymizí, všk tyto vě vojice nmáhjí svým ohybovým smykovým účinkem včkový hříel.

10 Silové poměry n včkovém hříeli N obr. 7 jsou znázorněny setrvčné účinky, které se přenášejí z loptek n včkový hříel. oviny, ve kterých působí setrvčné síly o jenotlivých párů loptek, jsou nvzájem π pootočeny o úhel, ke, jk už bylo uveeno, n je počet párů loptek. Čísl n u kótovcích čr nprvo v obrázku znčí číslo páru loptek polovin élky oznčená příslušnou kótou opovíá élce pouzr jené loptky, která ptří mezi vstupní prmetry opovíjícího softwru. Přepokláá se, že élky pouzer jenotlivých loptek jsou stejné. ruhá svislá ř čísel zprv obshuje čísl rozhrní (opovíjí místům, ve kterých bueme vyhonocovt ohybový moment smykovou sílu. Počet rozhrní je roven p r n. Z přepoklu, že je celý stroj vyvážen, pltí, že celková setrvčná síl setrvčná vojice působící n včkový hříel je rovn nule tuíž i rekce ve vzbách ložisek jsou nulové (vlstní tíhu znebáváme). Pk, jk je zřejmé z obr. 7, smyková síl v suých rozhrních je nulová. Setrvčné účinky působící n jenu loptku stnovíme pomocí záklního rozklu n unášivý pohyb posuvný (stře hmotnosti se pohybuje konstntní rychlostí v ω po kružnici o poloměru ) ruhotný rotční pohyb konstntní úhlovou rychlostí ω okolo střeu hmotnosti. Symbolem ω je oznčen úhlová rychlost včkového hříele, která je vojnásobná oproti úhlové rychlosti loptkového bubnu. Z toho plyne, že jeiný setrvčný účinek působící n jenu loptku je ostřeivá síl mω působící ve střeu hmotnosti kžé loptky. Výslené smykové síly momenty působící v c r -tém rozhrní vzniknou sumcí všech příslušných sil momentů působících n levé strně o tohoto rozhrní. men jenotlivých sil se vypočtou pole jenouchého přepisu r / pro c r i cr i, i,,..., cr, pro c r, 3,..., n. Pltnost uveených vzthů je možno okázt jenouchým oszením. Jko příkl si uveďme stroj se 6 páry loptek výpočet smykových sil momentů v rozhrní. Jenotlivé honoty prmetrů jsou násleující: n ot 6 / min otáčky včkového hříele m. kg hmotnost jené loptky T. s celková ob sleování ěje t. s čsový krok. 5 m polovin élky pouzr loptky n 6 počet párů loptek c 8, 9 čísl rozhrní r N obr. 8 jsou znázorněny průběhy ohybových momentů smykových sil v rozhrní 8. Jk bylo výše uveeno, smykové síly jsou v suých rozhrních rovny nule ohybové momenty jsou fázově posunuty. r

11 [( n ) ] [ ( n ) ] [ ( n ) ] [ ( n ) ] n 6 n 5 n 4 n 3 ( n ) n Obr. 7

12 4 Moment My 4 Moment Mz [Nm] [Nm] Cs [s] Smykov sil Sy Cs [s] Smykov sil Sz.5 [N] [N] Cs [s] -.5. Cs [s] Obr. 8 N obr. 9 jsou znázorněny tytéž veličiny v rozhrní 9 4 Moment My 4 Moment Mz [Nm] [Nm] Cs [s] Smykov sil Sy Cs [s] Smykov sil Sz 5 [N] [N] Cs [s] Cs [s] Obr. 9

13 V rozhrní 9 jsou smykové síly nenulové jsou tké fázově posunuty. Progrmový moul umožňující výpočet ohybových momentů smykových sil se nzývá nmh.m. Pro zobrzení průběhů momentů smykových sil v závislosti n otáčkách byl zprcován moul nmh.m, který tuto závislost zobrzuje jko plochy. Pro ukázku jsou tyto závislosti zobrzeny n obr. -3 Prubeh My v 9 -em rozhrni poel csove osy pro ruzne otcky Cs [s]. 4 Otcky n/min Obr. Prubeh Mz v 9 -em rozhrni poel csove osy pro ruzne otcky Cs [s]. 4 Otcky n/min Obr.

14 Prubeh Sy v 9 -em rozhrni poel csove osy pro ruzne otcky Cs [s]. 4 Otcky n/min Obr. Prubeh Sz v 9 -em rozhrni poel csove osy pro ruzne otcky Cs [s]. Otcky n/min Obr. 3

15 Závěr Přeložená zpráv uváí použitou metoiku pro řešení kinemtických poměrů n včkovém hříeli loptkách s příslušným progrmovým vybvením včetně nimce pohybu. Toto progrmové vybvení opovíá prmetrickému moelu, ke vstupní prmetry se mohou libovolně měnit umožňuje posouzení vhonosti konstrukčního návrhu vzuchového stroje. V ruhé části je obsžen příslušná metoik progrmové vybvení pro určení vnitřních účinků, jko jsou smykové síly ohybové momenty včetně plikcí. eference [] Výkresová okumentce ptentový návrh vzuchového stroje Frotor.

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312 .. Vzálenost bou o přímk II Přepokl: Pegogiká poznámk: Průběh hoin honě závisí n tom, jk oolní jsou stuenti v oszování o vzorů, které je nejtěžší částí hoin. Dlším problémem pk mohou být rovnie s bsolutní

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité

Více

Příklad 33 : Energie elektrického pole deskového kondenzátoru. Ověření vztahu mezi energií, kapacitou a veličinami pole.

Příklad 33 : Energie elektrického pole deskového kondenzátoru. Ověření vztahu mezi energií, kapacitou a veličinami pole. Přík 33 : Energie eektrického poe eskového konenzátoru. Ověření vzthu mezi energií, kpcitou veičinmi poe. Přepokáné znosti: Eektrické poe kpcit eskového konenzátoru Přík V eskovém konenzátoru je eektrické

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ h Předmět: Ročník: Vytvořil: Dtum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 11. SRPNA 2013 Název zprcovného celku: SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ Ke sloţenému nmáhání dojde tehdy, vyskytnou-li se součsně

Více

Stanovení kritických otáček vačkového hřídele Frotoru

Stanovení kritických otáček vačkového hřídele Frotoru Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra mechaniky Stanovení ických otáček vačkového hřídele Frotoru Řešitel: oc. r. Ing. Jan upal Plzeň, březen 7 Úvod: Cílem předložené zprávy je

Více

6 Řešení soustav lineárních rovnic rozšiřující opakování

6 Řešení soustav lineárních rovnic rozšiřující opakování 6 Řšní soustv linárníh rovni rozšiřujíí opkování Tto kpitol j rozšiřujíí ěžné učivo. Poku uvné mtoy zvlánt, zkrátí vám to čs potřný k výpočtům. Nní to všk učivo nzytné, řšit soustvy linárníh rovni lz i

Více

Průřezové charakteristiky základních profilů.

Průřezové charakteristiky základních profilů. Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové

Více

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006 8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie 9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu

Více

m n. Matice typu m n má

m n. Matice typu m n má MATE ZS KONZ B Mtice, hodnost mtice, Gussův tvr Mtice uspořádné schém reálných čísel: m m n n mn Toto schém se nzývá mtice typu m řádků n sloupců. m n. Mtice typu m n má Oznčujeme ji A, B,někdy používáme

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

Zlomky závěrečné opakování

Zlomky závěrečné opakování 2.2. Zlomky závěrečné opkování Přepokly: 02022 Př. : Vypočti. ) + b) 8 2 4 0 c) 2 4 2 : : 4 24 ) 2 22 4 2 2 9 + 0 9 ) + = + = = 8 2 8 2 2 24 24 8 = 4 2 2 = 4 4 2 4 2 b) 0 = = = 2 4 8 2 4 4 c) 4 2 4 24

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

Kuličkové šrouby a matice - ekonomické

Kuličkové šrouby a matice - ekonomické Kuličkové šrouby a matice - ekonomické Tiskové chyby, rozměrové a konstrukční změny vyhrazeny. Obsah Obsah 3 Deformační zatížení 4 Kritická rychlost 5 Kuličková matice FSU 6 Kuličková matice FSE 7 Kuličková

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.1.Hřídele a čepy HŘÍDELE A ČEPY Hřídele jsou základní strojní součástí válcovitého tvaru, která slouží k

Více

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x. KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Trojkloubový nosník. Rovinné nosníkové soustavy

Trojkloubový nosník. Rovinné nosníkové soustavy Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Kter stvení mehniky Fkult

Více

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34. I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 12

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 12 Fkult strojního inženýrství VUT v Brně Ústv konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přenášk Spojky brzy Tim ws so lerne tht he coul nme horse in nine lnguges; so ignornt tht he bought cow to

Více

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál) Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh

Více

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}? 1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Opkování

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

1.2.7 Sbírka příkladů - vozíčky

1.2.7 Sbírka příkladů - vozíčky 7 Sbírk příkldů - vozíčky Předpokldy: 06 Při řešení vozíčků určujeme dvě veličiny: zrychlení soustvy, síly, kterými provázky působí n jednotlivé předměty F Zrychlení soustvy určíme pomocí NZ ze vzorce

Více

Matematické metody v kartografii

Matematické metody v kartografii Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Rovinné nosníkové soustavy

Rovinné nosníkové soustavy Stvení sttik, 1.ročník kominovného stui Rovinné nosníkové soustvy Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Gererův nosník Trojklouový rám Trojklouový rám s táhlem Kter

Více

5.2.4 Kolmost přímek a rovin II

5.2.4 Kolmost přímek a rovin II 5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k

Více

8. Elementární funkce

8. Elementární funkce Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne

Více

SPOJE OCEL-DŘEVO SE SVORNÍKY NEBO KOLÍKY

SPOJE OCEL-DŘEVO SE SVORNÍKY NEBO KOLÍKY SPOJE OCEL-DŘEVO SE SVORNÍKY NEBO KOLÍKY Charakteristická únosnost spoje ocel-řevo je závislá na tloušťce ocelových esek t s. Ocelové esky lze klasiikovat jako tenké a tlusté: t s t s 0, 5 tenká eska,

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

6. Setrvačný kmitový člen 2. řádu

6. Setrvačný kmitový člen 2. řádu 6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické

Více

9 Aeroelastické jevy {E}

9 Aeroelastické jevy {E} 9 Aeroelstické jevy {E} 9.1 Otrhávání vírů {E.1} Při otékání konstrukce ve tvru štíhlého válce ochází z určitých pomínek k prvielnému otrhávání vírů o průřezu střívě n opčných strnách konstrukce. Konstrukce

Více

Konstrukční uspořádání koleje

Konstrukční uspořádání koleje Konstrukční uspořádání koleje Otto Plášek, doc. Ing. Ph.. Ústv železničních konstrukcí stveb Tto prezentce byl vytvořen pro studijní účely studentů. ročníku mgisterského studi oboru Geodézie krtogrfie

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia Stavební statika, 1.ročník bakalářského stuia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katera stavební mechaniky Fakulta stavební, VŠB - Technická univerzita

Více

4.5.5 Magnetické působení rovnoběžných vodičů s proudem

4.5.5 Magnetické působení rovnoběžných vodičů s proudem 4.5.5 Magnetické působení rovnoběžných voičů s prouem Přepoklay: 4502, 4503, 4504 Př. 1: Dvěma velmi louhými svislými voiči prochází elektrický prou. Rozhoni pomocí rozboru magnetických inukčních čar polí

Více

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load 7..0 Protlačení Je jev, ke kterému ochází při působení koncentrovaného zatížení na malé ploše A loa PROTLAČENÍ A loa A loa A loa Zatěžovací plochu A loa obyčejně přestavuje kontaktní plocha mezi sloupem

Více

Vzdálenosti přímek

Vzdálenosti přímek 5..11 Vzdálenosti přímek Předpokldy: 510 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled

Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled řijímí řízení kemiký rok / Kompletní znění testovýh otázek mtemtiký přehle Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které číslo oplníte

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

Vzdálenosti přímek

Vzdálenosti přímek 5..1 Vzdálenosti přímek Předpokldy: 511 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy

Více

Diferenciální počet. Spojitost funkce

Diferenciální počet. Spojitost funkce Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

II. 5. Aplikace integrálního počtu

II. 5. Aplikace integrálního počtu 494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu

Více

STACIONÁRNÍ MAGNETICKÉ POLE

STACIONÁRNÍ MAGNETICKÉ POLE Příklay: 1. Přímý voič o élce 0,40 m, kterým prochází prou 21 A, leží v homogenním magnetickém poli kolmo k inukčním čarám. Velikost vektoru magnetické inukce je 1,2 T. Vypočtěte práci, kterou musíme vykonat

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

F9 SOUSTAVA HMOTNÝCH BODŮ

F9 SOUSTAVA HMOTNÝCH BODŮ F9 SOUSTAVA HMOTNÝCH BODŮ Evopský sociální fon Ph & EU: Investujee o vší buoucnosti F9 SOUSTAVA HMOTNÝCH BODŮ Nyní se nučíe popisovt soustvu hotných boů Přepokláeje, že áe N hotných boů 1,,, N N násleující

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více

Vedení vvn a vyšší parametry vedení

Vedení vvn a vyšší parametry vedení Veení vvn a vyšší parametry veení Při řešení těchto veení je třeba vzhleem k jejich élce uvažovat nejenom opor veení R a inukčnost veení L, ale také kapacitu veení C. Svo veení G se obvykle zanebává. Tyto

Více

Nadměrné daňové břemeno

Nadměrné daňové břemeno Nměrné ňové břemeno Nměrné ňové břemeno je efinováno jko ztrát přebytku spotřebitele přebytku výrobe, ke kterému ohází v ůsleku znění. Něky se tož nzývá jko ztrát mrtvé váhy. Připomenutí: Přebytek spotřebitele:

Více

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami: Truhlář Michl 3 005 Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26 Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz

Více

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)

Více

Měření tíhového zrychlení reverzním kyvadlem

Měření tíhového zrychlení reverzním kyvadlem 43 Kapitola 7 Měření tíhového zrychlení reverzním kyvadlem 7.1 Úvod Tíhové zrychlení je zrychlení volného pádu ve vakuu. Závisí na zeměpisné šířce a nadmořské výšce. Jako normální tíhové zrychlení g n

Více

Vzorová řešení čtvrté série úloh

Vzorová řešení čtvrté série úloh FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce

Více

( a) Okolí bodu

( a) Okolí bodu 0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně Konzultace č. 9 dynamika dostředivá a odstředivá síla Dynamika zkoumá zákonitosti pohybu těles se zřetelem na příčiny (síly, silové účinky), které pohyb vyvolaly. Znalosti dynamiky umožňují řešit kinematické

Více

6. Určitý integrál a jeho výpočet, aplikace

6. Určitý integrál a jeho výpočet, aplikace Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,

Více

STEJNOSMĚRNÉ STROJE. Určeno pro posluchače bakalářských studijních programů. 1. Úvod

STEJNOSMĚRNÉ STROJE. Určeno pro posluchače bakalářských studijních programů. 1. Úvod 1. Úvod Stejnosměrné stroje jsou historicky nejstršími elektrickými stroji nejprve se používly jko generátory pro výrobu stejnosměrného proudu. V řdě technických plikcí byly tyto V součsné době se stejnosměrné

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon Peter Dourmashkin MIT 26, překla: Jan Pacák (27) Obsah 5 AMPÉRŮV ZÁKON 3 51 ÚKOLY 3 52 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ 3 ÚLOHA 1: VÁLCOVÝ PLÁŠŤ

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5. Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou

Více

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5. 10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

Rovinné nosníkové soustavy III Příhradový nosník

Rovinné nosníkové soustavy III Příhradový nosník Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená

Více

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice 59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

ANALYTICKÁ GEOMETRIE

ANALYTICKÁ GEOMETRIE Technická niverzit v Liberci Fklt přírodovědně-hmnitní pedgogická Ktedr mtemtiky didktiky mtemtiky NLYTICKÁ GEOMETRIE Pomocný čební text Petr Pirklová Liberec, listopd 2015 NLYTICKÁ GEOMETRIE LINEÁRNÍCH

Více

třecí síla (tečná vazba podložky) F normálová reakce podložky výsledná reakce podložky Podmínky rovnováhy:

třecí síla (tečná vazba podložky) F normálová reakce podložky výsledná reakce podložky Podmínky rovnováhy: SPŠ VOŠ KLADO SAIKA - PASIVÍ ODPORY PASIVÍ ODPORY Při vzájemném pohybu těles vznikjí v reálných vzbách psivní odpory, jejichž práce se mění v teplo. Psivní odpory předstvují ztráty, které snižují účinnost

Více

Černá díra. Pavel Provinský. 4. března 2013

Černá díra. Pavel Provinský. 4. března 2013 Černá íra Pavel Provinský 4. března 203 Nezakřivené sférické souřanice Využijme získané poznatky na jenom velmi zajímavém příklaě, totiž výpočtu černé íry. Bueme uvažovat tzv. Schwarzschilovu černou íru,

Více

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice 59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní

Více

Spojitost funkce v bodě, spojitost funkce v intervalu

Spojitost funkce v bodě, spojitost funkce v intervalu 10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí

Více

POHYB SPLAVENIN. 8 Přednáška

POHYB SPLAVENIN. 8 Přednáška POHYB SPLAVENIN 8 Přenáška Obsah: 1. Úvo 2. Vlastnosti splavenin 2.1. Hustota splavenin a relativní hustota 2.2. Zrnitost 2.3. Efektivní zrno 3. Tangenciální napětí a třecí rychlost 4. Počátek eroze 5.

Více

Schéma podloží pod základem. Parametry podloží: c ef c d. třída tloušťka ɣ E def ν β ϕef

Schéma podloží pod základem. Parametry podloží: c ef c d. třída tloušťka ɣ E def ν β ϕef Příkla avrhněte záklaovou esku ze ŽB po sloupy o rozměru 0,6 x 0,6 m a stanovte max. provozní napětí záklaové půy. Zatížení a geometrie le orázku. Tloušťka esky hs = 0,4 m. Zatížení: rohové sloupy 1 =

Více

Digitální učební materiál

Digitální učební materiál Digitální učení mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitnění výuky prostřednictvím ICT Číslo název šlony klíčové ktivity III/ Inovce zkvlitnění výuky prostřednictvím ICT Příjemce

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ

4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ 4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ Měřicí potřeby 1 helium-neonový laser měrná obélníková štěrbina 3 stínítko s měřítkem 4 stínítko s fotočlánkem 5 zapisovač Obecná část Při opau rovinné monochromatické

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

2.1 - ( ) ( ) (020201) [ ] [ ]

2.1 - ( ) ( ) (020201) [ ] [ ] - FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé

Více

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8 Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS STEJNOSĚRNÉ STROJE Určeno pro posluchče bklářských studijních progrmů FS 1. Úvod 2. Konstrukční uspořádání 3. Princip činnosti stejnosměrného stroje 4. Rozdělení stejnosměrných strojů 5. Provozní vlstnosti

Více

Konečný automat Teorie programovacích jazyků

Konečný automat Teorie programovacích jazyků Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více