Testování statistických hypotéz

Rozměr: px
Začít zobrazení ze stránky:

Download "Testování statistických hypotéz"

Transkript

1 Testováí statstckých hyotéz Př statstckých šetřeích se často setkáváme s roblémy tohoto druhu () Máme zjstt, zda dva daé vzorky ocházejí z téhož ZS. () Máme rozhodout, zda rozdíly hodot růměrů (res. roztylů) dvou vzorků áhodě vybraých z téhož ZS jsou áhodě vysvětltelé ebo je říča systematckého charakteru. () Máme rozhodout, zda tvar emrckého rozděleí četostí získaého a základě vzorku s velkým rozsahem a řomíajícího jsté rozděleí je možo ovažovat za řblžě rový teoretckému rozděleí a s jakou solehlvostí. Tyto roblémy se řeší metodou testů statstckých hyotéz.

2 Statstcká hyotéza Statstckou hyotézou rozumíme každý ředoklad o ezámé vlastost rozložeí základího souboru. Statstcké testy Prověřovaá statstcká hyotéza se obvykle azývá ulová. Prot ulové hyotéze stavíme alteratví hyotézu. Krtera, která slouží k rověřováí ulové hyotézy, se azývají statstcké testy, oř. testy výzamost. Testovací krterum Testovací krterum je statstka (fukce áhodého výběru mající vztah k ulové hyotéze), jejíž rozděleí za ředokladu latost ulové hyotézy záme. Pozámka Z tohoto rozděleí dokážeme určt krtcké hodoty testovacího krtera (a hladě výzamost ), které určují obor raktcky možých hodot, v chž je - st realzace testovacího krtera velká (rova -), od krtckých oborů, v chž je realzace testovacího krtera málo ravděodobá (rova ). Př realzac testovacího krtera v krtckých oborech ulovou hyotézu zamítáme, jak j řjímáme (a zvoleé hladě výzamost ).

3 Výsledek testu Porováí hodoty testovacího krtéra s jeho krtckým hodotam slouží k rozhodutí o výsledku testu. Musíme s uvědomt, že emůžeme mluvt o dokazováí srávost č esrávost zvoleé hyotézy - to eí v možostech statstcké dukce. Závěr testu ouze rozhode mez dvěma možostm hyotézu řjímáme (zamítáme alteratví hyotézu), leží-l ozorovaá hodota testovacího krtéra v tervalu raktcky možých hodot. Zameá to, že rozdíl mez ozorovaou a teoretckou hodotou testovacího krtéra je vysvětltelý a daé hladě výzamost áhodostí výběru. hyotézu zamítáme (řjímáme alteratví hyotézu), leží-l ozorovaá hodota testovacího krtéra v krtckém oboru. Rozdíly ovažujeme za statstcky výzamé a zvoleé hladě výzamost, tz., že se edají vysvětlt ouze áhodostí výběru.

4 Staoveí hyotéz Př testováí statstckých hyotéz rot sobě stavíme testovaou tzv. ulovou hyotézu a alteratví hyotézu, která ulovou hyotézu oírá. Staoveí hyotéz a ostu testováí vysvětlíme a testu arametru Θ. Testovaou hyotézu zasujeme ve tvaru rovost Θ =Θ, kde Θ R je očekávaá (testovaá) hodota testovaého arametru Θ. Alteratví hyotézu formulujeme zravdla ve tvaru jedoduchá Θ Θ, ravostraá Θ >Θ, levostraá Θ <Θ. Alteratví hyotéza je zvolea v kotextu s ožadavky řešeého roblému a určuje krtéra ro zamítutí č ezamítutí testovaé hyotézy.

5 Závěr testu Rozhodováí o latost ulové hyotézy se rovádí a základě osouzeí statstky t, zvaé testovací krtérum a její říslušost do možy říustých hodot V α ebo do tzv. krtckého oboru (tj. oboru hodot eříustých) W = R V. Krtcký obor vymezuje terval hodot testovacího krtéra, které jsou vzhledem k testovaým hyotézám málo ravděodobé a vedou tedy k zamítutí ve rosěch. Krtcký obor je defová ro jedoduchou Wα = { t t < td t > t }, kde Pt ( < td) = Pt ( > t) = α /, ravostraou W = { t t > α t }, kde Pt ( > t ) = α, levostraou W = { t t < α t D }, kde Pt ( < t ) D = α. α α Pokud je t W α, je mez testovaou hodotou Θ arametru Θ a jejím odhadem řílš velký rozdíl. Pravděodobost latost ulové hyotézy je velm ízká, roto je ulová hyotéza zamítuta a řjata alteratví hyotéza. Pokud t V α, ak ulovou hyotézu eí možo zamítout, tj. řouštíme latost.

6 Běžě se uvádí () Pokud eí ulová hyotéza zamítuta a hladě výzamost =.5, ovažuje se rozdíl mez teoretckou hodotou a zvoleým arametrem za evýzamý (áhodě vysvětltelý). () Pokud je ulová hyotéza zamítuta a hladě výzamost =., ovažuje se rozdíl mez teoretckou hodotou a zvoleým arametrem za statstcky výzamý (sgfkatí). () Pokud je ulová hyotéza zamítuta a hladě výzamost =.5, ale eí zamítuta a hladě výzamost =., uvádí se, že rozdíl mez teoretckou hodotou a zvoleým arametrem je slabě statstcky výzamý (ěkdy se uvádí, že test eoskytl ro daý rozsah výběru dostatečé formace k rozhodutí). Postu ř testováí a) rovedeí áhodého výběru, b) formulace ulové a alteratví hyotézy, c) volba hlady výzamost, d) volba testovacího krtera, e) určeí krtckých hodot testovacího krtera, f) výočet realzace testovacího krtera, g) srováí s krtckým ochotam, h) závěr testu.

7 Test jako rozhodováí Př testováí hyotéz mohou astat čtyř možost, které osuje ásledující tabulka Závěr testu latí elatí Skutečost latí srávý chyba I.druhu elatí chyba II.druhu srávý Exstují tedy dva druhy chyby () chyba I. druhu, zamítutí srávé hyotézy, () chyba II. druhu, řjetí esrávé hyotézy.

8 Příklad Testováí řblížíme omocí aaloge se soudím rocesem. Má adout rozhodutí, zda obžalovaý sáchal č esáchal zloč. Řešeí Soudí systém se řídí zásadou, že obžalovaý je eve, dokud se eodaří rokázat oak. Formulace hyotéz má tedy tuto odobu Obžalovaý je eve. Obžalovaý je ve. Růzé možost vztahu mez ravdou a rozhodutím soudu vdíme v tabulce Skutečost Závěr soudu Obžalovaý je eve Obžalovaý je ve Obžalovaý je eve srávý chyba I. druhu Obžalovaý je ve chyba II. druhu srávý Chyba I. druhu má ro jedce fatálí ásledky. Proto její možost elmujeme a ejmeší možou míru. Soud musí jasě rokázat vu obžalovaého. Jeho rozhodutí také odléhají řezkoumáí vyšších stací. Odovídá to volbě velm malé hlady výzamost. V moha jých říadech však evíme zcela řesě, která chyba je ro ás důležtější.

9 Test výzamost rozdílu dvou roztylů (F-test) Předoklady Jsou dáy dva výběry o rozsazích, s roztyly S, S vybraé ze dvou základích souborů s rozděleím N ( μ, σ ) a N ( μ, σ ). Nulová hyotéza σ = σ Alteratví hyotéza σ σ Testovací krtérum TK (. ) S =. S ( ) Krtcká hodota K ( ) = F (, ) Idexy volíme tak, aby latlo TK >. V rax stačí volt dexy tak, aby v čtatel byla větší dserze. Závěr Je-l TK > K ( ), ak Pro σ = σ σ > σ je krtcká hodota K ( ) = F (, )

10 Podroběj Předoklady Jsou dáy dva výběry o rozsazích, s em. roztyly S základích souborů s rozděleím N ( μ, σ ) a N ( μ, σ ). Nulová hyotéza σ = σ Alteratví hyotéza σ σ Testovací krtérum (. ) S TK =. S ( ), d h F (, ) S vybraé ze dvou Krtcké hodoty K ( ) = F (, ) =, K ( ) = F (, ) Je-l TK >, ak stačí horí kvatl. V rax stačí volt dexy tak, aby v čtatel byla větší dserze. Závěr Je-l TK > K h ( ), ak Pro σ = σ

11 Jedostraé hyotézy ( ) ( ). S TK = S. Pro σ = σ σ > σ Krtcká hodota K ( ) = F (, ) Závěr Je-l TK > K ( ) ak Pro σ = σ σ < σ Krtcká hodota K ( ) = F (, ) = Závěr Je-l TK < K ( ) ak F (, )

12 Test výzamost rozdílu M μ Předoklady Je dá výběr ze základího souboru s rozděleím hodotou M a em. dserzí S. N ( μ, σ ) o rozsahu se středí μ = μ μ μ M μ TK = S K ( ) = t ( ) Je-l TK > K ( ), ak Pro μ = μ μ > μ μ = μ μ < μ K ( ) = t ( ) K ( ) = t ( ) Je-l TK > K ( ), ak Je-l TK < K ( ), ak

13 Test výzamost rozdílu dvou výběrových růměrů (t-test) Předoklady Jsou dáy dva výběry o rozsazích,, se středím hodotam M, M a s roztyly S, S vybraé ze dvou základích souborů s rozděleím N ( μ, σ ) a N ( μ, σ ). μ = μ μ μ

14 a) můžeme ředokládat σ TK = M + S S K ( ) = t ( + ) M = σ (rověříme F-testem) ( + ) + Je-l TK > K ( ), ak b) můžeme ředokládat σ σ (rověříme F-testem) M M TK = K ( ) ( )( ) ( ) S + ( ) S ( ) S t( ) + ( ) S t( ) = ( ) S + ( ) S Je-l TK > K ( ), ak

15 Studetův test ro árovaé hodoty Předoklady Jsou dáy dva výběry o stejém rozsahu, vybraé ze dvou základích souborů s ormálím rozděleím, řčemž každému rvku x rvího výběru (hodotě zaku X ) odovídá rávě jede rvek x druhého výběru (hodota zaku X ). Výběrem jsou tedy áry ( x, x) ( =,,..., ). Netestujeme rozdíl středích hodot, ale rozdíly mez rvky, které tvoří ár v rvím a druhém výběru. Testovaou velčou D jsou rozdíly hodot zaků (e absolutích hodot) rvků, které tvoří ár ( d = x x). Ozačme d středí hodotu zaku D a S d dserz zaku D. μ = μ μ μ TK d = S d K ( ) = t ( ) Je-l TK > K ( ), ak

16 Testy dobré shody (testy řléhavost) Pearsoův test dobré shody ro jede výběr (χ test) Předoklady Nechť výsledky ozorováí jsou roztříděy do k tříd a v každé třídě je zjštěa třídí četost e (četost emrcká, exermetálí). Uvažujme určté rozděleí, které budeme ovažovat za model ro áš výběr. Pro každou třídu určíme očekávaou četost o (četost teoretcká). základí soubor má očekávaé rozděleí základí soubor emá očekávaé rozděleí Shodu rozděleí výběru s rozděleím ZS testujeme srováím třídích četostí. Dá se očekávat, že četost ve třídách by měly být úměré ravděodobostem. Ozačme TK = k = k očet tříd, e... emrcké četost v -té třídě, o. očekávaé četost v -té třídě, s. očet arametrů očekávaého rozděleí odhadutých a základě výběru. ( e o ) o K χ k s ( ) = ( ) Je-l TK > K ( ), ak

17 Př oužtí testu se ožaduje slěí odmíek () Všechy očekávaé třídí četost mají být větší ež. () Nejvýše % očekávaých četostí má být meších ež 5. Pokud tomu tak eí, rovede se sloučeí tříd v ezbytém rozsahu.

18 Kolmogorovův-Smrovův test dobré shody ro jede výběr Předoklady jsou stejé jako u ředcházejícího testu. základí soubor má očekávaé rozděleí základí soubor emá očekávaé rozděleí Shodu rozděleí výběru s rozděleím ZS testujeme srováím kumulatvích četostí. Ozačme k. očet tříd, Ne... kumulatví četost výběru a horí hrac -té třídy, No. kumulatví četost očekávaou,. rozsah souboru. TK = max Ne No Krtcké hodoty K ( )( = D; ) jsou tabelováy ro < 6 (tabulka č VIII). Pro > 6 se užívají asymtotcké vzorce a K ( ) =, kde a závsí ouze a hladě výzamost. Pro oužívaé hlady latí a,5 =, 36 a a, =, 63. Je-l TK > K ( ), ak

19 Kolmogorovův-Smrovův test dobré shody ro dva výběry Předoklady Jsou dáy dva výběry s rozsahy a roztříděé do k tříd. Ozačme N F a N.. kumulatví četost výběrů a horí hrac -té třídy. a F. říslušé třídí relatví kumulatví četost. oba výběry ocházejí z téhož ZS výběry eocházejí z téhož ZS

20 a) ro výběry o malém rozsahu, = 4 TK = N N max Krtcké hodoty K ( )( = D; ) jsou uvedey v tabulkách (tabulka IX). b) ro > 4, > 4, (rozsahy mohou být růzé) TK = F F max Krtcká hodota se určí omocí asymtotckého vzorce K ( ) + = a,. kde a závsí ouze a hladě výzamost. Pro oužívaé hlady latí a,5 =, 36 a a, =, 63. Je-l TK > K ( ), ak

21 Dxoův test extrémích odchylek Ozačme x = m( x ) mmálí hodota souboru x = max( x )... maxmálí hodota souboru hodota x res. x se výzamě elší od ostatích hodot souboru hodota x res. x se výzamě lší od ostatích hodot souboru TK x x TK = res. = x x x x x x Krtcké hodoty K ( )( = Q; ) res. K ( ) ( = Q; ) jsou tabelováy (tabulka č. XI). Je-l TK > ( ) K res. TK > K ( ), ak se zamítá

22 Grubbsův test extrémích odchylek hodota x res. x se výzamě elší od ostatích hodot souboru hodota x res. x se výzamě lší od ostatích hodot souboru TK x x S = res. TK = x S x Krtcké hodoty K ( )( = T; ) res. K ( ) ( = T; ) jsou tabelováy (tabulka č. X). Je-l TK > ( ) K res. TK ( ) > K, ak Pozámka Dojdeme-l ř oužtí testu k závěru, že odlehlou hodotu je třeba vyloučt, ak j vyloučíme a celý výočet zoakujeme.

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

a další charakteristikou je četnost výběrového souboru n.

a další charakteristikou je četnost výběrového souboru n. Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2 SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Ekoomcká fakulta Semestrálí ráce S kua Jméa: Leka Pastorová, Davd arha, Ja Vtásek a Fl Urbačík Ročík: 0/06 Učtel: gr. Jří Rozkovec Obor: Podková ekoomka Datum:.. 06 Obsah

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národí iformačí středisko ro odoru kvality Testováí zůsobilosti a výkoosti výrobího rocesu RNDr. Jiří Michálek, Sc Ústav teorie iformace a automatizace AVČR UKAZATELE ZPŮSOBILOSTI 3 UKAZATELE ZPŮSOBILOSTI

Více

11. INDUKTIVNÍ STATISTIKA

11. INDUKTIVNÍ STATISTIKA Pravděodobost a statstka. INDUKTIVNÍ STATISTIKA Iduktví statstka Průvodce studem Navážeme a katolu 7 a ukážeme, jak racovat se soubory, jejchž všechy rvky ejsou zámy. Předokládaé zalost Pojmy z ředchozích

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

12. Neparametrické hypotézy

12. Neparametrické hypotézy . Neparametrcké hypotézy V této část se budeme zabývat specálí částí teore statstckých hypotéz tzv. eparametrckým hypotézam ebo jak řečeo eparametrckým statstckým testy. Neparametrcké se azývají proto,

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

11 TESTOVÁNÍ HYPOTÉZ Základní pojmy

11 TESTOVÁNÍ HYPOTÉZ Základní pojmy EOVÁNÍ YPOÉZ. Základí ojmy V Kaitole jsme se sezámili s ostuem, jak odhadout ezámé arametry základího souboru oulace v říadě, že emáme k disozici všechy jeho rvky, ale je jeho část - áhodý výběr. V raxi

Více

PRAVDĚPODOBNOST ... m n

PRAVDĚPODOBNOST ... m n RVDĚODONOST - matematická discilía, která se zabývá studiem zákoitostí, jimiž se řídí hromadé áhodé jevy - vytváří ravděodobostí modely, omocí ichž se saží ostihout rocesy, ovlivěé áhodou. Náhodé okusy:

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Úvod do teorie měření

Úvod do teorie měření Uverzta Jaa Evagelsty Purkyě v Ústí ad Labem Přírodovědecká fakulta Úvod do teore měřeí Prof. Chlář emář 0 Průměr, rozptyl a směrodatá odchylka X = X = ( X X ) = = = Výpočty pomocí vzorců a pomocí statstckých

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl: 9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

Testování hypotéz. 3.1 Základní pojmy a obecný postup při testování

Testování hypotéz. 3.1 Základní pojmy a obecný postup při testování Lekce 3 Testováí hypotéz Vlajkovou lodí matematcké statstky jsou techky testováí hypotéz. Formulace hypotéz a jejch ověřováí jsou základím mechasmem postupu ldského pozáí. Pokud jsou formace, potřebé k

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určté předpoklady (hypotézy) o základím souboru STATISTICKÁ HYPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tsty - NOV NOV tsty s rovádí s omocí aalýzy roztylů NOV souhré tsty ro víc ěž dva výběry. NOV aramtrcká tstováí charaktrstk z zámých rozdělí

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

Přednáška č. 11 Analýza rozptylu při dvojném třídění

Přednáška č. 11 Analýza rozptylu při dvojném třídění Přednáška č. Analýza roztlu ř dvojném třídění Ve většně říadů v rax výsledk exermentu, rozboru závsí na více faktorech. Př této analýze se osuzují výsledk náhodných okusů (exerment nebo soubor získané

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

Chyby přímých měření. Úvod

Chyby přímých měření. Úvod Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec

Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec Směrice /0 Statitické vyhodocováí dat, verze 3 Verze 3 e hodá ůvodí Směricí /0 verze, za čl..3 e vlože ový odtavec. Statitické metody ro zkoušeí zůobiloti Statitická aalýza oužívaá ro aalýzu výledků zkoušky

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evroský sociálí od Praha & EU: Ivestujeme do vaší budoucosti eto materiál vzikl díky Oeračímu rogramu Praha Adatabilita CZ..7/3../3354 Maažerské kvatitativí metody II - ředáška č.3 - Queuig theory teorie

Více

Markovovy řetězce s diskrétním časem (Discrete Time Markov Chain)

Markovovy řetězce s diskrétním časem (Discrete Time Markov Chain) Stochastcé rocesy Marovovy řetězce s dsrétím časem (Dscrete Tme Marov Cha) Stochastcý roces Stochastcým rocesem {X(t), tr} je moža áhodých velč X(t) závslých a jedom arametru t. Stavový rostor : moža možých

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení S1P áhodá roměá vybraá rozděleí PRAVDĚPODOBOST A STATISTIKA áhodá roměá vybraá rozděleí S1P áhodá roměá vybraá rozděleí Vybraá rozděleí diskrétí P Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

Intervalové odhady parametrů

Intervalové odhady parametrů Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

Odhad parametrů normálního rozdělení a testy hypotéz o těchto parametrech * Věty o výběru z normálního rozdělení

Odhad parametrů normálního rozdělení a testy hypotéz o těchto parametrech * Věty o výběru z normálního rozdělení Odhad parametrů ormálího rozděleí a testy hypotéz o těchto parametrech * Věty o výběru z ormálího rozděleí Nechť, X, X je áhodý výběr z rozděleí N ( µ, ) X, Ozačme výběrový průměr a = X = i = X i i = (

Více

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky). Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké

Více

Teorie chyb a vyrovnávací počet. Obsah:

Teorie chyb a vyrovnávací počet. Obsah: Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat 4. Korelace 4. Teoretcké základy korelace 4. Způsoby měřeí závslostí pro růzé typy dat Př prác se statstckým údaj se velm často setkáváme s daty, která jsou tvořea dvojcem, trojcem hodot. Složky takovýchto

Více

Domácí práce z p edm tu D01M6F Statistika

Domácí práce z p edm tu D01M6F Statistika eské vysoké u eí techcké Fakulta Elektrotechcká Domácí práce z p edm tu D0M6F Statstka Test dobré shody Bradá Marek 4.ro ík Ak. rok 004/00, LS M6F Test dobré shody Obsah Zadáí...3 Hypotéza...3 3 Zj t é

Více

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné CHYBY MĚŘENÍ Opakovaé měřeí téže fyzkáí večy evede vždy k přesě stejým výsedkům. Této skutečost bychom se evyhu, kdybychom měřeí provádě s ejvětší důkadostí a precsostí aopak, čím ctvější a přesější jsou

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

Jednoduchá lineární regrese

Jednoduchá lineární regrese Jedoduchá leárí regrese Motvace: Cíl regresí aalýz - popsat závslost hodot velč Y a hodotách velč X. Nutost vřešeí dvou problémů: a) jaký tp fukce se použje k popsu daé závslost; b) jak se staoví kokrétí

Více

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

Přednáška VIII. Testování hypotéz o kvantitativních proměnných Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?

Více

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

Náhodné jevy, jevové pole, pravděpodobnost

Náhodné jevy, jevové pole, pravděpodobnost S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem

Více

4. B o d o v é o d h a d y p a r a m e t r ů

4. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Genetická diverzita. doc. Ing. Jindřich. ich Čítek, CSc. Genetickou diverzitu chápeme jako různost mezi živými organismy, která je geneticky fixovaná.

Genetická diverzita. doc. Ing. Jindřich. ich Čítek, CSc. Genetickou diverzitu chápeme jako různost mezi živými organismy, která je geneticky fixovaná. Geetcká dverzta hosodářských ských zvířat doc. Ig. Jdřch ch Čítek, CSc. Zemědělsk lská fakulta JU Katedra geetky, šlechtěí a výžvy zvířat Geetckou dverztu cháeme jako růzost mez žvým orgasmy, která je

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

Vícekanálové čekací systémy

Vícekanálové čekací systémy Vícekaálové čekací systémy taice obsluhy sestává z ěkolika kaálů obsluhy, racujících aralelě a avzájem ezávisle. Vstuy i výstuy systému mají oissoovský charakter. Jedotky vstuující do systému obsadí ejrve

Více

Odhady a testy hypotéz o regresních přímkách

Odhady a testy hypotéz o regresních přímkách Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje

Více

Problémy hodnocení výkonnosti a způsobilosti řízení procesů v rámci nesplnění normality rozdělení dominantního znaku jakosti

Problémy hodnocení výkonnosti a způsobilosti řízení procesů v rámci nesplnění normality rozdělení dominantního znaku jakosti Jiří Zmatlík 1, Pavel Zdvořák Problémy hodoceí výkoosti a zůsobilosti řízeí rocesů v rámci eslěí ormality rozděleí domiatího zaku jakosti Klíčová slova: eshodý rodukt, zaky jakosti měřitelé a zaky jakosti

Více

můžeme toto číslo považovat za pravděpodobnost jevu A.

můžeme toto číslo považovat za pravděpodobnost jevu A. RVDĚODONOST - matematická discilía, která se zabývá studiem zákoitostí, jimiž se řídí hromadé áhodé jevy - vytváří ravděodobostí modely, omocí ichž se saží ostihout áhodé rocesy. Náhodé okusy: rocesy,

Více

PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady

PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady SP Bodové a tervalové odhady PRAVDĚPODOBNOST A STATISTIKA Bodové a tervalové odhady Lbor Žák SP Bodové a tervalové odhady Lbor Žák Bodové a tervalové odhady Nechť je áhodá proměá, která má dstrbučí fukc

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Náhodná veličina-označení Parametry Obor platnosti Normální N(µ,σ) Střední hodnota µ Střední směr. odchylka σ. Střední hodnota µ

Náhodná veličina-označení Parametry Obor platnosti Normální N(µ,σ) Střední hodnota µ Střední směr. odchylka σ. Střední hodnota µ ředáša č 4 Teoretcé sojté áhodé velčy ožtí těchto áhodých velč je ro říady, dy velča může abývat lbovolých hodot v omezeém č eomezeém terval V techcé rax se jedá o os vlastostí solehlvost výrob (doba do

Více

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x), a) Vyslovte a dokažte Liouvillovu větu o šaté aroximovatelosti algebraického čísla řádu d b) Defiujte Liouvillovo číslo c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je trascedetí 2 a) Defiujte

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více

STATISTICKÁ ANALÝZA. Doc. RNDr. Zden k Karpíšek, CSc. P ehledový u ební text pro doktorské studium. Vysoké u ení technické v Brn

STATISTICKÁ ANALÝZA. Doc. RNDr. Zden k Karpíšek, CSc. P ehledový u ební text pro doktorské studium. Vysoké u ení technické v Brn Vysoké ueí techcké v Br Fakulta strojího žeýrství STATISTICKÁ ANALÝZA Doc. RNDr. Zdek Karpíšek, CSc. Pehledový uebí tet pro doktorské studum BRNO 008 Pedášející: Doc. RNDr. Zdek Karpíšek, CSc. Cetrum pro

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc.

Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc. Metody statstcké aalýzy doc. Ig. Dagmar Blatá, CSc. Bakoví sttut vysoká škola, a.s. Praha 0 METODY STATISTICKÉ ANALÝZY Autor: Recezet: Vydal: Tsk: Vydáí: doc. Ig. Dagmar Blatá, CSc. doc. Ig. Jří Trešl,

Více

VY_52_INOVACE_J 05 01

VY_52_INOVACE_J 05 01 Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí

Více