ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log
|
|
- Silvie Benešová
- před 8 lety
- Počet zobrazení:
Transkript
1 Řešme n množině reálných čísel rovnice: ) 6 b) 8 d) e) c) f) ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC Co budeme potřebovt? Chápt definici ritmu. Znát průběh ritmické funkce. Znát jednoduché vět o počítání s ritm. Umět řešit lineární kvdrtickou rovnici. Znát princip řešení rovnic užitím substituce. ) 6 Nejdřív se zbvíme zlomku. Zlomek od slov ZLO. 6 Toto je tp rovnice, kd je nejlepší použít definici ritmu. T říká: = právě tehd, kdž =. Použijeme-li tuto definici, dostneme rázem jednoduchou lineární rovnici. 6 6 = 6 6 = 6 = Hotovo. b) Nejjednodušší tp ritmické rovnice. Logritmická funkce je prostá, ted n celém svém definičním oboru pořád roste nebo pořád klesá. Nemůže se ted stát, že b dvě různá čísl měl stejné ritm (o stejných zákldech). Pro nás to v tuto chvíli znmená toto: Rovnjí-li se dv ritm o stejných zákldech, pk se musejí rovnt i ritmovné výrz. Rovnice toto beze zbtku splňuje, tkže t ritm prostě umázneme hotovo. Opět jsme dostli jednoduchou lineární rovnici. = Jelikož jsme nepostupovli podle definice, je nutné provést zkoušku! Zdlek ne všechn čísl totiž můžeme ritmovt, jk určitě víte. Ab jste se všk zbtečně neplšili (jelikož u těžších rovnic je provedení zkoušk oprvdu mzec), uděláme teď tkovou mlou dohodu mezi ( N ) očim: Zkoušku budeme provádět tk, že jen ověříme, zd všechn výrz v rovnici po doszení výsledku (v nšem přípdě = ) dávjí smsl. Tk teď pojďme n to:
2 Dosdíme z všechn v rovnici dvojku. Vlevo ritmuji pětku. Sice humus, le jde to. Vprvo ritmuji zse pětku, to jde. Tkže = OK. Tpická rovnice n užití vět o počítání s ritm. Podle I. vět o počítání s ritm pltí: Levou strnu rovnice ted nhrdíme jedním ritmem. 8 Dostli jsme opět rovnost dvou ritmů se stejnými zákld. Tkže prč s těmi ritm! ( ) = 8 Vpdá to n kvdrtickou rovnici = = 0 c) 8 D = = D =, Zkoušk nutná! ) Pro kořen N obou strnách rovnice jsme dostli výrz, který nemá smsl. Kořen ted nevhovuje. ) Pro kořen 8 N obou strnách rovnice jsme dostli výrz, který nemá smsl. Kořen tké nevhovuje. Závěr je jsný: Rovnice nemá řešení. d) Td je jeden mlý zádrhel, sice t jedničk vprvo. Při řešení tkovéto ritmické rovnice obvkle kombinujeme postup vsvětlené při řešení předchozích tří rovnic. Jelikož se to v rovnici hemží ritm o zákldu, nhrdíme jedničku n prvé strně tk ritmem o zákldu. Vužijeme při tom definice ritmu. = právě tehd, kdž =. Ted =. Gut.
3 N prvé strně jsme dostli součet ritmů. Použijeme ted opět I. větu o počítání s ritm. A teď prč s těmi ritm! = + = Levá strn po doszení: to jde. Prvá strn po doszení: to tk jde. Tkže OK. e) Já vím, vpdá to stršně, le žádnou pniku! Toto je tpická rovnice n užití substituce. Než k tomu všk přikročíme, provedeme jednu mlou kosmetickou úprvu užitím III. vět o počítání s ritm, která říká:. Jedná se o tu hnusnou odmocninu ve jmenovteli. Kždá odmocnin je vlstně mocnin, konkrétně. Použijeme III. větu. A teď zvedeme substituci =. Rovnice prokoukne. 6 Prád, ne? Ještě vnásobíme výrzem z podmínk 0. 6 = 6 = 0 = 0 A jsme opět u jednoduché kvdrtické rovnice. Teď to pofrčí. Diskroš je 6, jeho odmocnin. Kořen =, =. OK. N závěr se musíme vrátit k zvedení substituce. Zjímá nás proměnná, nikoli. ) Dosdíme do substituční rovnice z trojku. Dostneme rovnici: = Zákld není vidět, jedná se o dekdický ritmus se zákldem = 0. Hodnotu určíme podle definice ritmu. 0 = = 000
4 ) Dosdíme do substituční rovnice z mínus jedničku. Dostneme rovnici: = Hodnotu určíme stejným způsobem. 0 = = 0, Zkoušku v tomto přípdě dělt nemusíme, postupovli jsme totiž podle definice. f) N závěr tu máme jednu zdánlivě brutální rovnici. Zdání všk klme. Zčneme substitucí: =. To není zlý! Teď použijeme nlevo větu III. Rovnici vdělíme výrzem ( 0 ). Toto je ircionální rovnice. Než ji umocníme, musíme ji vhodně uprvit, jink bchom se té ošklivé odmocnin nezbvili. A teď ji umocníme. Pozor, vlevo podle vzorce!! 8 + = 9 Opět kvdrtická rovnice. Tkže fofrem. D = 89 6 = D = ; =. POZOR! Při řešení rovnice s neznámou R jsme použili jednu neekvivlentní úprvu, to kdž jsme celou rovnici umocnili n druhou! Proto musíme nejprve provést zkoušku. ) = OK. ) = 0, 0,, 0,, A to rozhodně není OK. Ted rovnice má jen jeden kořen =. A teď už zpátk k substituci. = = 0 = 0 000
5 Příkld k procvičení: ) 8 {; } ) 6 0 { } ) { } ) 7 0 {6} ) {8} 6) { } 7) {8} 8) 7 0 {} 9) {000; 0,} ln 0) ln e {0} ln ) 7 {} {000} ) ) {0; 0 } Pozn. k 0): ln e Návod ke ): Člen ( 0 6 ) přičti n druhou strnu, rovnici zritmuj zveď substituci.
Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.
Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce
VíceLogaritmické rovnice I
.9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme
VíceLogaritmická funkce, logaritmus, logaritmická rovnice
Logritmická funkce. 4 Logritmická funkce, ritmus, ritmická rovnice - získá se jko funkce inverzní k funkci eponenciální, má tvr f: = Pltí: > 0!! * * = = musí být > 0, > 0 Rozlišujeme dv zákldní tp: ) >
Více2.9.11 Logaritmus. Předpoklady: 2909
.9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).
VíceM - Příprava na 3. zápočtový test pro třídu 2D
M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně
Více3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru
Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém
VíceLINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
Více( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t
7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách
Více3.2. LOGARITMICKÁ FUNKCE
.. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov
VíceLogaritmická funkce teorie
Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá
Více2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
Více2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
Více3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
Více2.2.9 Grafické řešení rovnic a nerovnic
..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci
Více2.1 - ( ) ( ) (020201) [ ] [ ]
- FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé
VíceŘešení: 1. Metodou sčítací: Vynásobíme první rovnici 3 a přičteme ke druhé. 14, odtud x 2.
Soustav rovnic Metod řešení soustav rovnic o více neznámých jsou založen na postupné eliminaci neznámých Pro dvě lineární rovnice o dvou neznámých používáme metodu sčítací (aditivní), kd vhodně vnásobíme
VíceJak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:
.. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto
VíceÚlohy školní klauzurní části I. kola kategorie C
52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.
Více3. Kvadratické rovnice
CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:
Více{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507
58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní
VíceSpojitost funkce v bodě, spojitost funkce v intervalu
10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí
VíceObsah rovinného obrazce
Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce
VíceMENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF
MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF RNDr. Petr Rádl RNDr. Bohumil Černá RNDr. Ludmil Strá 0 Petr Rádl, 0 ISBN 97-0-77-9- OBSAH Předmluv... Poždvky k přijímcí zkoušce z mtemtiky..
VíceHyperbola a přímka
7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B
Více( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306
7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu
Více4. cvičení z Matematiky 2
4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y
Více13. Exponenciální a logaritmická funkce
@11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze
VíceZavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA
Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním
VíceDefinice limit I
08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí
Více8. Elementární funkce
Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne
VíceVětu o spojitosti a jejich užití
0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě
VíceKonzultace z předmětu MATEMATIKA pro první ročník dálkového studia
- - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin
VíceObecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
VíceP2 Číselné soustavy, jejich převody a operace v čís. soustavách
P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel
VíceLineární nerovnice a jejich soustavy
teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice
Více( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?
1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno
Více7 Algebraické a nealgebraické rovnice a nerovnice v C. Numerické e²ení rovnic
7 Algebrické nelgebrické rovnice nerovnice v C. Numerické (typy lgebrických rovnic zákldní metody jejich e²ení lineární, kvdrtické, reciproké rovnice rovnice vy²²ích ád, rovnice nerovnice nelgebrické s
Vícex + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
VíceStereometrie metrické vlastnosti 01
Stereometrie metrické vlstnosti 01 Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek
VíceDERIVACE A INTEGRÁLY VE FYZICE
DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická
Více4.4.3 Kosinová věta. Předpoklady:
443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější
VíceURČITÝ INTEGRÁL FUNKCE
URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()
VíceMO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technoiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší odborná
Více8. cvičení z Matematiky 2
8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,
Více2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem
2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice
VícePředmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 11. červenec 2012 Název zpracovaného celku: LINEÁRNÍ ROVNICE S PARAMETREM
Předmět: Ročník: Vytvořil: Dtum: MATEMATIA DRUHÝ Mgr. Tomáš MAŇÁ 11. červenec 01 Název zrcovného celku: LINEÁRNÍ ROVNICE S PARAMETREM LINEÁRNÍ ROVNICE S PARAMETREM Rovnice s rmetrem obshuje kromě neznámých
VíceHyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná
Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem
VícePřehled základních vzorců pro Matematiku 2 1
Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,
Více14. cvičení z Matematické analýzy 2
4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi
VíceŘíkáme, že přímka je tečnou elipsy. p T Přímka se protíná s elipsou právě v jednom bodě.
7.5. Elips přímk Předpokldy: 7504, 7505, 7508 Př. : epiš všechny možné vzájemné polohy elipsy přímky. Ke kždému přípdu nkresli obrázek. Z obrázků je zřejmé, že existují tři přípdy vzájemné polohy kružnice
VíceMO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší
Vícematematika vás má it naupravidl
VÝZNAM Algebrický výrz se zvádí intuitivn bez p esn ího vmezení v kolizi s názv dvoj len, troj len, mnoho len. Stále se udr uje fle ná p edstv, e ísl ozn ují mno ství, e jsou zobecn ním vnímné skute nosti.
VíceKřivkový integrál prvního druhu verze 1.0
Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm
Více(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a
Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:
Více( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.
Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou
VíceZvyšování kvality výuky technických oborů
Zvyšování kvlity výuky technických oorů Klíčová ktivit IV Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol
Více4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.
4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost
Více+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
VíceLogaritmická rovnice
Ročník:. Logaritmická rovnice (čteme: logaritmus z x o základu a) a základ logaritmu x argument logaritmu Vzorce Použití vzorců a principy počítání s logaritmy jsou stejné jako u logaritmů základních,
VíceOpakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace
VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,
VíceNeurčité výrazy
.. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu
VíceFunkce. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Funkce Mg. Jmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Eponenciální ovnice VY INOVACE_05 M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Eponenciální ovnice = ovnice, ve kteých se neznámá vyskytuje v eponentu
VíceExponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.
Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ
Vícef jsou osově souměrné podle přímky y = x. x R. Najdi
Nechť je prostá unkce v pořád klesá) a zobrazuje D na H deinovaná vztahem: D = a) b) Gra unkcí a H, H = D INVERZNÍ FUNKCE D (tj. v celém svém deiničním oboru pořád roste nebo. Pak k této unkci eistuje
VíceII. kolo kategorie Z5
II. kolo ktegorie Z5 Z5 II 1 Z prvé kpsy klhot jsem přendl 4 pětikoruny do levé kpsy z levé kpsy jsem přendl 16 dvoukorun do prvé kpsy. Teď mám v levé kpse o 13 korun méně než v prvé. Ve které kpse jsem
VíceVIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.
VícePOLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde
POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti
VíceVýpočet obsahu rovinného obrazce
Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh
VíceMatematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar
Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na
VíceAž dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním
Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož
Více13. Soustava lineárních rovnic a matice
@9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky
VíceMatematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci
Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/
Víceskripta MZB1.doc 8.9.2011 1/81
skript MZB.doc 8.9. /8 skript MZB.doc 8.9. /8 Osh Osh... Zlomk... Dělitelnost v množině přirozených čísel... Trojčlenk... 9 Výrz s mocninmi s celočíselným eponentem ()... Výrz s mocninmi s rcionálním eponentem...
Více6. Lineární (ne)rovnice s odmocninou
@06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou
VíceOhýbaný nosník - napětí
Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se
Více2.8.5 Lineární nerovnice s parametrem
2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první
VíceV exponenciální rovnici se proměnná vyskytuje v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto:
Eponenciální rovnice V eponenciální rovnici se proměnná vyskytuje v eponentu. Obecně bychom mohli eponenciální rovnici zapsat takto: a ( ) f ( ) f kde a > 0, b > 0 b Příkladem velmi jednoduché eponenciální
VícePraha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
VícePřednáška 9: Limita a spojitost
4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty
Více26. listopadu a 10.prosince 2016
Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální
Více( ) ( ) Vzorce pro dvojnásobný úhel. π z hodnot goniometrických funkcí. Předpoklady: Začneme příkladem.
Vzorce pro dvojnásobný úhel Předpoklady: 0 Začneme příkladem Př : Pomocí součtových vzorců odvoď vzorec pro sin x sin x sin x + x sin x cos x + cos x sin x sin x cos x Př : Pomocí součtových vzorců odvoď
VíceNerovnosti a nerovnice
Nerovnosti nerovnice Doc. RNDr. Leo Boček, CSc. Kurz vznikl v rámci projektu Rozvoj systému vzdělávcích příležitostí pro ndné žáky studenty v přírodních vědách mtemtice s využitím online prostředí, Operční
Více1. LINEÁRNÍ ALGEBRA 1.1. Matice
Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme
VícePrimitivní funkce. Definice a vlastnosti primitivní funkce
Obsh PŘEDMLUVA OBSAH 5 I. PRIMITIVNÍ FUNKCE 7 Definice vlstnosti primitivní funkce............ 7 Metody výpočtu primitivních funkcí............. Rcionální funkce................... 7 Ircionální funkce...................
VíceANALYTICKÁ GEOMETRIE V PROSTORU
ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici
Více2.4.7 Shodnosti trojúhelníků II
2.4.7 Shodnosti trojúhelníků II Předpokldy: 020406 Př. 1: oplň tbulku. Zdání sss α < 180 c Zdání Náčrtek Podmínky sss sus usu b + b > c b + c > c + c > b b α < 180 c α + β < 180 c Pedgogická poznámk: Původní
VíceZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.
VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální
VíceMatematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné
Mtemtik II: Prcovní listy Integrální počet funkce jedné reálné proměnné Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Ostrv 8 Obsh Neurčitý integrál.
VíceZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,
ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých
VíceOpravná zkouška 2SD (druhé pololetí)
Opravná zkouška SD 01-01 (druhé pololetí) 1) Na množině celých čísel řeš rovnici: 6 8. ma. b) ) Na obrázku jsou gray dvou unkcí. Urči jejich unkční předpisy a základní charakteristiky. ma. 4b) g ) Řeš
VíceJednoduchá exponenciální rovnice
Jednoduchá exponenciální rovnice Z běžné rovnice se exponenciální stává, pokud obsahuje proměnnou v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto: a f(x) = b g(x), kde a, b > 0. Typickým
VíceDIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17
DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník
VíceZkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.
1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)
VíceOpravná zkouška 2SD 2012-2013 (celý rok)
Opravná zkouška SD 01-01 (celý rok) 1) Přímá železniční trať má stoupání 5 a délku,5 km. Vypočítej její celkové převýšení. b) ) Na množině celých čísel řeš rovnici: 6 8. ma. b) ) Vypočítej obsah vybarveného
VíceObecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g
Složená funkce Obecnou definici vynecháme Jednoduše řečeno: složenou funkci dostaneme, když do funkce y f dosadíme za argument funkci g Potom y f g Funkce f je vnější složka, funkce g vnitřní složka Pochopitelně
Více( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:
4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové
Víceje parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné
1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2
Více1.3 Derivace funkce. x x x. . V každém bodě z definičního oboru má každá z těchto funkcí vlastní derivaci. Podle tabulky derivací máme:
rivc unkc 9 Vpočtět drivci unkc nou unkci lz přpst v tvru součt tří unkcí Zřjmě ji můžm chápt jko kd Ihnd vidím ž V kždém bodě z diničního oboru má kždá z těchto unkcí vlstní drivci Podl tbulk drivcí mám:
VíceKVADRATICKÁ FUNKCE (vlastnosti, grafy)
KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,
VíceSprávné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010
právné řešení písemné koušky mtemtiky- vrint A Přijímcí říení do NMgr. studi učitelských oborů Příkld. Vyšetřete průběh funkce v jejím mimálním definičním oboru nčrtněte její grf y Určete pritu (sudá/lichá),
Více