L7 Energetický a vodní cyklus III. Oddělení numerické předpovědi počasí ČHMÚ 2007
|
|
- Pavel Kovář
- před 8 lety
- Počet zobrazení:
Transkript
1 L7 Eergetcký a vodí cyklus III Odděleí umercké předpověd počasí ČHMÚ 2007
2 Plá předášky Radačí přeos a eho parametrzace v NWP Obecý úvod; Rovce radačího přeosu (RTE); Čtyř tegrály pro řešeí RTE; Problém asyceí a terakce s rozptylem; Případ mohoásobých zdroů: formalsmus NER (Net Exchage Rate); Jak se vyhout vysokým početím árokům: kokrétí příklad
3 Obecý úvod Parametrzace radačího přeosu e pouze problémem přesost vůč početím árokům použtých aproxmací Ve skutečost hlaví rovce (RTE) e dobře záma a všecho, co e potřeba a vstupu může být přpraveo s ekoečou přesostí, akmle bychom zal skutečý stav atmosféry Samozřemě, taková přesost e luzorí protože základí vstup (vertkálí profly teploty a dalších složek) eí zám tak dobře Navíc přesá tegrace RTE e esmírě početě drahá a tak musí být aalytcky zedodušea, což e ěkdy čěo dost extrémím cestam
4 Spektra zářeí: sluečí a tepelé Zářeí atmosféry a zemského povrchu Plackův záko: teore Sluečí zářeí: teore a pozorováí
5 Separace sluečího a tepelého zářeí => v prax dva ezávslé výpočty (ale se steým ástro: fotoy sou fotoy!) as/maxmálí as
6 Rovce radačího přeosu (RTE) Základí RTE kombue lokálí vývo (vpravo) v daém směru s celkovým příspěvkem rozptylu z růzých směrů pomocí dvou polokulových tegrálů přes prostorové úhly (dole) grafcky Potřebý vstup: účost pohlcováí a rozptylu, fázové fukce rozptylu Krchhofův záko a Plackova fukce v případě tepelého zářeí Solárí kostata + spektrum a poloha Sluce v případě sluečího zářeí
7 Čtyř tegrály pro praktcké řešeí rovce radačího přeosu (1) Itegrace podél vertkálí souřadce: klascký problém parametrzace, eho řešeí e relatvě sadé v moochromatckém případě, s použtím proporcoálího pravdla o extkc (přeos =e -ku ) Itegrace podél optcké dráhy fotoů: e potřeba vzít v úvahu složtost dráhy daou mohoásobým rozptylem, protože e potřeba opustt moochromatcký rámec Nelearta klesaící expoecály e klíčovým problémem e 1 α e + (1 α ) e [ α k + (1α ) k2 ] u k1 u k2 u extkce=pohlcováí + rozptyl Mohoásobý rozptyl
8 Čtyř tegrály pro praktcké řešeí rovce radačího přeosu (2) Itegrace přes vlové spektrum: pokud e předchozí problém vyřeše, musíme s ěak poradt s obrovským rozdílem mez maxmem a mmem účost absorpce plyů ( 10 7 ) Překvapvě, s použtím metod modelů spektrálích pásem a Curts-Godsoovy aproxmace, exstuí aalytcké metody ak s s tím poradt (ebudeme e zde uvádět) Další extkce (Raylegh, oblaka, aerosoly) sou přblížey edím souhrým koefcetem k Itegrace podle úhlu šířeí vzhledem k vertkále: dráha přímého sluečího zářeí se prodlužue o 1/µ 0, středí dráha slabé extkce má faktor prodloužeí 2, u velm slé extkce e to 1 a pro slou extkc se používá: Tr = µ e / µ dµ e e
9 Kocepce asyceí Dříve zmíěá elearta expoecálího zeslabeí může být vysvětlea ásledově: V místech spektra se slou absorpcí fotoy, které byly absorbováy blízko ech zdroe emohou být absorbováy podél ech potecálí optcké dráhy V místech se slabou absorpcí se spíše používá režm kostatí relatví tezty absorpce podél realzovaé optcké dráhy Průměrá tezta absorpce tak pravdelě klesá podél optcké dráhy [efekt asyceí] Vrstva (zdro) e pak vděa se stále meší optckou tloušťkou, tak ak se od í vzdalueme [efekt stíěí]
10 Vertkálí tegrál: metoda výpočtu «twostream» pro model edé vrstvy Předpokládáme, že budeme počítat 3 toky: S přímého sluečího zářeí, F rozptýleého zářeí směrem k zem a F rozptýleého zářeí směrem ahoru ΠB e tok zářeí čerého tělesa o teplotě vrstvy (vrstvu uvažueme zotermálí), ze které rozptýleé zářeí vychází Defueme ovou proměou F*=F- ΠB (Krchhofův záko) e optcká tloušťka (roste směrem dolů) a µ 0 e cosus úhlu zetu Sluce Koefcety «α» sou uvažováy kostatí apříč každou vrstvou S = S /µ 0 F * =α 1 F* + α2 F* + α3( µ 0) S F * =α 2 F* + α1 F* α4( µ 0) S Trk s defcí F* redukue tepelé zdroové čley a δ(πb) a rozhraí vrstev, tedy tam, kde sou toky počítáy
11 Vertkálí tegrál: «metoda součtu» od stropu k základě (1) Celkem přímou cestou se dá získat leárí soustava rovc pro pops základího eleárího problému Idexy t & b ozačuí strop (top) a základu (bottom) uvažovaé vrstvy: S b S b = a a F* 2a4a5 F F a a a * t F* t * t b a 1 = e( δ / µ 0) a2/3 = a2/3( δ, α1/2/3/4, µ 0) a4/5 = a4/5( δ, α1/ 2) a + BCs S( 0) = µ I 0 BCs F ( 0) 0 F = 0 Dvoásobku fotoů a vstupu do vrstvy musí odpovídat dvoásobý efekt ( N) = Al( µ ) S( N) + Al F ( N) F* ( N) = (1 ε) F* s ( ) 0 N
12 Vertkálí tegrál: «metoda součtu» od stropu k základě (2) Pokud e systém leárích rovc zám, ech rozšířeí z moochromatckého případu a spektrum má pouze problém v tom, že propustost esou adtví (kvůl efektu asyceí ) V případě edého zdroe (sluečí zářeí) ebo edého pseudo-zdroe (fotoy vyzářeé do vesmíru ebo emtovaé zemským povrchem), lze efekt asyceí odhadout Jde to apříklad metodou (exstuí á řešeí) dealzovaých drah Než se řeší úplé rovce, tak sou ekvvaletí optcké tloušťky plyů spočtey bez uvažováí rozptylu Následě sou použty v systému úplých rovc, kde e rozptyl zahrut
13 Idealzovaé optcké dráhy Sluečí spektrum Tepelé spektrum (edý zdro) Přímé EWS (četé zdroe) Odražeé rozptýleé CTS EWS= Exchage Wth Surface CTS= Coolg To Space
14 Formalsmus Net Exchage Rate (NER) pro tepelé zářeí Atmosféra e rozdělea a tělesa (pro ás vrstvy) a pro každý pár přímo počítáme čstou blac vyměěých fotoů Oprot metodám výpočtu toků můžeme vyechat začou část symetrcky vyměěých fotoů => edoduchost To také vede k prcpu recprocty: tepleší těleso bude vždy ohřívat studeěší => realsmus Tato metoda zašťue zachováí eerge => přesost
15 Vztah mez NER a asyceím Kvůl efektu asyceí slá extkce praktcky zameá výměu eom se sousedí vrstvou Slabá extkce dovolue dosáhout hrac: stropu atmosféry a země Mez těmto případy ž moho ezbývá Zoom část spektra extkce
16 Rozděleí čleů tepelé radačí výměy a CTS+EWS+EBL př absec rozptylu (1) 1, )) (, ) ( ( )) (, 1) (, ( ) (, T T N T F N N + = = = = + = + σ σ σ 1)) 1, ( 1) (, ( )) 1, ( 1) 1, ( ( ) 1, ( = = = = = + T T N T F N N σ σ σ 1) 0, ( 0, ) ( 4 1 = = T F F Rthr σ CTS ( ) ) 1, ( ) (, N N T T N + + σ σ EWS ( ) ) 1, ( ) (, 1) 1, ( 1) (, T T N + + = + = σ σ ( ) ) 1 1, ( 1, ) ( 1) (,, ) ( = = T T σ σ EBL
17 Rozděleí čleů tepelé radačí výměy a CTS+EWS+EBL př absec rozptylu (2) EWS CTS EBL
18 Jak ošetřt terakc př mohoásobém rozptylu? Spočteme přesě optcké tloušťky absorpce plyů pro každou vrstvu ve zedodušeé geometr a takto e použeme ve formalsmu «two-stream + addg», spolu s efekty šedého tělesa Pro sluečí zářeí e výpočet S celkem přímočarý Pro F a F e výpočet založe a absorpc během zpěté dráhy odražeého fotou od povrchu, ale bez uvažováí dalšího rozptylu Pro tepelé zářeí, výpočty «CTS» a «EWS» vycházeí z přímých optckých drah Zůstává tu ale početě áročá baréra pro výpočet «EBL» Ukážeme ekoomckou cestu ak ušetřt stroový čas
19 Správý výběr vertkálích proflů teploty pro two-stream + addg V ásleduícím budeme mít tř růzé profly: ΠB = 1 a zem a všude v atmosféře => dovolue se zbavt všech ostatích výmě ež coolg to space (CTS) Profl A ΠB = 1 a zem a ΠB = 0 všude v atmosféře => dovolue se zbavt všech ostatích výmě ež exchage wth surface (EWS) Profl B Profl odpovídaící fyzkálí realtě => spoue CTS, EWS s exchages betwee layers (EBL) Profl C
20 Metoda dealzovaých optckých drah: the uderestmato computato Prví výpočet čleů EBL říká, že e vždy výhoděší podcet radačí výměu mez dvěm vrstvam ež rskovat eí přeceěí Tak se každé vrstvě přřadí, a to pouze za účelem výpočtu EBL, mmálí optcká tloušťka, kterou lze vdět z akékolv pozce a vertkále Ale kvůl efektu asyceí se musí uvažovat evzdáleěší pozce buďto stropu atmosféry ebo povrchu země To se edoduše vyádří: δ ( EBL) = m m( δ gas ( CTS), δ gas ( EWS))
21 Metoda dealzovaých optckých drah: the overestmato computato V EBL e domatím příspěvkem výměa mez dvěm bezprostředě sousedícím vrstvam Tato výměa se může počítat ezávsle (ako CTS a EWS) a se zvláští pozorostí s ohledem a lokálí profl teploty a eleartu čleů lokálí výměy Odpovídaící δ prox může aštěstí být spočítáa sado ako pro CTS a EWS Ale zároveň δ prox e rovo δ max pro celou atmosféru, a to kvůl easyceí Idea levého a přesého odhadu EBL e vymezt reálý výsledek hodotam m & max optckých tlouštěk Musíme ale parametrzovat váhy, které k vymezeí těchto lmtů slouží (tzv bracketg weghts ; eí zde ukázáo)
22 Metoda dealzovaých optckých drah: the bracketg trck Máme ásleduící algortmus: Provede se výpočet [I] s proflem A a δ gaz (CTS) Provede se výpočet [II] s proflem B a δ gaz (EWS) Provedou se tř výpočty [III, IV, V] s profly A, B & C a δ gaz (EBL)= δ m =m[δ gaz (CTS), δ gaz (EWS)] A dále tř výpočty [VI, VII, VIII] s profly A, B & C a δ gaz (EBL) = δ max = δ prox Potom se výsledky vyásobí (kromě V a VIII ) odpovídaícím hodotam ΠB, a provede se kombace: [I] + [II] α([iii]+[iv]-[v]) - (1-α) ([VI]+[VII]-[VIII]) + [δ] α e bracketg weght pro lokálí tok, zatímco δ reprezetue korekc utou k výměě čleu sousedích vrstev specfckým přesěším výpočtem s použtím δ prox
23 Další možost Pokud chceme dodržet voláí úplé parametrzace zářeí v každém časovém kroku, musíme parametrzovat váhy odhadu (bracketg weghts) Na druhou strau tato techka odhadu se může stát základem pro strateg občasého voláí kde váhy odhadu (a kostata γ korguící systematckou odchylku) sou vypočtey čas od času a kde eom tř základí hodoty optckých tlouštěk δ musí být vypočítáy
24 Náčrtek budoucí stratege občasého voláí schématu radace v ALADINu úplý výpočet bez oblaků mportovat úplý výpočet bez oblaků Tok & LW & SW N δt Iterpolace δopt, α, γ ply (8 x) Hotovo etc ACRANEB-8 2 část Exstue! Toky v časovémkroku Model δopt Oblaka + Aerosoly Vyvuto δt (model)
25 Stratege parametrzace α: EBL-toky pro max (L), m (D) a přesé (R)
26 stratege parametrzace α: dspersí dagram pro celkové toky
27 Verfkace geopotecálu: efekt trku podhodoceí (1) Část 1: V => VIII
28 Verfkace geopotecálu: efekt trku podhodoceí (2) Část 2: detaly
29 Závěr Lekce L7 Ukázal sme ěkteré prcpy výpočtů radačího přeosu v NWP Ne ve všech problémech sme provedl výklad do steé úrově detalů Radě sme přeskočl klascká témata (model spektrálích pásem, optcké vlastost oblačost, ) To dovollo se soustředt a tzv efekt asyceí, který e v srdc kvaz-moochromatckého řešeí problému čtyř tegrálů př počítáí RTE rovce Kromě ých přístupů sme ukázal orgálí část schématu v modelu ALADIN: dealzovaé dráhy + odhad EBL Také sme ukázal potecál tohoto přístupu pro občasé voláí plého schématu zářeí, které e a pláu budoucího vývoe
Hartre-Fock method (HF)
Cofgurato Iteracto (CI) Coupled Clusters (CC) Perturbato Theory (PT, MP) Electro correlato H Ψ = EΨ Bor-Oppehemer approxmato Model of depedet electros Product wave fucto (Slater determat) MO LCAO Hartre-Fock
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém
8. Zákony velkých čísel
8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy
Optimalizace portfolia
Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí
Metody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
Generování dvojrozměrných rozdělení pomocí copulí
Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta
PRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
Odhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
EKONOMETRIE 9. přednáška Zobecněný lineární regresní model
EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ
6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
U. Jestliže lineární zobrazení Df x n n
MATEMATICKÁ ANALÝZA III předášky M. Krupky Zmí semestr 999/ 3. Iverzí a mplctí zobrazeí V této kaptole uvádíme dvě důležté věty, které acházeí aplkace v moha oblastech matematky: Větu o verzím a větu o
IV. MKP vynucené kmitání
Jří Máca - katedra mechaky - B35 - tel. 435 4500 maca@fsv.cvut.cz IV. MKP vyuceé kmtáí. Rovce vyuceého kmtáí. Modálí aalýza rozklad do vlastích tvarů 3. Přímá tegrace pohybových rovc 3. Metoda cetrálích
PRAVDĚPODOBNOST A STATISTIKA
SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje
Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
11. Časové řady. 11.1. Pojem a klasifikace časových řad
. Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé
4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností
4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.
1. Základy měření neelektrických veličin
. Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost
Analytická geometrie
MATEMATICKÝ ÚSTAV Slezská uverzta Na Rybíčku, 746 0 Opava DENNÍ STUDIUM Aalytcká geometre Téma 3.: Aí zobrazeí Dece 3.. Zobrazeí aího prostoru A do aího prostoru A se azývá aí zobrazeí, estlže má ásleduící
9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost
Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
Pravděpodobnostní model doby setrvání ministra školství ve funkci
Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí
1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru
Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v
Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W )
5. Sdíleí tepla. pomy: Pomem tepelá eergie ozačueme eergii mikroskopického pohybu částic (traslačího, rotačího, vibračího). Měřitelou mírou této eergie e teplota. Teplo e část vitří eergie, která samovolě
VY_52_INOVACE_J 05 01
Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí
8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2
SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých
Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH
USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou
MATEMATICKÁ INDUKCE. 1. Princip matematické indukce
MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost
Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A
Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota
Odhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
Intervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a
Cvičení 2: Rozhodovací stromy, RBF sítě, vlastní algoritmy v RapidMineru
České vysoké učeí techcké v Praze Fakulta formačích techologí Katedra teoretcké formatky Evropský socálí fod Praha & EU: Ivestujeme do vaší budoucost MI-ADM Algortmy data mgu 2010/2011 Cvčeí 2: Rozhodovací
8 NELINEÁRNÍ REGRESNÍ MODELY
8 NELINEÁRNÍ REGRESNÍ MODELY 8 Tvorba eleárího regresího modelu Postup tvorby eleárího regresího modelu se dá rozčlet do těchto kroků: Návrh regresího modelu Obvykle se jako eleárí regresí model používá
Popisná statistika. Zdeněk Janák 9. prosince 2007
Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46
2. Měření základních optických vlastností materiálů. index lomu a disperze propustnost, absorpce kvalita optických prostředí
. Měřeí základích optických vlastostí materiálů idex lomu a disperze propustost, absorpce kvalita optických prostředí .1. Měřeí idexu lomu a disperze Sellmeierův vztah i ( ) = 1+ i B C i Coruův vzorec
Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2
Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z
8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
[ jednotky ] Chyby měření
Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá
NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n
Jméo: Příklad 3 Celkem bodů Bodů 8 0 30 Získáo [8 Uvažujte posloupost distribucí f } D R defiovaou jako f [δ kde δ a začí Diracovu distribuci v bodě a Najděte itu δ 0 + δ + této poslouposti aeb spočtěte
VYSOCE PŘESNÉ METODY OBRÁBĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,
Testování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
Deskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
Aplikace teorie neuronových sítí
Aplikace teorie euroových sítí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické iforatiky Mateaticko-fyzikálí fakulta Uiverzity Karlovy v Praze Zpracováí časových vzorů (teporal processig) Stadardí algoritus
Strojové učení. Things learn when they change their behavior in a way that makes them perform better in a future. (Witten, Frank, 1999) typy učení:
Strojové učeí The feld of mache learg s cocered wth the questo of how to costruct computer programs that automatcally mprove wth eperece. (Mtchell, 1997) Thgs lear whe they chage ther behavor a way that
8. cvičení 4ST201-řešení
cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,
ck f Podmínka pro nalezení nejvhodnější variační funkce (minimální energie): = 0
Varačí teorém W Φ H Φ = ΦΦ E 0 Aproxmatví vlová fukce dává eerg, která je vždy větší (ebo rova) E 0 Leárí varačí fukce: Φ = k k W Podmíka pro alezeí ejvhodější varačí fukce (mmálí eerge): = 0 ck f c =>
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu
Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254
Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé
8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy
cvičící 8. cvičeí 4ST1 Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST1 Neparametricé testy Neparametricétesty využíváme,
Intervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
Nepředvídané události v rámci kvantifikace rizika
Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede
V. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor
1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců
FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL
Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr
Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).
Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí
Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti
Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou
Chyby přímých měření. Úvod
Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,
6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí
LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:
P1: Úvod do experimentálních metod
P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu
Iterační výpočty projekt č. 2
Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....
Geometrická optika. Zákon odrazu a lomu světla
Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost
P. Girg. 23. listopadu 2012
Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt
PRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
Matematika I, část II
1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího
Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus
Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová
a další charakteristikou je četnost výběrového souboru n.
Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DA prof. Ig. Jří Holčík, CSc. INVESICE Isttut DO bostatstky ROZVOJE VZDĚLÁVÁNÍ a aalýz IV. LINEÁRNÍ KLASIFIKACE pokračováí Isttut bostatstky a aalýz (SUPPOR VECOR MACHINE SVM) SEPARABILNÍ
Lineární a adaptivní zpracovní dat. 5. Lineární filtrace: FIR, IIR
Leárí a adaptví zpracoví dat 5. Leárí fltrace: FIR, IIR Dael Schwarz Ivestce do rozvoje vzděláváí Opakováí 2 Co je to fltrace? Co je to fltr? A jak ho popsujeme? Jaký je vztah Z trasformace a Fourerovy
Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že
Spolehlivost a diagnostika
Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore
Interakce světla s prostředím
Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos
L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.
Pravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
Doc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
Náhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
Lineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
Analytická geometrie
MATEMATICKÝ ÚSTAV Slezská uverzt N Rybíčku, 746 0 Opv DENNÍ STUDIUM Alytcká geoetre Té 5.: Shodá zobrzeí Defce 5.. Zobrzeí f eukldovského prostoru E do eukldovského prostoru E se zývá shodé (zoetrcké),
2. Vícekriteriální a cílové programování
2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě
2 STEJNORODOST BETONU KONSTRUKCE
STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů
FLUORIMETRIE. Jan Fähnrich. Obecné základy
FLUORIMETRIE Ja Fährch Obecé základ Fluormetre je aaltcká metoda vužívající schopost ěkterých látek vsílat (emtovat) po předchozím převedeí do vzbuzeého (exctovaého) stavu fluorescečí zářeí v ultrafalové
3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.
3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet
Výstup a n. Vstup. obrázek 1: Blokové schéma a graf paralelní soustavy
Paralelí soustava Vstup a a Výstup a Vstup a Výstup a a obrázek : Blokové schéma a graf paralelí soustavy paralelí soustava je v bezporuchovém stavu je-l v bezporuchovém stavu prvek (tzv. adbytečé spojeí
4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
1 ROVNOMĚRNOST BETONU KONSTRUKCE
ROVNOMĚRNOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí rovoměrosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů
Prorážka DOC. ING. PAVEL HÁNEK, CSC. Uvedené materiály jsou doplňkem přednášek předmětu 154GP10
Prorážka DOC. ING. PAVEL HÁNEK, CSC. Uvedeé materiály jsou doplňkem předášek předmětu 154GP10 014 HLAVNÍ PROJEKČNÍ PRVKY Směr pokud možo volit přímý tuel. U siličích t. miimálí poloměr 300 m, u železičích
1 Základy Z-transformace. pro aplikace v oblasti
Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi
odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
, jsou naměřené a vypočtené hodnoty závisle
Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,