Soustavy lineárních rovnic

Podobné dokumenty
Lineární algebra. Soustavy lineárních rovnic

Základy matematiky pro FEK

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

0.1 Úvod do lineární algebry

Soustava m lineárních rovnic o n neznámých je systém

SOUSTAVY LINEÁRNÍCH ROVNIC

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,

Soustavy lineárních rovnic

0.1 Úvod do lineární algebry

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n,

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic

Matematika B101MA1, B101MA2

VĚTY Z LINEÁRNÍ ALGEBRY

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer

1 Determinanty a inverzní matice

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Soustavy linea rnı ch rovnic

Soustavy lineárních rovnic a determinanty

IB112 Základy matematiky

1 Vektorové prostory.

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

(Cramerovo pravidlo, determinanty, inverzní matice)

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry. TU v Liberci

1 Řešení soustav lineárních rovnic

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Základní pojmy teorie množin Vektorové prostory

8 Matice a determinanty

7. Důležité pojmy ve vektorových prostorech

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel

DEFINICE Z LINEÁRNÍ ALGEBRY

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a a 2 2 1

Připomenutí co je to soustava lineárních rovnic

Soustavy lineárních algebraických rovnic SLAR

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice 1/19

Lineární algebra - I. část (vektory, matice a jejich využití)

Aplikovaná numerická matematika - ANM

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

1 Soustavy lineárních rovnic

7. Lineární vektorové prostory

Operace s maticemi. 19. února 2018

Úvod do lineární algebry

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Úvodní informace Soustavy lineárních rovnic. 12. února 2018

Základy matematiky pro FEK

Co je obsahem numerických metod?

[1] LU rozklad A = L U

Lineární algebra Operace s vektory a maticemi

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Podobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak,

2.6. Vlastní čísla a vlastní vektory matice

Operace s maticemi

Přednáška 4: Soustavy lineárních rovnic

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Základy maticového počtu Matice, determinant, definitnost

Vektory a matice. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

Číselné vektory, matice, determinanty

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

VEKTOROVÝ PROSTOR. Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru.

P 1 = P 1 1 = P 1, P 1 2 =

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10

FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

Matematika. Kamila Hasilová. Matematika 1/34

Matematika 2 pro PEF PaE

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

Vektorový prostor. d) Ke každému prvku u V n existuje tzv. opačný prvek u, pro který platí, že u + u = o (vektor u nazýváme opačný vektor k vektoru u)

Numerické metody a programování

2. Lineární algebra 2A. Matice a maticové operace. 2. Lineární algebra

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Lineární algebra. Matice, operace s maticemi

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

Soustavy lineárních rovnic-numerické řešení

Numerické metody a programování. Lekce 4

ftp://math.feld.cvut.cz/pub/olsak/linal/

z textu Lineární algebra

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC

Cvičení z Numerických metod I - 12.týden

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

Matematika I pracovní listy

TECHNICKÁ UNIVERZITA V LIBERCI

Transkript:

Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010

Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a m1 x 1 + a m2 x 2 + + a mn x n = b m kde a ij, b i, (i = 1,, m; j = 1,, n) jsou reálná čísla a x j jsou neznámé, se nazývá soustava m lineárních rovnic o n neznámých, stručně soustava lineárních rovnic (ozn S(m, n)) Čísla a ij nazýváme koeficienty soustavy, čísla b i absolutními členy

Soustava lineárních rovnic Definice Matice a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn se nazývá matice soustavy Matice a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 A r = a m1 a m2 a mn b m je rozšířená matice soustavy Vektor x = (x 1,, x n ) se nazývá vektor řešení soustavy a vektor b = (b 1,, b m ) je vektor absolutních členů

Soustava lineárních rovnic Pokud x 1 x 2 x =, b = x n pak soustavu S(m, n) můžeme zapsat jako A x = b b 1 b 2 b m Jestliže ponecháme vektory x a b jako řádkové vektory, potom A x T = b T

Věta (Frobeniova věta) Soustava lineárních rovnic S(m, n) má řešení právě tehdy, když hodnost matice soustavy A se rovná hodnosti rozšířené matice soustavy A r Věta Nechť soustava lineárních rovnic S(m, n) má řešení, h je hodnost matice soustavy a n je počet neznámých Platí: a) Jestliže h = n, má soustava S(m, n) právě jedno řešení b) Jestliže h < n, má soustava S(m, n) nekonečně mnoho řešení závislých na n h parametrech

Věta (Frobeniova věta) Soustava lineárních rovnic S(m, n) má řešení právě tehdy, když hodnost matice soustavy A se rovná hodnosti rozšířené matice soustavy A r Věta Nechť soustava lineárních rovnic S(m, n) má řešení, h je hodnost matice soustavy a n je počet neznámých Platí: a) Jestliže h = n, má soustava S(m, n) právě jedno řešení b) Jestliže h < n, má soustava S(m, n) nekonečně mnoho řešení závislých na n h parametrech

Nechť soustava lineárních rovnic S(m, n) má nekonečně mnoho řešení Vztah zahrnující všechna řešení soustavy se nazývá obecné řešení soustavy Dosadíme-li za volné neznámé konkrétní reálná čísla, dostaneme jedno řešení soustavy, které nazýváme partikulární řešení soustavy Partikulární řešení soustavy, ve kterém jsou všechny volné neznáme rovny nule, se nazývá základní řešení soustavy

Definice Soustava lineárních rovnic S(m, n) se nazývá homogenní, jestliže platí b 1 = = b m = 0 a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a m2 x 2 + + a mn x n = 0 Homogenní soustavu lineárních rovnic budeme stručně značit S 0 (m, n)

Věta Homogenní soustava lineárních rovnic má vždy řešení Označíme-li h hodnost matice soustavy a n počet neznámých, platí: a) Jestliže h = n, má homogenní soustava jediné řešení x = (0,, 0) b) Jestliže h < n, má soustava nekonečně mnoho řešení závislých n h parametrech Věta Nechť matice A soustavy lineárních rovnic S 0 (m, n) má hodnost h(a) = h < n Obecné řešení soustavy tvoří vektorový prostor dimenze n h, takže báze tohoto prostoru obsahuje n h lineárně nezávislých řešení a všechna ostatní řešení jsou jejich lineárními kombinacemi

Věta Homogenní soustava lineárních rovnic má vždy řešení Označíme-li h hodnost matice soustavy a n počet neznámých, platí: a) Jestliže h = n, má homogenní soustava jediné řešení x = (0,, 0) b) Jestliže h < n, má soustava nekonečně mnoho řešení závislých n h parametrech Věta Nechť matice A soustavy lineárních rovnic S 0 (m, n) má hodnost h(a) = h < n Obecné řešení soustavy tvoří vektorový prostor dimenze n h, takže báze tohoto prostoru obsahuje n h lineárně nezávislých řešení a všechna ostatní řešení jsou jejich lineárními kombinacemi

Gaussova eliminační metoda Jordanova metoda úplné eliminace Cramerovo pravidlo Definice Dvě soustavy lineárních rovnic S 1 (m, n) a S 2 (m, n) se stejnými neznámými x 1,, x n se nazývají ekvivalentní, jestliže množina všech řešení soustavy je rovna množině všech řešení soustavy Ekvivalentní úpravy soustavy lineárních rovnic (R1) záměna pořadí rovnic, (R2) násobení libovolné rovnice nenulovým reálným číslem, (R3) přičtení lineární kombinace rovnic soustavy k jiné rovnici soustavy, (R4) vynechání rovnice, která je lineární kombinací jiných rovnic dané soustavy, (R5) záměna pořadí neznámých

Gaussova eliminační metoda Jordanova metoda úplné eliminace Cramerovo pravidlo Definice Dvě soustavy lineárních rovnic S 1 (m, n) a S 2 (m, n) se stejnými neznámými x 1,, x n se nazývají ekvivalentní, jestliže množina všech řešení soustavy je rovna množině všech řešení soustavy Ekvivalentní úpravy soustavy lineárních rovnic (R1) záměna pořadí rovnic, (R2) násobení libovolné rovnice nenulovým reálným číslem, (R3) přičtení lineární kombinace rovnic soustavy k jiné rovnici soustavy, (R4) vynechání rovnice, která je lineární kombinací jiných rovnic dané soustavy, (R5) záměna pořadí neznámých

Gaussova eliminační metoda Gaussova eliminační metoda Jordanova metoda úplné eliminace Cramerovo pravidlo Postup 1 Soustavě lineárních rovnic S(m, n) přiřadíme její rozšířenou matici A r 2 Rozšířenou matici soustavy převedeme ekvivalentními úpravami na trojúhelníkovou matici (matici ve schodovitém tvaru) 3 Rozhodneme o řešitelnosti soustavy a počtu řešení 4 Trojúhelníkové matici (matici ve schodovitém tvaru) přiřadíme soustavu lineárních rovnic ekvivalentní soustavě S(m, n) 5 Vzniklou soustavu lineárních rovnic zdola vyřešíme

Jordanova metoda úplné eliminace Gaussova eliminační metoda Jordanova metoda úplné eliminace Cramerovo pravidlo Postup 1 Rozšířenou matici soustavy převedeme na trojúhelníkovou matici 2 V trojúhelníkové matici vynulujeme prvky nad hlavní diagonálou 3 Na hlavní diagonále takto upravené matice vytvoříme pomocí ekvivalentních úprava jedničky 4 Výsledné matici zpětně přiřadíme soustavu, kterou již snadno vyřešíme

Cramerovo pravidlo Gaussova eliminační metoda Jordanova metoda úplné eliminace Cramerovo pravidlo Věta Mějme soustavu n lineárních rovnic o n neznámých x 1,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a n1 x 1 + a n2 x 2 + + a nn x n = b n Jestliže je matice soustavy A regulární, pak má soustava právě jedno řešení tvaru x j = det A j, j = 1,, n, det A kde A j je matice vzniklá z matice soustavy A výměnou jejího j-tého sloupce sloupcem pravých stran