8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu: a Typy posloupostí: A) oečé {,,,,3, 3,4, 4} B) Nekoečé {,,3,4,5,6,... } 3 4 5 A) Rostoucí pro každé dva sousedí čley platí a a + Např. {,,3,4,5,6,... } B) lesající pro každé dva sousedí čley platí a a + Např.,,,,,... 3 4 5 A) Posloupost daá výčtem prvků {,,3,4,5,6,...} B) Posloupost daá vzorcem pro -tý čle = a) rostoucí apř. : { } = Posloupost rostoucí a klesající
b) klesající apř. = Jedotlivé čley poslouposti můžeme zobrazovat jako body v roviě { } = = Zde je vidět růst a klesáí posloupostí. Defiice rostoucí poslouposti: jsou-li m, N, a < a m < m Defiice klesající poslouposti: jsou-li m, N, a > a m < m Příklady: ) Posloupost { } ) Posloupost a = a = ( < ) > ) ( = je rostoucí... apř. a = = je klesající a = ( < ) ( < ) Rozhoděte, zda posloupost a = + = je rostoucí ebo klesající Řešeí: Budeme předpokládat, že posloupost je klesající. Pro její dva čley a a a + by mělo platit a > a +. + a = + + > + + + > + a + = ( ) + + =. ( + ) ( + ) ( ) ( ) + +
+ > + + 0 > tato erovost eí splěa Původí předpoklad byl esprávý, posloupost je rostoucí. Cvičeí Rozhoděte, zda je rostoucí ebo klesající posloupost:.).) 3.) 4.) 3 = ( + ) + + = = ( ) + 5.) 6.) { } 7.) = = + = = R ai R ai R Aritmetická posloupost = posloupost čísel, kde sousedí čley se liší vždy o totéž číslo - difereci d. apř. {,5,8,,4,7,...} posloupost zadaá výčtem V této poslouposti je prví čle a =, diferece d = 3 ( sousedí čley se liší vždy o 3 ) Platí : a + = a + d d = a + a Vzorec pro -tý čle Odvodíme a příkladě: Je dáa aritmetická posloupost, ve které platí: a =, d = 3, určete desátý čle. a = a = a + d = + 3= 4 a 3 = a + d = a + d + d = a + d = + 6= 7 a 4 = a 3 + d = a + d + d = a + 3d = + 9= 0. a = a +(-)d a 0 = a+9d=+7= 8 3
Odvodili jsme vzorec pro tý čle: a = a +(-)d Pokud je posloupost dáa libovolými dvěma čley a r, a s, pak platí vztah: a s = a r +(s-r)d Je dáa aritmetická posloupost, ve které platí: a 4 = -, a 8 = 7 Určete difereci a dvacátý čle. Použijeme vzorec a s = a r +(s-r)d a 8 = a 4 + 4d 7 = - + 4d d = a 0 = a 8 + d a 0= 7 +. = 7 + 4 = 3 Součet -čleů aritmetické poslouposti: Určete součet všech přirozerých číse od do 00. Řešeí: Jedá se o aritmetickou posloupost, kde a =,d =. Její součet apíšeme takto: s 00 = + + 3 + 4 + 5 + 6 +.+ 98 + 99 + 00 s 00 = 00 + 99 + 98 + 97 + 96 + 95 +... + 3 + + s 00 = 0 +0+0+0+0+0+.+0+0+0 s 00 = 00. 0 s 00 = 50. 0 =5050 Obecě platí: s = ( a + a ) 00. 0 V aritmetické poslouposti je a = 6, a 5 = 8. Určete součet prvích dvaceti čleů. Řešeí: Pro dosazeí do vzorce s ( a a ) difereci d. Platí: 0 = + potřebujeme zát čle a 0. jeho alezeí potřebujeme určit 0 0 a = a + 3d 5 d = a a 3 5 8 6 = = 4 3 Čle a 0 : a0 = a5 + 5. d = 8 + 5. 4 = 78 Nyí můžeme určit s 0 : s 0 = 0( + 78) = 800 a = a - d = 6-4 = 4
4 3 Posloupost zadaá pomocí -tého čleu: { } = má tyto čley a = ; a =5 ; a 3 =9... d=4 Důkaz, že se jedá o aritmetickou posloupost: čle a = 4-3 čle a + = 4(+) - 3 = 4 + 4-3 = 4 + Mělo by platit: a + - a = d Po dosazeí dostaeme: 4 + - 4-3 = d d = - Dokázali jsme, že se jedá o aritmetickou posloupost s diferecí d = -. Pokud by při řešeí z rovice evypadlo, posloupost by aritmetická ebyla. Cvičeí:. Najděte součet prvích 7 čleů arimetické poslouposti, víte-li, že 6. čle je (-6) a součet. a 5. čleu je 3.. V aritmetické poslouposti je čle a 4 =3,4 ; a 7 =5,8. Určete defereci d,a, a 0 a součet s 0. 3. Železé roury se skládají do vrstev tak, že roury každé vrstvy horí zapadají do mezer vrstvy dolí. Do kolika vrstev se složí 0 roury, má-li ejkratší vrstva 3 roury? olik rour má vrstva ejspodější? 4. V aritmetické poslouposti je a 4 = 7, a 8 = 8, kolik čleů této poslouposti dává součet 504? [ 7 ] 5. Jsou-li prvky a, d, a,, s prvky aritmetické poslouposti, určete zbývající v případech že: a) a = 5 ; d = 5 3 ; a 3 =? ; s 3 =? b) a 0 = -66,5 ; d = 7 ; a =? ; s 40 =? c) a = -5 ; a = ; d =? ; s =? d) a = 5 ; s 5 = 0 ; d = 0 ; a 5 =? e) a = 40 ; d = ; s = 007,5 ; =? ; a =? [ a) 35;35 b) 0;-730 c) 3 3 ;36 d) - 5 7 ; -5 e) = 3;30;a = 5;-4,5 ] 6. Délky stra pravoúhlého trojúhelíku tvoří tři po sobě jdoucí čley aritmetické poslouposti. Jak jsou stray dlouhé, je-li obsah trojúhelíku S = 6 dm? [ 3 ; 4 ; 5 ] 7. V aritmetické poslouposti platí: a + a 5 = -8 ; a + a 6 = -4. Napište prvích pět čleů této poslouposti. [ -8 ; -6 ; -4 ; - ; 0 ] 8. Určete s 0 v aritmetické poslouposti,ve které platí a + a 5 = 0 ; a 3 + a 7 = 6. [ 90 ] 9. Určete prvích šest čleů poslouposti, která je dáa rekuretím vztahem a podmíkami: a) a = ; a + = a - - b) a = ; a + = a - - c) a = ; a = ; a + = a + - a [a),-,-,0,-5,9 ; b),,,-3,4,0 ; c),,,-,-,- ] 50 0. Rozhoděte, zda posloupost s - tým čleem a = { } = [ e ] je aritmetická. 5
. Zjistěte, zda čísla 77, 7 jsou čley aritmetické poslouposti kde a =, a = 0. 7 [77 ao, 7 e ]. Za vykopáí study bylo zaplaceo 08 č. Jak hluboká je studa, jestliže vykopáí prvího metru stálo č, a každý ásledující metr byl o 4 č dražší? olik stálo vykopáí posledího metru? [ hloubka = 8 m, a 8 = 40 č ] 3. Turista ujde prví de 40 km a každý další de o 3 km méě ež de předcházející. Určete, kolik kilometrů ujde za týde. [ 7 km ] 4. Určete součet všech přirozeých čísel dělitelých třemi a meších ež tisíc. [ 66833 ] 5. Aritmetická posloupost je určea prvím čleem a = 3 a diferecí d =. olik prvích čleů této poslouposti je třeba sečíst, aby součet byl 0? [ 0 ] 6