.6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom příslušný k dané čtvercové matici; jak vypočítat vlastní čísla obecných matic a speciálně trojúhelníkových matic; definici hermitovské, ortogonální a unitární matice, jejich vlastnosti týkající se vlastních čísel a vektorů; co jsou to podobnostní transformace a jak souvisejí s vlastními čísly matic. Klíčová slova této kapitoly: vlastní (charakteristické) číslo a vektor matice, charakteristická matice, charakteristický polynom, hermitovská, ortogonální a unitární matice, podobnost matic, podobnostní transformace. Čas potřebný k prostudování učiva kapitoly: 0,75 +,0 hodiny (teorie + řešení příkladů)
Nechť je dána čtvercová matice A řádu n a nenulový vektor (sloupcová matice) u typu n,. Platí-li ( ) Au = λu, tzn. vynásobení vektoru u zleva maticí A je ekvivalentní vynásobení vektoru u určitým číslem λ, nazýváme vektor u vlastním (charakteristickým) vektorem matice A a číslo λ příslušným vlastním (charakteristickým) číslem matice A. Charakteristická matice a polynom. Charakteristickou maticí čtvercové matice a a... a n... n A = a a a nazýváme matici............ an an... ann λ a a... a n a λ a... a λe A = n............, an an... λ a nn kde veličina λ je reálná nebo komplexní proměnná. Charakteristická matice je zřejmě funkcí proměnné λ. Polynom det ( λe A ) n -tého řádu v proměnné λ, tj. determinant matice charakteristické k matici A, nazýváme charakteristickým polynomem. Výpočet vlastních čísel. Vlastními čísly matice A jsou kořeny λ, λ,..., λ n charakteristického polynomu ( ) det λe A. Uvedená věta teoreticky řeší problém nalezení vlastních čísel, ale prakticky není situace tak růžová, protože nalezení kořenů polynomu vyššího než třetího stupně je obecně komplikovaný úkol. Vlastní čísla trojúhelníkové matice jsou rovna prvkům v hlavní diagonále (hlavním prvkům).
Důkaz. Protože determinant trojúhelníkové matice je roven součinu hlavních prvků, je charakteristický polynom trojúhelníkové matice dán jednoduchým součinem ( λ a )( λ a ) ( λ a ), jehož kořeny jsou zjevně čísla a, a,..., a nn. Cbd.... nn Hermitovské, ortogonální a unitární matice a jejich vlastní čísla a vektory. a) Hermitovskou (hermitovsky symetrickou) maticí nazýváme matici, pro niž = tzn. současnou transpozici matice a její komplexní sdružení). T b) Ortogonální maticí rozumíme matici, pro kterou platí A = A. A T = A, neboli T + A A A (pruh značí komplexní sdružení, horní index + tzv. hermitovské sdružení, c) Unitární maticí rozumíme matici, pro kterou platí T + A = A A. Všechny tři typy matic mají v přírodních vědách velmi významné uplatnění. a) Vlastní čísla hermitovské matice jsou reálná. b) Vlastní čísla reálné symetrické matice jsou reálná. c) Modul (absolutní hodnota) každého vlastního čísla unitární matice je roven jedné. d) Vlastní vektory hermitovské nebo unitární matice příslušné různým vlastním číslům jsou navzájem ortogonální. Vlastní čísla a podobnostní transformace. Čtvercové matice A, B téhož řádu nazýváme podobnými, existuje-li taková matice P, že platí B= P AP. Uvedený přechod od matice A k matici B nazýváme podobnostní transformací. Podobné matice mají stejný charakteristický mnohočlen, stejná vlastní čísla a stejnou stopu. a) Nechť A je hermitovská matice. Pak existuje unitární matice U taková, že matice U AU je diagonální (a reálná). b) Nechť A je reálná symetrická matice. Pak existuje reálná ortogonální matice P taková, že matice P AP je diagonální (a samozřejmě také reálná). V posledních dvou větách je skryta základní idea numerických výpočtů vlastních čísel. Matice se vhodnou podobnostní transformací převede na trojúhelníkový (nebo dokonce diagonální) tvar, pro který, jak již víme, platí, že vlastní čísla jsou totožná s hlavními prvky. Protože podobnostní transformace nemění vlastní čísla, jsou nalezená čísla také vlastními čísly původní matice.
Shrnutí kapitoly: Problém vlastních čísel a vlastních vektorů hraje v moderních partiích přírodních věd nezastupitelnou roli. K jeho pochopení je nutno nadefinovat základní pojmy. Vlastní číslo λ a příslušný vlastní vektor (sloupcová matice) u jsou definovány rovnicí Au = λu. Charakteristickou maticí čtvercové matice A nazýváme matici λe A, kde veličina λ je reálná nebo komplexní proměnná. Charakteristickým polynomem nazýváme determinant matice charakteristické k matici A, tj. det ( λe A ). Problém nalezení vlastních čísel matice teoreticky řeší tato věta: Vlastními čísly matice A jsou kořeny charakteristického polynomu det ( λe A ). Prakticky je ale hledání kořenů polynomů vyšších stupňů obecně náročným problémem. Pouze u trojúhelníkových matic platí jednoduchý výsledek, že jejich vlastní čísla jsou přímo rovna hlavním prvkům. Často používají tzv. hermitovské, ortogonální a unitární matice. Jejich vlastní čísla a vektory mají zajímavé vlastnosti. Numerické metody výpočtu vlastních čísel jsou založeny na tzv. podobnostních transformacích, tj. na transformacích tvaru B= P AP. Platí totiž, že podobnostní transformace vlastní čísla nemění. Stačí proto vhodnou podobnostní transformací přejít od dané matice k matici trojúhelníkové, u které vlastní čísla určíme přímo. Otázky: Definujte vlastní (charakteristická) čísla a vektory čtvercové matice. Definujte charakteristickou matici a charakteristický polynom příslušné k dané čtvercové matici. Jak souvisejí vlastní čísla a charakteristický polynom dané čtvercové matice? Jak vypočteme vlastní čísla trojúhelníkové (nebo diagonální) matice? Podejte důkaz! Jak je definována hermitovská, ortogonální a unitární matice? Co je to hermitovské sdružení? Co platí pro vlastní čísla hermitovské, reálné symetrické a unitární matice? A co platí pro Vlastní vektory hermitovské nebo unitární matice, příslušné různým vlastním číslům? Co je to podobnostní transformace a které matice nazýváme podobnými? Co platí pro charakteristický mnohočlen a vlastní čísla podobných matic? Jaká je základní idea numerických algoritmů pro výpočet vlastních čísel?
Řešený příklad. Nalezněte vlastní čísla a vektory matice 5 3 A. Řešení. Vlastní čísla nalezneme jako kořeny charakteristického polynomu, tzn. jako řešení det λe A = 0 : rovnice ( ) λ + 5 3 λ ( )( ) ( ) = λ+ λ = λ + λ = 5 3 3 4 0. Řešením této kvadratické rovnice jsou čísla λ =, λ = 4. Vlastní vektor u, příslušný vlastnímu číslu λ =, je podle definice vektor, vyhovující maticové rovnici Au= λ u, kterou snadno upravíme na tvar ( λ ) E A u = 0. Jedná se o maticově zapsanou homogenní (tj. bez pravé strany) soustavu dvou lineárních rovnic o dvou neznámých, jejíž maticí je charakteristická matice k matici A s dosazenou hodnotou λ za proměnnou λ. Tuto soustavu snadno vyřešíme. Protože matice soustavy je singulární (determinant je roven nule), očekáváme nekonečně mnoho řešení: E + 5 3 6 3 A u = = = 0 = 0 u u 0 0 u. ( λ ) Volíme např. u = k, kde k je reálný (nebo i komplexní) parametr, pak z první rovnice soustavy u = k. Vlastním vektorem u, příslušným vlastnímu číslu λ =, je tedy libovolný nenulový vektor tvaru k u = = k k, k 0. Obdobně nalezneme vlastní vektory u, příslušné vlastnímu číslu λ = 4: ( λ ) E 4+ 5 3 3 3 A u = = = 0 = 0 4 u 6 u 0 0 u. Volbou např. u = k obdržíme z první rovnice soustavy u = 3k. Vlastním vektorem u, příslušným vlastnímu číslu λ = 4, je tedy libovolný nenulový vektor tvaru u 3k 3 = = k k, k 0. Vlastní vektory jsou tedy určeny až na libovolný nenulový multiplikativní činitel k, což plyne z definice vlastních vektorů a platí zcela obecně.
Příklad : Nalezněte vlastní čísla a vektory matice: 4 a) A ; b) B. 4 5 6 Řešení příkladů: a) λ =, λ = 3, k u =, u = k, k 0 ; b) λ = 5, λ =, k u =, u = k, k 0. 6 Další zdroje:. POLÁK, J. Přehled středoškolské matematiky. 6. vyd. Praha: Prometheus, 997.. POLÁK, J. Středoškolská matematika v úlohách I.. vyd. Praha: Prometheus, 996. 3. POLÁK, J. Středoškolská matematika v úlohách II.. vyd. Praha: Prometheus, 996. 4. REKTORYS, K. a spol. Přehled užité matematiky. 6. přepr. vyd. Praha: Prometheus, 995. ZÁVĚR: [Tady klepněte a pište]