.9.1 Věty o itmech I Předpokldy: 910 Pedgogická poznámk: Tto náledující hodin e djí tihnout njednou, pokud oželíte počítání v tbulce někteé příkldy n konci příští hodiny. Přijde mi to tochu škod, nžím e tudentům ukázt, že itmy byly dříve opvdu užitečné. Pedgogická poznámk: Tbulku mozřejmě kelím n tbuli všechny odvozování povádím n ní bez použití pojektou. Objev itmů Konec 16. toletí: ozvoj mořeplvby, obchodu kontuování velká potřeb ychlého počítání ozvoj metod n undnění výpočtů. Poblémy náobením (čítání je ještě neitelné, le náobení čtyřmítných číel je docel poblém), dělením, umocňování odmocňováním. Počátek 17. toletí: objev itmů. Př. 1: Doplň tbulku: x 0 1 5 6 10 y = x x 0 1 5 6 10 y = x 1 8 16 6 10 Chceme (bez klkulčky) počítt kolik je 16. Spávný výledek 16 = 6. Můžeme ho zíkt i jink (když i uvědomíme, že náobíme mocniny ): + 6 16 = = = = 6. Potřeh: Výledek náobení číel v duhém řádku tbulky, jme zíkli čítáním číel v jejím pvním řádku. x 0 1 5 6 10 y = x 1 8 16 6 10 Význm číel v tbulce můžeme vyjádřit i jink (obáceně): y = x 0 1 5 6 10 x 1 8 16 6 10 Zkuíme jinou dvojici číel z duhé řádky: 6 16 = 10. Sečteme itmy těchto dvou číel (číl z pvní řádky) 6 + = 10. y = x 0 1 5 6 10 x 1 8 16 6 10 Zřejmě pltí: Náobením dvou číel ve duhém řádku zíkáme čílo, kteé je pod oučtem odpovídjících číel v pvním řádku. 1
16 6 = 18 + 6 = 10 ( 6 ) 16 + 6 = 10 = 1 6 S tbulkou předchozím potřehem: Můžeme převádět náobení n čítání (k čílům z duhého řádku, kteá chceme vynáobit, njdeme číl v pvním řádku, kteá ečteme, pod jejich oučtem objevíme výledek náobení). Logitmu při zákldu dokážeme počítt po všechn kldná číl ( tím tbulku zhutit, bychom nebyli odkázáni pouze n mocniny dvou). Mohli bychom i tím ulehčit náobení (v dnešní době klkulček to nemá cenu, le v době bez klkulček to byl ohomná věc. Pomůcce, kteá tuto vltnot itmů využívl, e říká itmické pvítko ptřil k nutné výbvě kždého inžený jko dne klkulčk nebo počítč). Důkz: =, =, Po kždé > 0; 1 po všechn kldná číl, pltí: = +. ( ) = + = = (čítání exponentů při Spočteme oučin jink: náobení mocnin). ( ) + Spojíme ob způoby: = =. Exponenty e muí ovnt: ( ) = +. Př. : Zpiš jediným itmem zjednoduš: ) 8 + 6 + 6 9 c) 0,1 5 + 0,1 ) 8 + = 16 = 6 + 6 9 = 6 6 = c) 0,1 5 + 0,1 = 0,1100 = Př. : Zpiš jko oučet dvou itmů: ) 6 18 c) 7 ) 6 = + = 1+ 18 = 9 + = + c) 7 = 7 + 1 Polední příkld je podezřelý: 7 = 7 + 1. Může ovnot pltit? Může, potože pltí 1 = 0 (vše ouvií e vším, ni by ná nenpdlo, že nulová hodnot 1 je nutná po pltnot vzoce n oučet itmů). Pedgogická poznámk: Řešení poledního příkldu je nutné tudentům nbídnout. Ve kutečnoti je nemylné je pouze kokem k poznámce, kteá po příkldu náleduje. Větu o oučinu můžeme ozšířit i po více číel:
Př. : Doplň náledující větu, tk by byl ozšířením předchozího vzoce: Po kždé > 0; 1 po všechn kldná číl 1,,... n pltí: ( 1 n ) =... Uvnitř itmu je oučin více číel pvidlo ho přemění n oučet více itmů. Po kždé > 0; 1 po všechn kldná číl 1,,... n pltí: = + +... +. 1 n 1 n Př. 5: Zjednoduš výz 0 5. 0 5 = + 5 + 5 = = 1 Logitmy můžeme použít i po převedení dělení: y = x 0 1 5 6 10 x 1 8 16 6 10 10 = 16 6 10 6 = 10 10 6 = 16 = 6 Po kždé > 0; 1 po všechn kldná číl, pltí: =. Důkz vynecháme. Př. 6: Pomocí vzoce = zjednoduš: ) 1 6 1 1 = = = 1 6 = = = 1 6 ) Př. 7: Zjednoduš bez použití vzoce = výzy: ) 1 6. ) 1 = = + = = 6 = + = = 1 Pedgogická poznámk: Studenti mjí tendenci používt ob vzthy jediným způobem, nvíc ve chvíli, kdy e ve výzu objeví mínu utomticky nzují vzoec po podíl. Cílem příkldu je, by e pokuili podívt n příkld i z jiného úhlu vyřešit ho i méně přímočým způobem.
Př. 8: Převeď výzy n itmu jediného číl: ) 0 5 + 9 0, 8 0, 100 + 0, 0, 5 0 15 0 5 + 9 = = = = 1 9 5 5 8 0,5 8 100 + 0,5 = = 0, 0 = 100 ) 0, 0, 0, 0, 0, Př. 9: Zjednoduš výzy: ) 5 90 5 5. ) 90 = 9 + 10 = 5 5 5 5 5 5 5 5 + 5 + 5 5 + 5 5 5 = 5 5 = 1 = + 6 = = + + + = = 1 Pedgogická poznámk: Studenti mjí tendenci e zbvovt výzu 5 tímto způobem: 5 = 5 = 5 6. Nejdříve tudenty nechávám chybu hledt, poté i poblém ukážeme u tbule. Jko doplňkový úkol poté zdávám upvení výzu 5 n itmu z jednoho číl. Logitmy zjednoduší náobení n čítání, nemohly by zjednodušit umocňování? Př. 10: Njdi vzth po odtnění mocniny z výzu uvnitř itmu: =. = = + + = = exponent číl uvnitř itmu pdnul před itmu zřejmě pltí: =. Ověříme: kát kát =... = + +... + =. Pedgogická poznámk: Předchozí příkld většinou necháváme otevřený do náledující hodiny. Př. 11: Petáková: tn 1/cvičení 7 c) tn 1/cvičení 7 c) e) Shnutí: Logitmy převádějí náobení n čítání.
5