Centrovaná optická soustava

Rozměr: px
Začít zobrazení ze stránky:

Download "Centrovaná optická soustava"

Transkript

1 Cetová optická soustv vě lámvé kulové ploch: Pojem cetová optická soustv zmeá, že splývjí optické os vou či více optických pvků. Záklím příklem tkové optické soustv jsou vě lámvé kulové ploch optickou osou kulové ploch je kžá přímk jsoucí střeem kulové ploch. jejich společá optická os pk musí pocházet oěm stře křivosti. Pví kulová ploch má ohiskové ovi ϕ, ϕ ohiskové vzáleosti, uhá kulová ploch... má ohiskové ovi ϕ, ϕ ohiskové vzáleosti, ále ozčíme: Optický itevl Δ. vzáleost ϕ o ϕ tj. vzáleost přemětové ohiskové ovi uhé lámvé ploch o ozové ohiskové ovi pví lámvé ploch klá ve směu postupu světl Uvžme: Souřice přemětu po pví lámvou plochu jsou,. Jeho oz, vtvořeý touto plochou je součsě přemětem, po. lámvou plochu, kteá vtvoří výsleý oz,. Pole oázku pltí: A po zozeí pví kulovou plochou pltí Newtoov ovice: Ní použijeme Newtoovu ovici po uhou kulovou plochu, osíme o ich z přechozích vzthů vásoíme souřicí : Alogick po uhou souřici:

2 Po výsleý oz te ostáváme vzth: Požvek ekoečost souřic výsleého ozu ám pk á možost zjistit polohu přemětové ohiskové ovi ϕ celé soustv. Z ulovosti jmeovtelů jeouše ple e Pooě polohu ozové ohiskové ovi ϕ celé soustv zjistíme z ekoečosti souřic výchozího přemětu: lim lim e Při zlosti ohisek pk můžeme zvést ohiskové souřice celé soustv, /, / jko vzáleosti výchozího přemětu výsleého ozu o ohisek soustv. Pole oázku pltí: e e Ní zjistíme, jké vzth pltí po tto souřice: Je viět, že kž eiujeme přemětou ozovou ohiskovou vzáleost celé soustv jko: osteme po ohiskové souřice ozu výz: Ozové ohiskové ovice po celou optickou soustvu mjí te posto stejý tv jko po jeouchou kulovou plochu! logick i po z-ové souřice

3 3 Poz.: Teto postup elze použít po speciálí příp Δ 0 eoť lo e, e /,, / Pk užíváme půvoí ovice po ozové souřice uhé lámvé ploch: Tlustá čočk Je speciálí příp cetové optické soustv, k optické postřeí s solutím ieem lomu je ohičeo věm lámvými kulovými plochmi s polomě,, jejichž vchol jsou ve vzáleosti tlouštk čočk, přičemž okolí postřeí má solutí ie lomu o viz o.. Učeí ohiskových vzáleostí: Pole záklích vzthů po oecou lámvou kulovou plochu vpočítejme ejpve ohiskové vzáleosti jeotlivých kulových ploch: A po uhou kulovou plochu: ále pole oázku vjáříme optický itevl osíme z přechozích ovic:

4 A í už můžeme vpočítt ohiskové vzáleosti celé optické soustv tlusté čočk. Nejpve přemětá ohisková vzáleost: A ále vpočítáme ozovou ohiskovou vzáleost tlusté čočk: Te ostáváme ůležitý vzth: U tlusté čočk jsou oě ohiskové vzáleosti stejé - jko ůsleek stejého optického postřeí oou stách čočk. Pole říve uveeých vlstostí optického zozeí to zmeá, že uzlové o tlusté čočk splývjí s jejími hlvími o. Stoveí poloh hlvích ovi: Vzčme ejpve v půvoím oázku polohu klých hlvích ovi v ohiskových souřicích: poloh H : - poloh H / : / - / - Vzáleosti těchto ovi o vcholů kulových ploch čočk pk ozčme jko h h /. Pole oázku po ě pltí: 4

5 5 U čoček se ještě přijímá oho, že polomě vpuklé kulové ploch je klý, polomě uté kulové ploch je zápoý.. při pohleu otčou plochu z vější st čočk. V šem přípě je pole oázku: > 0, < 0 V získých vztzích te pozměíme u zméko získáme koečé výz: h h Optická mohutost čočk Je převáceá hoot ohiskové vzáleosti: [ jeotk: ioptie ] osíme z ohiskovou vzáleost z přechozího vzthu: A po vkáceí seskupeí osteme: Optická mohutost tlusté čočk Po spojou čočku spojku.... > 0. > 0 Po ozptlou čočku ozptlku.. < 0. < 0

6 6 Nekoečě teká čočk Je limitím přípem tlusté čočk, k tlouštk čočk je velmi mlá mtemtick 0. Jestliže tuto pomíku plikujeme přechozí vzth, osteme: 0 h 0 h Te: Hlví o teké čočk splývjí se střeem čočk. A zjeouší se smozřejmě i vzth po ohiskovou vzáleost, přípě optickou mohutost: Jestliže ozčíme: ρ Vpuklost teké čočk Pk vzth po optickou mohutost ue jeouchého tvu: ρ Optická mohutost teké čočk Výzčé o ovi teké čočk: Spojk / > 0 0 > ρ 0 > ρ ve střeu je spojk vž silější, ež okji.c.: Uvžte, jk se zozí výzčé ppsk, joucí uzlovými o, ohiskem, přípě ovoěžé s osou..... oecý ppsek?

7 7 Rozptlk / < 0 váší se stejé velikosti, le opčou stu. 0 > ρ 0 > ρ ve střeu je ozptlk vž tečí, ež okji. cv.: Zkeslete opět cho výzčých ppsků le potře je uto poloužit z čočku. Po optické zozeí tekou čočkou pltí Newtoov ohiskové ovice stejě jko po kžou cetovou optickou soustvu, smozřejmě spolu s ovostí ohiskových vzáleostí : z z Newtoov ozové ovice z z v ivezím tvu Pltí te tké vzth po příčé zvětšeí, kteé l použit při jejich ovozováí: Z ze ue: A tké pltit jejich půvoí vzth po zvětšeí ve vcholových souřicích, po ozé i lámvé kulové ploch: Z Jk je viět z ásleujícího oázku, z ůvou poloh zápoých uzlových ou ve střeu teké čočk, lze po příčé zvětšeí pst ještě jee vzth, kteý je ejjeoušší: Z.cv.: Pokuste se okázt, že teto vzth tké pltí po kulové zclo po kulovou lámvou plochu stejě jko po ě pltil přechozí vzth po příčé zvětšeí. po zclo o, po lámvou plochu e

8 8 Jestliže poováme pvé vzth po příčé zvětšeí, vzike ovost: eo Vásoíme společým jmeovtelem: A po věleí přeskupeí osteme: Vcholová ovice teké čočk Po zozeí tekou čočkou lze te komě Newtoových ohiskových ovic používt ěžou vcholovou zozovcí ovici. kteá, jk víme, pltí tké po kulové zclo le u kulové lámvé ploch je vcholová ovice poěku komplikovější F F

9 Soustv vou čoček Stejým způsoem jko jsme skláli kulové ploch o optické soustv, můžeme tké sklát čočk o výsleé cetové optické soustv můžeme přitom vužívt stejých ovic. Jestliže te vtvoříme optickou soustvu ze vou čoček s ohiskovými vzáleostmi optickým itevlem Δ, pk výsleá ohisková vzáleost této soustv je: Ohisková vzáleost soustv vou čoček Z tohoto vzthu je oře viět, že pouhou změou optického itevlu Δ může ýt klý eo zápoý lze z liovolých čoček > 0, < 0, > 0, < 0 vtvořit - jk soustvu s klou ohiskovou vzáleostí kolektiví, / > 0, - tk i soustvu se zápoou ohiskovou vzáleostí ispezí, / < 0 Situce se zjeouší, jestliže oě čočk uou teké tj. hlví uzlové o jsou ve střeu čoček: Ozčíme-li vzáleost střeů čoček jko, pk můžeme jeouše vjářit optický itevl osíme o přechozího vzthu: A vpočítáme optickou mohutost: Vzike tk jeouchý vzth: Optická mohutost soustv vou čoček V přípě, k jsou teké čočk těsě u see otýkjí se, 0 se vzth mimálě zjeouší: tj. optické mohutosti oou čoček se sčítjí. 9

10 0 Zcel speciálí příp soustv vou čoček ste, jestliže jejich optický itevl Δ ue ulový.to je příp tzv. teleskopické soustv př. lekohle Tto situce je stejá jko u soustv kulových ploch viz výše jelikož, /, elze zvést ohiskové souřice soustv musí se použít ovice po :

11 V optických soustv V miulých ostvcích jsme se zývli optickým pomocí kulových ploch jejich soustv, ve kteém ozem ou l o, ozem přímk l přímk ozem ovi l ovi. Toto ieálí optické zozeí všk lo ovozeo z přepoklu, že světelé ppsk eopouštějí posto kolem optické os piálí posto tké l zeá ispeze světl. Tto ieálí pomík jsou všk v pi velmi čsto pouše poto eálé optické zozeí má vlstosti poěku jié. Jejich popis je všk velmi komplikový, poto většiou hootíme je ochlk zozeí ou optickou soustvou o ieálího stvu tzv. ch v zozeí. Nejčstěji se zkoumjí ch při zozeí oového přemětu, ěk ás tké zjímá zozeí větších útvů úseček, ploch. V zozeí ělíme vě hlví skupi: Ch moochomtické kteé vzikjí při zozováí moochomtickým světlem, tj. s jeiou vlovou élkou, jejich příčiou je opuštěí piálího postou Ch chomtické kteé vzikjí při zozeí ílým světlem, jejich příčiou je ispeze světl Chomtická v Je ůslekem ispeze světl, tj. toho, že ie lomu světl závisí vlové élce. Jestliže te při zozeí oového přemětu použijeme světlo složeé z více vlových élek, př. ílé světlo pk po kžou vlovou élku vzike oz v jiém místě, i kž ppsk eopustí piálí posto. To pltí i po ozové ohisko, jehož poloh je u teké čočk uče vzthem: ρ Te př. po ilové světlo větší ie lomu je větší optická mohutost.. ohisko je líže čočk Poélá evá v Nejjeoušší koekce toto v se povee ásleově: Místo jeé čočk se použijí vě teké čočk. Jestliže se uou otýkt, pk se jejich optické mohutosti jeouše sčítjí:

12 Bueme požovt, splul ohisk po oě kjí vlové élk světl, tj. po čeveou ilovou moou vu te př. po Fuhoeov čá C F. jik řečeo, po tto čá měl soustv čoček stejou optickou mohutost: C F te, po jeotlivé optické mohutosti čoček pltilo: C C F F osíme záklí vzth po optickou mohutost: ρ ρ ρ ρ C C F F Přeskupíme čle: ρ C F ρ ρ ρ F C vpočítáme pomě vpuklostí čoček: ρ ρ F F C C µ µ Pomě vpuklosti oou čoček te musí ýt ove poměu střeích ispezí mteiálů oou čoček. Potože pvá st je zápoá, musí mít vpuklosti čoček ρ ρ opčá zmék - musíme te vzít spojku ozptlku z ůzých mteiálů př. spojku z kouového skl, ozptlku z litového skl. vzike tzv. chomát. Ohisk uou skutečě totožá, le je po tto vě v, po osttí v se uou ále lišit! Poto může požovt koekce po více ev, př. splutí ohisek po tři vlové élk Fuhoeov čá C,, F.tk vzike pochomát čsto ojektiv mikoskopu Otvoová séická v Vziká při zozeí ose šiokým svzkem ppsků.ppsk ále o os vtvoří oz líže čočk. Příčá... Poélá séická v Tto v se opět ostí komicí spojk ozptlk. Jestliže se komě ostěí séické v po učitý o ose povee koekce zozeí i po lízké okolí tohoto o v oviě kolmé k ose je to možé uělt po v o, tzv. siová pomík..vzike plát

13 Astigmtismus Vziká při zozeí ou mimo optickou osu, i úzkým svzkem ppsků. pohle z oku pohle sho Ostňuje se vhoou volou ieů lomu, poloměů vzáleostí lámvých ploch...vzike stigmát Kom Vziká při zozeí ou mimo optickou osu, šiokým svzkem ppsků, je to vlstě stigmtismus po šioké svzk Ostňuje se opět komicí čoček. Zkesleí ozu Pojevuje se při zozováí celé ovi, kolmé k ose ůležité v geoezii: Vziká, kž se o ůzě vzáleé o os zozují s ůzým zvětšeím. Ostňuje se opět komicí čoček. ez zkesleí pouškovité soukovité Zkleutí ozu Pojevuje se ověž při zozeí kolmé ovi jejím ozem je zkřiveá ploch koec kpitol K. Rusňák, veze 03/06 3

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

Odraz na kulové ploše

Odraz na kulové ploše Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. tojúhelníků

Více

Centrovaná optická soustava

Centrovaná optická soustava Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě

Více

II. METODICKÉ PŘÍKLADY SESTAVENÍ VÝKAZU PAP

II. METODICKÉ PŘÍKLADY SESTAVENÍ VÝKAZU PAP Istituce i zzmeé operce jsou fiktiví. Ukázkové přípy - sezm Příp A Půjčk o ky B Bezúpltý pozemku převo C Bezúpltý kcií převo D Proej kcií fyzickým osoám (ez IČ) E Nákup utomoilů lesig F Drováí mteriálu

Více

Vlastnosti posloupností

Vlastnosti posloupností Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312 .. Vzálenost bou o přímk II Přepokl: Pegogiká poznámk: Průběh hoin honě závisí n tom, jk oolní jsou stuenti v oszování o vzorů, které je nejtěžší částí hoin. Dlším problémem pk mohou být rovnie s bsolutní

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

Geometrická optika. Optická soustava

Geometrická optika. Optická soustava Optcká outv Geometcká optk oubo optckýc pvků (čoček, olů, zcdel, plplelíc deek, dělčů vzku, dkčíc jýc pvků), kteé jou vzájem upořádáy učtým způobem tk, by optcká outv plňovl dé yzkálí geometcké poždvky

Více

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ VEKTOROVÁ LGEBR NLYTICKÁ GEOMETRIE V ROVINĚ Délk úsečk, střed úsečk,, B Délk úsečk B : B C, BC Střed úsečk : B S s, s souřdice středu: s, s Vektor Vektor = oži všech souhlsě orietových rovoěžých úseček

Více

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný.

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný. 4. přednášk Geometické zikální plikce učitého integálu Geometické plikce. Osh ovinného útvu A. Pokud se jedná o ovinný útv omezený osou přímkmi gem spojité nezáponé unkce pk je jeho osh dán učitým integálem

Více

GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU

GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU Integální počet funkcí jedné eálné poměnné - 4. - GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU PŘÍKLAD Učete plochu pod gfem funkce f ( x) = sinx n intevlu,. Ploch pod gfem nezáponé funkce f(x) se n intevlu,

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uivezit lov v Pze Pedgogiká fkult SEMINÁRNÍ PRÁCE Z POLYNOMICÉ ALGEBRY ZVOLENÝ POLYNOM / CIFRI Zdáí: Zvol olyom f ( x) stuě 6 tkový y 6 f ( ) { 87868}. Uči všehy kořey s ásoostí. Vyováí: Zdáí vyhovuje

Více

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0)

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0) ..9 Úlohy geometickou poloupotí Předpokldy: 0, 0 Pedgogická pozámk: Při řešeí příkldů potupujeme tk, by Ti ejpomlejší počítli lepoň příkldy,,,. Souh vzoců pvidel po geometickou poloupot: + - pozávcí zmeí

Více

Rovinné nosníkové soustavy II

Rovinné nosníkové soustavy II Prázý Prázý Prázý Ství sttik,.roík kláského stui Rovié osíkové soustvy II Trojklouový rám (osík) Trojklouový olouk (osík) Trojklouový rám s táhlm Trojklouový olouk s táhlm Ktr ství mhiky Fkult ství, VŠB

Více

Contribution to Stability Analysis of Nonlinear Control Systems Using Linearization Vyšetřování stability nelineárních systémů metodou linearizace

Contribution to Stability Analysis of Nonlinear Control Systems Using Linearization Vyšetřování stability nelineárních systémů metodou linearizace XXIX. ASR '4 Semi, Istumets Cotol, Ostv, Apil, 4 6 Cotibutio to Stbility Alysis o Nolie Cotol Systems Usig Lieiztio Vyšetřováí stbility elieáích systémů metoou lieizce GAHURA, Pet Ig., VUT FSI v Bě, Ústv

Více

Posloupnost v matematice je řada čísel. Je přesně určeno pořadí čísel, je tedy dáno, které číslo je první, druhé atd.

Posloupnost v matematice je řada čísel. Je přesně určeno pořadí čísel, je tedy dáno, které číslo je první, druhé atd. Poloupoti Poloupot v mtemtice je ř číel. Je přeě určeo poří číel, je tey áo, které čílo je prví, ruhé t. V řě číel může le emuí být ějký ytém. Poloupot můžeme určit ěkolik růzými způoby:. Výčet prvků:

Více

= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný.

= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný. 5. přednášk APLIKAE URČITÉHO INTERÁLU Pomocí integálního počtu je možné vpočítt osh ovinných útvů ojem otčních těles délk ovinných křivek. Velké upltnění má učitý integál tké ve zice chemii. eometické

Více

8.3.1 Pojem limita posloupnosti

8.3.1 Pojem limita posloupnosti .3. Pojem limit poslouposti Předpokldy: 30, 0 Pedgogická pozámk: Limit poslouposti eí pro studety sdo strvitelým pojmem. Hlvím problémem je podle mých zkušeostí edorozuměí s tím, zd mezi posloupostí její

Více

Obrázková matematika D. Šafránek Fakulta jaderná a fyzikálně inženýrská, Břehová 7, Praha 1

Obrázková matematika D. Šafránek Fakulta jaderná a fyzikálně inženýrská, Břehová 7, Praha 1 Orázková mtemtik D. Šfránek Fkult jerná fyzikálně inženýrská řehová 7 115 19 Prh 1.sfrnek@seznm.z strkt Názorná ovození záklníh geometrikýh vět známýh ze stření školy. 1 Úvo N stření škole se mehniky používjí

Více

Skalární matice. Jednotková matice. Matice také mohou být různě symetrické. Nejčastěji se však uplatní symetrie podle diagonály:

Skalární matice. Jednotková matice. Matice také mohou být různě symetrické. Nejčastěji se však uplatní symetrie podle diagonály: Mte N mte jem už rzl v kptole zveeí otáčeí. Tm jem le leko víe ež mte upltl kompleí číl, mž yí už eue možé pomo, protože kompleí číl jou upořáé voje reálýh číel, ož e pro rovu hoí. Tto kptolk je prví,

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Základy optického zobrazení

Základy optického zobrazení Základy optickéo zobazeí. Zákoy geometické optiky Záko odazu větla (ob. ) ři dopadu věteléo papku a ozaí dvou ůzýc potředí dojde k jejic čátečému ebo úplému odazu. dažeý papek zůtává v oviě dopadu (oviě

Více

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte: 6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece

Více

Korelační analýza. sdružené regresní přímky:

Korelační analýza. sdružené regresní přímky: Koelčí lýz - ooutá závlot dvou tttckých zků; - hodot jou zíká pozoováím, ez možot ovlvěí; - eí možo ozlšt závle ezávle poměou; - hlvím átojem je ze metod ejmeších čtveců; - kždou z oou možých závlotí vthuje

Více

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI 6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.. ČÍSELNÉ POSLOUPNOSTI V této kpitole se dozvíte: jk defiujeme posloupost reálých ebo komplexích čísel; defiici vlstí evlstí limity poslouposti; defiici pojmů souvisejících

Více

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k přeášce UFY1 Dvojvzková teeece teké vtvě Dvojvzková teeece teké vtvě Přepokláejme, vl o mpltuě v potřeí o exu lomu opá ové ozhí vou elektk tk, že mpltu ožeé vly bue mpltu vly pošlé o potřeí

Více

Mocniny, odmocniny, úpravy. Repetitorium z matematiky

Mocniny, odmocniny, úpravy. Repetitorium z matematiky Mociy, odmociy, úpvy lgeických výzů epetitoium z mtemtiky Podzim Iv culová . Mociy přiozeým celým mocitelem Po kždé eálé čílo kždé přiozeé čílo pltí:... čiitelů moci Zákld mociy (mocěec) mocitel (expoet)

Více

Analytická geometrie

Analytická geometrie Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b.

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b. KPITOL 8: určitý itegrál Riemův itegrál [M-8:P8.] motivce: výpočet oshu plochy pod grfem fukce 8. Úvod ejdříve je pro < ) řekeme, že moži D, je děleím itervlu,, jestliže je koečá, D. Prvky děleí D {x,

Více

SMR 2. Pavel Padevět

SMR 2. Pavel Padevět SR 2 Pvel Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Silová meto Rámová konstruke, symetriké konstruke Prinipy pro symetriké konstruke ztížené oeným ztížením. Symetriká konstruke ntimetriké ztížení. Os symetrie

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti sttických mometů souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme že jste

Více

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých

Více

FYZIKA I. Newtonovy pohybové zákony

FYZIKA I. Newtonovy pohybové zákony VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKULTA STROJNÍ YZIKA I Newtoovy pohybové zákoy Prof. RNDr. Vlé Mádr, CSc. Prof. Ig. Lbor Hlváč, Ph.D. Doc. Ig. Ire Hlváčová, Ph.D. Mgr. Art. Dgr Mádrová

Více

Základní elementární funkce.

Základní elementární funkce. 6. předášk Zákldí elemetárí fukce. Defiice: Elemetárími fukcemi zveme všech fukce, které jsou vtvoře koečým počtem zákldích opercí ze zákldích elemetárích fukcí. Zákldí operce s fukcemi jsou:. Sčítáí dvou

Více

LINEÁRNÍ TRANSFORMACE V ROVINĚ

LINEÁRNÍ TRANSFORMACE V ROVINĚ LINEÁRNÍ TRANSFORMACE V ROVINĚ Kil Mleček Dgr Szrková FSv ČVUT Prh Thákurov 7 66 9 Prh 6 ČR e-il: kil@tfsvvutz SjF STU Brtislv Ná Slood 7 8 3 Brtislv SR e-il: szrkov@sjfstusk Astrkt V řísěvku je osý geoetriký

Více

Ústav fyzikálního inženýrství Fakulta strojního inženýrství VUT v Brně GEOMETRICKÁ OPTIKA. Přednáška 10

Ústav fyzikálního inženýrství Fakulta strojního inženýrství VUT v Brně GEOMETRICKÁ OPTIKA. Přednáška 10 Ústav yzikálího ižeýrství Fakulta strojího ižeýrství VUT v Brě GEOMETRICKÁ OPTIKA Předáška 10 1 Obsah Základy geometrické (paprskové) optiky - Zobrazeí cetrovaou soustavou dvou kulových ploch. Rovice čočky.

Více

Zobrazení kružnice v pravoúhlé axonometrii. osy, která je normálou roviny dané kružnice; délka hlavní poloosy je rovna poloměru

Zobrazení kružnice v pravoúhlé axonometrii. osy, která je normálou roviny dané kružnice; délka hlavní poloosy je rovna poloměru Geometie Zoazovací metody Zoazení kužnice v pavoúhlé axonometii Zoazení kužnice ležící v souřadnicové ovině Výklad v pavoúhlé axonometii lze poměně snadno sestojit půmět kužnice dané středem a poloměem,

Více

Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled

Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled řijímí řízení kemiký rok / Kompletní znění testovýh otázek mtemtiký přehle Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které číslo oplníte

Více

9. Racionální lomená funkce

9. Racionální lomená funkce @ 9. Rcioálí loeá fukce Defiice: Nechť P je poloická fukce -tého stupě... ) ( P kde R... A echť Q je poloická fukce -tého stupě... ) ( Q kde R... Rcioálí loeá fukce R je dá podíle ) ( ) ( ) ( Q P R pro

Více

Zjednodušená styčníková metoda

Zjednodušená styčníková metoda Stvní sttik, 1.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Zjnoušná styčníková mto Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového

Více

Kuželosečky jako algebraické křivky 2. stupně

Kuželosečky jako algebraické křivky 2. stupně Kuželosečk Pretrické iplicití vjádřeí kuželoseček P. Pech: Kuželosečk, JU České Budějovice 4, 59s Kuželosečk jko lgerické křivk. stupě Kuželosečk je oži odů v roviě, jejichž souřdice (, ) vhovují v ějké

Více

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a } Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle

Více

VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD

VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD Miloš Hüne SMR neilové účink vičení 05 Zání VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD Příkl č. Uvžje konki z O., vpočíeje vooovný pon v oě (znčený eploní ozžnoi vžje α 0 6 K -.

Více

Definice limit I

Definice limit I 08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí

Více

ň ě ň Ú ě Ť Ť ě ě ě Ť ě ě Ť ž ž ě ě ť Ť ž Ť ě ž Í ě Ť č ž ě Ť ž ě ě ě ě Á ž Ť ě ě ě ě Ó ě ě ě ě ě ž ě ě ž ě ž Ó ž Ó ě Ť č č ť ě ě ě Ť ě Ř ě č ě č ě ě ě Ť ž č Ť ě Ť Ť ě Š ě Í ě ě ě Ť Ě Ť ě ž ž č ěž Ť ž

Více

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x. KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou

Více

Úloha II.E... čočkování

Úloha II.E... čočkování Úloha II.E... čočkování 8 boů; průměr 5,46; řešilo 65 stuentů V obálce jste spolu se zaáním ostali i vě čočky. Vaším úkolem je změřit jejich parametry ruh a ohniskovou vzálenost. Poznámka Poku nejste stávající

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav: Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou

Více

Koš Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď 1. 1 Které číslo doplníte místo otazníku? ?

Koš Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď 1. 1 Které číslo doplníte místo otazníku? ? Přijímí řízení kemiký rok 07/08 B. stuium Kompletní znění testovýh otázek mtemtik Koš Znění otázk Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 6 6? 6 86 8. Které

Více

š š ů š ě ů ě ů ž ú ě ů š ě ď ů ž š Ž ó ó ž š ě ě ž ě ě ě ú ě ě ť ě ě ú ž ž ě ě š ě ě ž ě š ě ů ůž š šš ě Ž ě š ě ě ě ě ě š Ž ů ž ě š ě š š ě Ú ů ě ž

š š ů š ě ů ě ů ž ú ě ů š ě ď ů ž š Ž ó ó ž š ě ě ž ě ě ě ú ě ě ť ě ě ú ž ž ě ě š ě ě ž ě š ě ů ůž š šš ě Ž ě š ě ě ě ě ě š Ž ů ž ě š ě š š ě Ú ů ě ž ž ď ě ó ě ě ž ě ě ž ú ě ť ě ž ú š ď ě ě ě ě Ú ě ě ě ě ž ě ě ě ě ž š ě ž ě ě ě ž ě ď ě ž ó ď š š ů š ě ů ě ů ž ú ě ů š ě ď ů ž š Ž ó ó ž š ě ě ž ě ě ě ú ě ě ť ě ě ú ž ž ě ě š ě ě ž ě š ě ů ůž š šš ě Ž ě

Více

Nové symboly pro čísla

Nové symboly pro čísla Nové symboly pro čísl V pitole Ituitiví ombitori jsme řešili tyto dv typy příldů. Stále se v ich opují součiy přirozeých čísel, t j jdou z sebou, ědy ž do, ědy sočí dříve. Proto si zvedeme dv ové symboly

Více

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ STEJNOMĚRNÁ KONVERGENCE Ztím ebylo v těchto textech věováo příliš pozorosti kovergeci fukcí, t jko limit poslouposti ebo součet řdy. Jik byl kovergece poslouposti fukcí ebo řdy brá jko bodová kovergece.

Více

1.2. MOCNINA A ODMOCNINA

1.2. MOCNINA A ODMOCNINA .. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

F9 SOUSTAVA HMOTNÝCH BODŮ

F9 SOUSTAVA HMOTNÝCH BODŮ F9 SOUSTAVA HMOTNÝCH BODŮ Evopský sociální fon Ph & EU: Investujee o vší buoucnosti F9 SOUSTAVA HMOTNÝCH BODŮ Nyní se nučíe popisovt soustvu hotných boů Přepokláeje, že áe N hotných boů 1,,, N N násleující

Více

3.4.3 Množiny bodů dané vlastnosti I

3.4.3 Množiny bodů dané vlastnosti I 3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost

Více

Axiální ložiska. Průměr díry Strana. S rovinnou nebo kulovou dosedací plochou, nebo s podložkou AXIÁLNÍ VÁLEČKOVÁ LOŽISKA

Axiální ložiska. Průměr díry Strana. S rovinnou nebo kulovou dosedací plochou, nebo s podložkou AXIÁLNÍ VÁLEČKOVÁ LOŽISKA xiální ložisk JEDNOSMĚNÁ XIÁLNÍ KULIČKOVÁ LOŽISK Půmě díy Stn neo kulovou, neo s podložkou 0 00 mm... B242 0 60 mm... B246 OBOUSMĚNÁ XIÁLNÍ KULIČKOVÁ LOŽISK neo kulovou, neo s podložkou XIÁLNÍ VÁLEČKOVÁ

Více

Dráhy planet. 28. července 2015

Dráhy planet. 28. července 2015 Dáhy plnet Pet Šlecht 28. čevence 205 Výpočet N střední škole se zpvidl učí, že dáhy plnet jsou elipsy se Sluncem v ohnisku. Tké se učí, že tento fkt je možné dokázt z Newtonov gvitčního zákon. Příslušný

Více

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+ Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu

Více

7 Analytická geometrie

7 Analytická geometrie 7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.

Více

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27.

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. Zákldní příkld 1) Stín věže je dlouhý 55 m stín tče vsoké 1,5 m má v tutéž dou délku 150 cm. Vpočtěte výšku věže. ) Určete měřítko mp, jestliže odélníkové pole o rozměrech 600 m 450 m je n mpě zkresleno

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

KONSTRUKTIVNÍ GEOMETRIE. Mgr. Petra Pirklová, Ph.D. kmd.fp.tul.cz Budova G, 4. patro

KONSTRUKTIVNÍ GEOMETRIE. Mgr. Petra Pirklová, Ph.D. kmd.fp.tul.cz Budova G, 4. patro KONSTRUKTIVNÍ GEOMETRIE Mg. Pet Piklová, Ph.D. kmd.fp.tul.cz Budov G, 4. pto SYLBUS. Mongeovo pomítání.. nltická geometie v E 3. 3. Vektoová funkce jedné eálné poměnné. Křivk. 4. Šoubovice - konstuktivní

Více

Kmity vynucené

Kmity vynucené 1.7.3. Kmit nucené 1. Umět sětlit posttu nucených kmitů.. Pochopit ýznm buící síl. 3. Vsětlit přechooý st. 4. Věět, jk se mění mplitu nucených kmitů záislosti n fekenci buící síl. 5. Věět, co je ezonnční

Více

λ λ λ λ c n2 n = n = ; 4.2.- 2. n n c v

λ λ λ λ c n2 n = n = ; 4.2.- 2. n n c v 4.. Geometická optika 4... Idex lomu. Popsat sklo jako ejběžěji používaý mateiál v optice, jeho složeí a techologii výoby.. Deiovat absolutí a elativí idex lomu jako výzamé chaakteistiky optického postředí.

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitálí učeí mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitěí výuk prostředictvím ICT Číslo ázev šlo klíčové ktivit III/ Iovce zkvlitěí výuk prostředictvím ICT Příjemce podpor Gmázium,

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Uiverzita Tomáše Bati ve Zlíě LABORATORNÍ CVIČENÍ Z FYZIKY II Název úlohy: Iterferece a teké vrstvě Jméo: Petr Luzar Skupia: IT II/ Datum měřeí: 3.říja 007 Obor: Iformačí techologie Hooceí: Přílohy: 0

Více

Lidské tělo jako předmět fyzikálního měření

Lidské tělo jako předmět fyzikálního měření Veleth ápadů uitelů yziky 8 Lidské tělo jako předmět yzikálího měřeí ŠTĚPÁNKA KUBÍNOVÁ Kateda yziky, PřF UHK Abstakt Laboatoí páce by měly být edílou souástí výuky yziky. Vyuující se však asto setkávají

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Rovinné nosníkové soustavy III Příhradový nosník

Rovinné nosníkové soustavy III Příhradový nosník Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité

Více

URČITÝ INTEGRÁL. Motivace:

URČITÝ INTEGRÁL. Motivace: Motivce: URČITÝ INTEGRÁL Pomocí učitého integálu můžeme vpočítt: Osh ovinného ozce. Ojem otčního těles. Délku ovinné křivk. Dlší vužití učitého integálu: ve zice, chemii, ekonomii Histoická poznámk: Deinici

Více

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0). ČÍSELNÉ VEKTORY Defce Uspořádou -tc čísel = (,,, ) zveme číselým vektoem Čísl,,, jsou složky ebol souřdce vektou Přozeé číslo zýváme ozměem ebo tké dmezí vektou Defce Vekto, jehož všechy složky se ovjí

Více

Základní věta integrálního počtu (Newton Leibnizova) nám umožní výpočet určitých integrálů. Poznáte základní vlastnosti určitých integrálů.

Základní věta integrálního počtu (Newton Leibnizova) nám umožní výpočet určitých integrálů. Poznáte základní vlastnosti určitých integrálů. Mtemtik II Výpočet vlstosti určitého itegrálu Výpočet vlstosti určitého itegrálu Cíle Zákldí vět itegrálího počtu (Newto Leiizov) ám umoží výpočet určitých itegrálů Pozáte zákldí vlstosti určitých itegrálů

Více

VY_42_Inovace_13_MA_4.01_ Aritmetická posloupnost pracovní list. Jednotlivé snímky lze použít jako studijní materiál.

VY_42_Inovace_13_MA_4.01_ Aritmetická posloupnost pracovní list. Jednotlivé snímky lze použít jako studijní materiál. Čílo projektu Čílo mteriálu CZ..07/.5.00/34.0394 VY_4_Iovce_3_MA_4.0_ Aritmetická poloupot prcoví lit Název školy Střeí oborá škol Střeí oboré učiliště, Hutopeče, Mrykovo ám. Autor Temtický celek Mgr.

Více

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady: 4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové

Více

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA OBRAOVACÍ ROVNICE OKY A KULOVÉHO RCADLA vtšení optického zobrzení pedešlých kpitol již víme, že pi zobrzení okmi nebo kulovými zrcdly mohou vznikt zvtšené nebo zmenšené obrzy pedmt. Pro jejich mtemtický

Více

Citlivé údaje v GDPR. 20. ISSS 2017 Hrade Králové Vít Zvá ove

Citlivé údaje v GDPR. 20. ISSS 2017 Hrade Králové Vít Zvá ove Citlivé údaje v GDPR 20. ISSS 2017 Hrade Králové Vít Zvá ove Stávají í regulač í rá e ú luva Rad Evrop č. a o hra u oso se zřetele a auto atisova é zpra ová í oso í h dat ; č. 115/2001 Sb. m. s.): y í

Více

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů .8. Mohočley, sčítáí odčítáí mohočleů Předpokldy: 7 Mohočle = zvláští typ výrzů. Jk je pozáme? Mohočley obshují pouze přirozeé mociy ezámých (jedé ebo více) kostty. Př. : Rozhodi, které z ásledujících

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

2.4. Rovnováhy v mezifází

2.4. Rovnováhy v mezifází 2.4. Rovováhy v mezfází Mezfázím se rozumí teká vrstv (tloušťk řádově odpovídá molekulárím dmezím) rozhrí dvou fází, která se svým složeím lší od složeí stýkjících se fází. Je-l styčá ploch fází mlá, lze

Více

5.2.4 Kolmost přímek a rovin II

5.2.4 Kolmost přímek a rovin II 5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

ČÉ Á ŠŤ šť š Č ř ž š ý Š Č Ú š ú š Ž š š š ř ž ž š š š š ý ř š š ů ř š š š š š ú Í ú ř š š ů š š Ž ř ž ů ý Ě É Ú Í Í Š Ě ÍÚ Í š š Ý ý š Ó Č ř ř ř š ř ý ř ž ř š Č Š ÉŽ š Ě Í š Ř Ě Š Ě Á Á ČÁ š ý ž ž š ý

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

E L E K T R I C K É S T R O J E II Měření synchronního stroje Fázování, V křivky, Potierova reaktance, stanovení buzení

E L E K T R I C K É S T R O J E II Měření synchronního stroje Fázování, V křivky, Potierova reaktance, stanovení buzení 1 TO - ŠB FE Datum měřeí E L E K T C K É S T O J E Měřeí sychroího stroje Fázováí, křivky, Potierova reaktace, staoveí buzeí 1. Zaáí úlohy : Příjmeí Jméo Skupia (hooceí) 1. Proveďte přifázováí sychroího

Více

Á ě Á Š Á ž Á Á Á š Á Á ě ě ú ž ž š ě š ň š š ů ě ú ě ů ě

Á ě Á Š Á ž Á Á Á š Á Á ě ě ú ž ž š ě š ň š š ů ě ú ě ů ě Ř Á ě Á Š Á ž Á Á Á š Á Á ě ě ú ž ž š ě š ň š š ů ě ú ě ů ě š š ě ť ž ó Č š ě ů ž Č ě š š ě ě ú Č ž š ě Š ě ž š š ů ě ěž ž ó ž ú ě ž š ě ě ě ě Š ě ě ž š ú ě ě ě š ě ů Ú ě ů Ú Ú žš ě ž ě ú š ů ů ě š ů

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

é Ť č Ě á Ž á ě Ě á ě ň č ě ě ě á á á ě á á Í ž ě ě á ě é ž á ě é š Ě č ě č č á š á č Ť š áž Ž č á á č č Ž č é ě Ž š é á ž á š ě ě č ě š ž Ť č ž ě ž č

é Ť č Ě á Ž á ě Ě á ě ň č ě ě ě á á á ě á á Í ž ě ě á ě é ž á ě é š Ě č ě č č á š á č Ť š áž Ž č á á č č Ž č é ě Ž š é á ž á š ě ě č ě š ž Ť č ž ě ž č á š á ě á š Ž é č č á á ě ě á é á é Ť č Ž ň š á ě Ů ě šč š ě š Ž á Ě ě č č Ž č č š č š č Ó á é Ž č č š áň Í š ě č é éč é é č š ě á ť Í Í Óč š é č é Í š é É Ž ě č ž á č é č Ý ě ť ť Í Í č é š Ď Á ť Í é é

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pegogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM 00/00 CIFRIK Záí: Vyšetřete všem probrým prostřeky polyom 0 0 Vyprcováí: Pole věty: Rcoálí kořey. Nechť p Q je koře polyomu

Více

ł č íčí Á ŕň Ř Á ľí ľĺ í ě é ĺ š ě í á í ž Ż ź ł ł Ą ľ ý í á í ź í ľ ĺč Č ý ľ á ě Čí Čí á í í úč í í ľč í č úč ý í Č á í á á á ď í ř é ří ý í í úč ří

ł č íčí Á ŕň Ř Á ľí ľĺ í ě é ĺ š ě í á í ž Ż ź ł ł Ą ľ ý í á í ź í ľ ĺč Č ý ľ á ě Čí Čí á í í úč í í ľč í č úč ý í Č á í á á á ď í ř é ří ý í í úč ří ł č č Á ŕň Ř Á ľí ľ ě é š ě ž Ż ź ł ł Ą ľ ź ľ Č Č ľ ě Č Č úč ľč č úč Č ď ř é ř úč ř ľ Ż ě č š č č é é ľ é ŕ ě ě š ř ě ž ě ě š ř ů ź ž č Ż Ż č ú č ů ě ě š ř ů ě ú ľ č ů ľ č ř ů š ě ž ľ ř úč č é ř ř č ěř

Více