Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc."

Transkript

1 Molekulová fyzik Reálný lyn Prof. RNDr. Enuel Svood, CSc.

2 Reálný lyn Existence vzájeného silového ůsoení ezi částicei (tzv. vn der Wlsovské síly) Odudivá síl ezi částicei (interkce řekryvová) ři dosttečně lých vzdálenostech ezi částicei (lyny o velkých tlcích) F od. k., n r n Slě se ultňuje řitžlivé ůsoení ezi ole jádre 0

3 Tyy řitžlivých vn der Wl. sil. interkce ezi ernentníi diólovýi oenty olekul Q. l, nř. olekuly H O, SO, NH, HCl, HBr. interkce ezi ernentníi diólový oente jedné olekuly (olární olekul) indukovný diólový oente druhé (ůvodně neolární) olekuly jedná se o olrizovné olekuly; árová interkce. Nř. lyn CO.. interkce ezi částicei, které nejí diólový oent vzácné lyny (He, Xe), le tké nř. H, N, CO ; jde o tzv. diserzní interkci; v důsledku čsově roěnného rozložení hustoty elektronů v tou vznikne v okolí sousedních toů roěnné elektrické ole, které indukuje tzv. žikový diólový oent. ýsledke je řitžlivá síl - největší řisěvovtel k F +

4 Souhrnně řitžlivé síly F ř. k r 7 ZÁĚR: šechny eziolekulové síly jí svůj ůvod v elektrických silách. Zdůvodnění růěhu grfů F(r) Neltí stvová rovnice IP, ředevší ři vysokých tlcích nízkých telotách lynu; vnitřní energie reálného lynu je funkcí nejen teloty, le i ojeu!!!

5 Projev řitžlivých sil říkldy : vz toů C v grfitu kondenzce áry odorové síly vouk drží říchytné chluy ž ůl ilionu chlouků n konci nohou nř. skákvk černá y nesdl, ni kdyy ěl hotnost 7x větší než á uělá noh s říchytnýi chlouky voučíi o loše s oshe y unesl 4 tun!

6 Gekoni, suerizole Gekoni (tro. ještěři) ilirdy ružných rozvětvených suilietrových stětiček stul - se řithují vn der W. sili s toy odkldu S gekoní okožkou n dlni y člověk ohl viset ze skleněného strou Gekon turecký žijící u nás suerizole

7 Odvození stvové rovnice vn der Wlsovy Zvolíe ol lynu N = {N A }, oje Uvžujee nejrve vliv odorových sil, tj. vlstní rozěr (oje) olekul Molekuly tvoří tuhé koule o růěru d Nákres filosofie úvhy (řevod n soustvu hotných odů) Dlší ředokld: olekuly nelnou ke stěná odrážejí se od nich ružně Kole kždé olekuly oíšee sféru olekulového ůsoení o oloěru d, oje sféry oznčíe Tedy: ke středu kterékoli olekuly se ůže jiná olekul řilížit jen n vzdálenost d; vnitřek koule o oloěru d je ro osttní olekuly neřístuný oje usíe zenšit o součet ojeů těchto koulí. o 4 d d

8 ýočet skutečného ojeu jeho číselné hodnoty ro N = je k dis. oje { } ro N = { } - { o } ro N = { } - { o } ro N = k { } (k-){ o } ro N = {N A } { } ({N A } -){ o } Průěrný oje (jeho číselná hodnot) řístuný středu kterékoli olekuly z celkového očtu N = {N A } : N ( N ) N N A A N A N A o A A o o OPRAA

9 Korekce n olární oje N A. o Oje olekuly První závěr: 4 d 6 d d N je 4násoek vl. ojeu všech olekul v olu lynu A Uvžujee-li odudivé síly, k ro ol reálného lynu á stvová rovnice tvr RT Neoli částice RP ůžee nhrdit hotnýi ody, jestliže olární oje zenšíe o hodnotu

10 ýzn vzthu ro (kroě orvy n olární oje) d N A Znáe-li, ůžee vyočítt růěr d olekuly d N A iz úloh ve cvičení 7 Prolé: Jk určit? Proeree ozději

11 Orv n vliv řitžlivých sil Při lých vzájených vzdálenostech olekul (velký očet olekul, lyn á velkou telotu) se ultňují tzv. kohézní síly (okud olekuly nejsou v říé kontktu) Je-li sfér vzájeného ůsoení uvnitř lynu (dleko od stěny nádoy), je výslednice vzájeného silového ůsoení nulová Je-li olekul lízko stěny, k n kždou olekulu ůsoí výsledná síl kolá n stěnu nádoy ířící dovnitř nádoy viz orázek ýslednice zvná kohezní síl (sěřující dovnitř nádoy) vyvolává kohézní tlk - o tuto hodnotu je tlk lynu enší než y yl u IP

12 Stěn nádoy Sfér Oznče F o výslednici sil, kterou n vyrnou i-olekulu ůsoí osttní olekuly ve sféře. Poto F o k N o k o N v k o N A k o r s i F i Celková kohézní síl ůsoící n lochu o oshu S je rovn součtu všech dílčích sil ůsoících ve vrstvě o tlouštce rovné oloěru sféry r s o zákldně s oshe S F N F o kohézní tlk N vr k k o N F S A Sr s k o S

13 Orv n kohésní tlk k RT Zočítání oou zěn vn der Wlsov rovnice ro reálný lyn (87, Noelov cen): nrt n n ) ( nrt ) ( Hodnoty viz st. teriál

14 Izotery reálného lynu RT 0 T T k T K.kritický od k Kritický oje k Kritický tlk k Kritická telot T k k

15 Souhls s exeriente Izotery oxidu uhličitého (Michelson 97)

16 Rozdělení lochy digru n olsti Oxid uhličitý

17 Souhls exerientu s rovnicei u IP RP ro H N Zvolíe očáteční hodnoty =, = 0, MP T = 7 K (tí dáno n) Kdyy se reálný lyn řídil stv. rovnicí ro IP, usel y součin ýt konstntní ro izoter. děj číselně 0, nezávisle n. Ale ro rostoucí tlk (grfy ) velké odchylky, nř. ro 00 MP dvojnásoné. Použijee-li vn der Wlsovu rovnici, tk veli dorý souhls (grfy ) odchylky ro vysoké tlky 4,5 % (N ) 9 % (H ) T RT Berthelotov 900 Berthelot-frnc. cheik olitik Hledání lée vyhovujících stvových rovnic T ( ) RT Redlich Kwongov 948 Redlich, Rkušn, řesídlil do USA ; fyz. cheik. Kwong, Číňn, eigrce do USA, che. inženýr

18 iriálová rovnice (viriální rozvoj,90) RT RT RT RT Pro stvovou rovnici IP ouze. koeficient Pro vn der Wlsovský lyn B(T) = /RT, C(T) = (když rovedee rozvoj výrzu ( / ) odle / )... ) / ( ) / ( T C B T RT /.. ) ( RT RT RT RT RT

19 Binoický rozvoj x konvergentní ro x ocnin.řd : 4... x x x x... x r x r x r x r!... k k r r r r k r

20 ýočet koeficientů z kritických veličin Pro ol reálného lynu ltí rovnice Pro tlk lynu k vzth Pro inflexní od K n izoterě Řešení dostnee RT RT 0 0 k T T Tk T, k k k k RT R T, Nř. vodní ár: = 0,55 J ol ; = 0,40 6 ol

21 Úloh ze cvičení 7 Uzvřená nádo je nlněn sytou vodní árou teloty 0 o C (ez řítonosti vody). Určete řírůstek tlku v nádoě, zvýšíe-li telotu áry n 50 o C. Předokládejte, že nedochází k deforci nádoy. n der Wlsovy koeficienty ro vodu jsou = 5, J kol, =,04.0 kol. Hustot syté vodní áry ři telotě 0 C je 7, g (z tulek).

22 Řešení úlohy /7 Z vn der Wlsovy rovnice vyjádříe vyočtee RT RT RT RT M RT M Zkoušk jednotek: Početně:,04 kp kg J K ol kgol P Kdyycho uvžovli, že se jedná o ideální lyn (znedli ), k vyjde kp. K

23 Úloh ze cvičení č. 7 ocelové oě o ojeu 0,5 je lynný oxid uhličitý o látkové nožství kol o tlku 5,07 MP. Jkou telotu á tento lyn, ovžujee-li ho z: i) ideální; ii) ii) reálný? n der Wlsovy konstnty ro uvedený lyn jsou: =, J kol, = 4,8.0 kol.

24 Řešení úlohy /7 i) Ideální lyn: ze stvové rovnice IP vyjádříe T: T nr 6 5, 070 0, 5 0 8, K K C ii) Reálný lyn: ze stvové rovnice T n nr n Početně: T = 7 K..00 C Kritický tlk CO je si 7,4 MP.

25 Úloh ze cvičení 7 Určete růěr olekuly etnu, víte-li, že hodnot vn der Wlsovy konstnty ro tento lyn je = 0,08 kol.

26 Řešení úlohy ze cvičení 7 K řešení oužijee vzth ro korekční člen : d d N A N A d ol ol d 0,n

27 Úloh 4 ze cvičení 7 Použijte vn der Wlsovu rovnici vyočtěte telotu, ro níž tlk kyslíku O, který á hustotu 00 kg -, je 8,0 MP. yočítnou hodnotu orovnejte s telotou, která y vyšl ři oužití stvové rovnice ideálního lynu.

28 Řešení úlohy 4 ze cvičení 7 Ze stvové rovnice vn der Wlsovy Úrvou dostnee ostuně R n n T r R M M R n n T r C 5 C 5 i T r T

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se:

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: CEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ Teorie Složení roztoků udává vzájený poěr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: MOTNOSTNÍM ZLOMKEM B vyjadřuje poěr hotnosti rozpuštěné látky k hotnosti

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

Výpočty podle chemických rovnic

Výpočty podle chemických rovnic Výpočty podle cheických rovnic Cheické rovnice vyjadřují průběh reakce. Rovnice jednak udávají, z kterých prvků a sloučenin vznikly reakční produkty, jednak vyjadřují vztahy ezi nožstvíi jednotlivých reagujících

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc.

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc. IDEÁLÍ PLY I Prof. RDr. Eanuel Soboda, CSc. DEFIICE IDEÁLÍHO PLYU (MODEL IP) O oleulách ideálního plynu ysloujee 3 předpolady: 1. Rozěry oleul jsou zanedbatelně alé e sronání se střední zdáleností oleul

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

8. Termodynamika a molekulová fyzika

8. Termodynamika a molekulová fyzika 8. erodynaika a olekulová fyzika Princi energie je záležitost zkušenosti. Pokud by tedy jednoho dne ěla být jeho všeobecná latnost zochybněna, což v atoové fyzice není vyloučeno, stal by se náhle aktuální

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Soustava SI. SI - zkratka francouzského názvu Système International d'unités (mezinárodní soustava jednotek).

Soustava SI. SI - zkratka francouzského názvu Système International d'unités (mezinárodní soustava jednotek). Soustava SI SI - zkratka francouzského názvu Systèe International d'unités (ezinárodní soustava jednotek). Vznikla v roce 1960 z důvodu zajištění jednotnosti a přehlednosti vztahů ezi fyzikálníi veličinai

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství)

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství) . Mechanika - úvod. Základní pojy V echanice se zabýváe základníi vlastnosti a pohybe hotných těles. Chcee-li přeístit těleso (echanický pohyb), potřebujee k tou znát tyto tři veličiny: hota, prostor,

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

ř ř ř ó é ř ř é ř ř ů ř ř ó ř ř é ř ť Ď ž ň é ř ň ř ň ř é ž ů ň ř ň řú é ň ř ů ň ř ň ř ž ž ň ř é ž ů é ů é ň ů ů ž ř é ř ů š é ů ř é ř ů ř ů é ň ň é ř ň é ř ř ž ů ů ř ž ž ž ř é ř ř ů ř é ř ů ř ú ů ú ů

Více

ROZVAHA. ke dni... BAB mont s.r.o. Klíčovská 805/11 Praha 9 190 00 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0

ROZVAHA. ke dni... BAB mont s.r.o. Klíčovská 805/11 Praha 9 190 00 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 Minimální závzný výčet informcí podle vyhlášky č. 500/2002 S. Písemnost yl podán elektronicky dne: 20.6.2012 Podcí : 2172526 Heslo zjištění stvu: c3d895fe Stv podání: vyřízeno ROZVAHA ke dni... 3 1. 1

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Č Ú Í Á Ú Í Ú Ú Í Á Ě Č Ě Á Á Í Á Í Í Á Í Ý Í Í Á Í ž Í š š ž ť ž ž Í š š š ž š š Ý Č Í Á ú ý ó Č Č ž Í ř ř ž ž ř ř Č ř ý ž ř ž ř ž ý Í ú ů ý ř ř ú ř š š š š ř ž ž ř ý ý ř ý Č ý ž ý š Í ý ý ř Ú š š ž ť

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evroský sociální fond Praha & EU: Investujeme do vaší udoucnosti Ekonomika odniku Katedra ekonomiky, manažerství a humanitních věd akulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Vztahy

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

Relativní atomová hmotnost

Relativní atomová hmotnost Relativní atomová hmotnost 1. Jak se značí relativní atomová hmotnost? 2. Jaké jsou jednotky Ar? 3. Zpaměti urči a) Ar(N) b) Ar (C) 4. Bez kalkulačky urči, kolika atomy kyslíku bychom vyvážili jeden atom

Více

3.4.12 Konstrukce na základě výpočtu II

3.4.12 Konstrukce na základě výpočtu II 3.4. Konstruk n záklě výpočtu II Přpokly: 34 Př. : J án úsčk o jnotkové él úsčky o élkáh,, >. Nrýsuj: ) úsčku o él = +, ) úsčku o él Při rýsování si élky úsčk, vhoně zvol. =. Prolém: O výrzy ni náhoou

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

ALGEBRA, ROVNICE A NEROVNICE

ALGEBRA, ROVNICE A NEROVNICE ALGEBRA, ROVNICE A NEROVNICE Gymnázium Jiřího Wolker v Prostějově Výukové mteriály z mtemtiky pro nižší gymnázi Autoři projektu Student n prhu 1. století - využití ICT ve vyučování mtemtiky n gymnáziu

Více

ý ý ý íú í ě Á ý ž ů ěí ě ž ý ó ý ý ú í ý ž ý ě í ýě ýýš í ú íú ěž ý ý íě ň ě í š ě ý íů ě ý ž ý ý í ě ý íí ě ý Á ý ě í ý ě ý í í ý í ě Č ď ů ě š ě ě ň í ú í ýě í í ě í š ě í í í ě ě ý š ý ž ěž ě ší ňž

Více

Á Č ŘÍ ň Í ň ý ě ň ý ň ň ů Í Í ý Í ů Í ě š ě š ě ů š ě Ě Ě Í Í ý š ě Í ý Í ý Í ý š ě š ě Ž ě ý ý ů Ř Í Á Ž ý ó š ý ě š ě š ě š ě š ě ý š ě š ě ě š ě ú ů š ě š ě Í ú ú ě Á Á Í Ě Í Í ÁŘ Í ě ý š ě š ě Ý ý

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

ROZVAHA. ke dni... Roset s.r.o. 31. 12. 2011. Raisova 1004 Strakonice 386 01

ROZVAHA. ke dni... Roset s.r.o. 31. 12. 2011. Raisova 1004 Strakonice 386 01 Minimální závzný výčet informcí podle vyhlášky č. 500/2002 S. ROZVAHA ke dni... 31. 12. 2011 jednotky: 1000 Kč Rok Měsíc IČ 2011 1 2 28065280 Ochodní firm neo jiný název účetní jednotky Roset s.r.o. Sídlo

Více

Minimální závzný výčet informcí podle vyhlášky č. 500/2002 S. ROZVAHA ke dni... 3 1. 1 2. 2 0 1 0 jednotky: 1000 Kč Ochodní firm neo jiný název účetní jednotky Správ městských sportovišť Kolín,.s. Sídlo

Více

VÝPOČET HLAVNÍCH ROZMĚRŮ ČTYŘTAKTNÍHO SPALOVACÍHO MOTORU

VÝPOČET HLAVNÍCH ROZMĚRŮ ČTYŘTAKTNÍHO SPALOVACÍHO MOTORU Pítový alovací troj je teelný otor, kde e čát energie vzniklá álení aliva řeění v tlakovou energii. Tato energie oocí vhodného echaniu e ění v echanickou energii. Jako nejoužívanější echaniu k řeěně tlakové

Více

1. Vznik zkratů. Základní pojmy.

1. Vznik zkratů. Základní pojmy. . znik zkrtů. ákldní pojmy. E k elektrizční soustv, zkrtový proud. krt: ptří do ktegorie příčných poruch, je prudká hvrijní změn v E, je nejrozšířenější poruchou v E, při zkrtu vznikjí přechodné jevy v

Více

Gaussovská prvočísla

Gaussovská prvočísla Středoškolská odborná činnost 2005/2006 Obor 01 mtemtik mtemtická informtik Gussovská rvočísl Autor: Jkub Oršl Gymnázium Brno, tř. Kt. Jroše 14, 658 70 Brno, 4.A Konzultnt ráce: Mgr. Viktor Ježek (Gymnázium

Více

ř á á ü č ů á ř ř á ě ř ý á á ě á á ř á Č á á á ě řč á Č á ě á ř ř á ě ý ů á ě ř á á Ř Ě Ě Ř É Á ř á á ř ř á á Ž ř ř ř ě ě ř á á ě ěá ě ř á á ě ě ě ěá ř ě ě ř á á čá ř ě ě ř á ý ů č ě šíř č Š á ř á á

Více

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí.

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí. 10. Nebezpečné dotykové npětí zásdy volby ochrn proti němu, ochrn živých částí. Z hledisk ochrny před nebezpečným npětím rozeznáváme živé neživé části elektrického zřízení. Živá část je pod npětím i v

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Ž é ř é ř é ř é č č š ě š ě č ř úř ř úř é é ě ě Í ř č ř ř ěž ě ř č é ř é ř č é ě ř ě č éř Ž é ě ě ř ř ě š ě č Ť é Í ě Ž ř é č ř é ř é Ž ě ě Ž ř é č Č é ě č Č é Ž č Č é é č é ě ř ň č é ř ř č ň č Ť é Ť ů

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

SBÍRKA PŘÍKLADŮ Z CHEMIE PRO OBOR TECHNICKÉ LYCEUM

SBÍRKA PŘÍKLADŮ Z CHEMIE PRO OBOR TECHNICKÉ LYCEUM BÍRK PŘÍKLDŮ Z CHEIE PRO OBOR TECHNICKÉ LYCEU ilan ZIPL 006 Obsah Obsah... Úvod... 3 1. Základní výpočty.... 4 1.1 Hotnost atoů a olekul... 4 1. Látkové nožství, olární hotnost.... 5 1.3 Výpočet obsahu

Více

Změna skupenství, Tání a tuhnutí, Sublimace a desublimace Vypařování a kapalnění Sytá pára, Fázový diagram, Vodní pára

Změna skupenství, Tání a tuhnutí, Sublimace a desublimace Vypařování a kapalnění Sytá pára, Fázový diagram, Vodní pára Zěny skupenství átek Zěna skupenství, Tání a tuhnutí, Subiace a desubiace Vypařování a kapanění Sytá pára, Fázový diagra, Vodní pára Zěna skupenství = fyzikání děj, při které se ění skupenství átky Skupenství

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

Psychologická metodologie. NMgr. obor Psychologie

Psychologická metodologie. NMgr. obor Psychologie Pržská vysoká škol psychosociálních studií, s.r.o. Temtické okruhy ke státní mgisterské zkoušce Psychologická metodologie NMgr. oor Psychologie 1 Vědecká teorie vědecká metod Vědecké vysvětlení, vědecký

Více

Č Ž Á Í ž é é ě ě ú ů ů ě ě š ů Ť é ě é ě š ě š ě ě š ů é ú é ě ž ě ě š ů ú ú ě é ú ě ě š ů ě ů ů ě ěž ů ž ěž ů é ú ěž ž ů ě ě ú é ů ů ú š ó ě ú ů ů ů ů ů ů š ú ž ú é ň ú ů ů š ě ě ě ú ú é ú ě ů ě ú ů

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

ě áů Ž é á í š Í ť á á š ěší š í ý á ž ý í Ží ří ů á í Í á úš š ě ě ý ý ář ý ý ž í ří ě ř í Ž áš á ě é Č á ě ó ří ě ů á í ď č š í é ď ří ě é ó č á ů í ó Í é Ž ř á é ú ří ě é ří š č é žší ě á í ó ú č ří

Více

Stabilita atomového jádra. Radioaktivita

Stabilita atomového jádra. Radioaktivita Stbilit tomového jádr Rdioktivit Proton Kldný náboj.67 0-7 kg Stbilní Atomové jádro Protony & Neutrony Neutron Bez náboje.67 0-7 kg Dlouhodobě stbilní jen v jádře Struktur jádr A Z N A nukleonové číslo

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

Konvence Integrovaného dopravního systému Libereckého kraje (IDOL) Účastníci Konvence:

Konvence Integrovaného dopravního systému Libereckého kraje (IDOL) Účastníci Konvence: Konvence Integrovného doprvního systému Libereckého krje (IDOL) Účstníci Konvence: KORID LK, spol. s r.o. Liberecký krj Město Česká Líp Město Jblonec nd Nisou Sttutární město Liberec Město Turnov České

Více

Ý Ě Ú Ý Ů Ý Ů ě ě ú É Ř É Ý ú š ě Ú ť Ó Ó ó ď ů ď ů ů ů ě ů ú ů ů ů ů ě ů ú ě ů ď ů ů ů ě ů ú ů ů ů ů ě ů ú ů ž ěž ěž ú ů Ú ů ú Ř ů ď Ť Ó Ř ů ů ů ů ů ů ů ť ů Ú ú ú ě ů ů ů ó ů ó ď ó ó ů ů ú ó ó ů ů ú Ř

Více

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte: Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.

Více

ŘÍ ó Ý Ň É Ť Í ň ó Ř Í Í Ň ď ď ď Ě Í Á Ý ó Á ó ď ó Í ó Ř Č ó Ř Ř Á Š Ď ď ď Č Ý Ý Í ň Ý ň Ý Ý ň Í Ý Ó Í Ý ň Ň ď ň ó ó ó ď ň Á Á Á Ě Ě ň ň ň Á Á ó ď Í Ě ď Ď ň Ý ď ó ň Š Í Á ÁŠ Ě Š Í Á ď ď ď ď Ý ň ň Í Ž

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla)

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla) KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 23TVVM hoogenizce (sěšovcí prvidl) Hoogenizce Stvební teriály sou z hledisk zstoupení doinntních složek několikfázové systéy: Dvoufázové trice, vzduch (póry)

Více

Č Č ř ů ě ř Í ř ú ů ě ů ů ů ě ě ž ř ř ě ř Ž ě ě ě ě š ů ř ř ě ř ě ř ě ě ě ě ř šř ů ř ř ř ě Ž š šš ř ž ě š Č ě Ž šř ě š Ž š ů ů ě ů ě ě ů Č ř ř Ž ě ě ř ř Š Ž ň ě ůš Ř ů Č ř ř úř ř šř Š ř ě Ú ř ě ř Ú ř Ž

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

Maturitní příklady 2011/2012

Maturitní příklady 2011/2012 Mturitní příkldy 0/0 Výroková logik, množiny, důkzy Ve třídě je 0 dívek 5 hohů Jedn čtvrtin dívek nosí rýle elkem 0% žáků ve třídě má rýle Kolik hohů nenosí rýle? Ze 00 studentů se 0 učí němeky, 8 špnělsky

Více

Š ÍŠ Ť ž Ť Ý č ď č š Ť č č č š č Ť š š Ť Í šč š č č č č Ď č Ť č š š ť Š Ť Ť Š č č č ž Š č č š Ť Ť ž Ť ť Ť č š š Ť ť Ť ť č č Ť ž š Ť š Ť Ť š Ť š Ť Ť ť Č š Ť č š Ť č Ť ť č č š Ť ť Ý Ť š ď š Í Ť Í ť Ť ť š

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

ď ř ř ř é ř ř ů ř ř é ř řú é ň é ř ň ř ů ň řú ů é ň ř ů ň ř ů é ň ř ú ň ř ů ň ř ů ž ž ň ř é ž ů é ň ů ž ř é ř ů ř š é ů ř é ř ů é ň ř ň é ř ž ů ů ř ž é ž ž ž ž ř é ř ř ů ř ř ů ř ú ů Ú ů ů ř é ř é ř ř é

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

Názvosloví anorganických sloučenin

Názvosloví anorganických sloučenin Chemické názvosloví Chemické prvky jsou látky složené z atomů o stejném protonovém čísle (počet protonů v jádře atomu. Každému prvku přísluší určitý mezinárodní název a od něho odvozený symbol (značka).

Více

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

1. Molekulová stavba kapalin

1. Molekulová stavba kapalin 1 Molekulová stavba kapalin 11 Vznik kapaliny kondenzací Plyn Vyjdeme z plynu Plyn je soustava molekul pohybujících se neuspořádaně všemi směry Pohybová energie molekul převládá nad energii polohovou Každá

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Stanovení disociační konstanty acidobazického indikátoru. = a

Stanovení disociační konstanty acidobazického indikátoru. = a Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející

Více

E V R O P S K Á Ú M L U V A O K R A J I NĚ

E V R O P S K Á Ú M L U V A O K R A J I NĚ E V R O P S K Á Ú M L U V A O K R A J I NĚ Sdělení Ministerstv zhrničníh věí č. 13/2005 S.m.s. Ministerstvo zhrničníh věí sděluje, že dne 20. říjn 2000 yl ve Florenii přijt Evropská úmluv o krjině. Jménem

Více

Astronomie (a astrofyzika) tradičně patřila k disciplínám

Astronomie (a astrofyzika) tradičně patřila k disciplínám č 5 Čs čas fyz 6 (1) Hvězdy v úloá Mezináodní fyzikální olyiády vznik a ovnováa Jan Kříž, Ivo Volf, Bouil Vybíal Ústřední koise Fyzikální olyiády, Univezita Hade Kálové okitanskéo 6, 5 Hade Kálové ředstavujee

Více

ě ý ř č úř ě Í č Č ř č Ú Ř č č Ř úš Ú Ř Í Í Ř É Ú ě č Č ě č ě ě é ř ý é ůž Ž ž ú ě ž č ý ý ý ý ú Í ě č č ů ů ů ý ý Ú ě č ř ě é ř ě é ž úč ýš č Í Ú ě č é é Úč ř é ž Ž ň ý Ů ů ž ř č ě ž ý ž š ě ů č ž Ž ř

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Finanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Přímka kapitálového trhu

Finanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Přímka kapitálového trhu Finanční anageent Příka kapitálového trhu, odel CAPM, systeatické a nesysteatické riziko Příka kapitálového trhu Čí vyšší e sklon křivky, tí vyšší e nechuť investora riskovat. očekávaný výnos Množina všech

Více

DOUČOVÁNÍ KVINTA CHEMIE

DOUČOVÁNÍ KVINTA CHEMIE 1. ÚVOD DO STUDIA CHEMIE 1) Co studuje chemie? 2) Rozděl chemii na tři důležité obory. DOUČOVÁNÍ KVINTA CHEMIE 2. NÁZVOSLOVÍ ANORGANICKÝCH SLOUČENIN 1) Pojmenuj: BaO, N 2 0, P 4 O 10, H 2 SO 4, HMnO 4,

Více

SINEAX C 402 Hlásič mezních hodnot

SINEAX C 402 Hlásič mezních hodnot pro stejnosměrné proudy neo stejnosměrná npětí Použití SINEAX C 402 (or. 1) se používá především k sledování mezních hodnot při měřeních s proudovými neo npěťovými signály. Signlizce se přitom provádí

Více

óš ř Ř Í É ŘÍ Í Á Í Á Á Ý Á Í Č Á Ž Í Ř Í ŠÍÚ Ý Í Í Č Í Ú ÁŠ Í Č Á Í ĚŘ ú é ú ěš é ř š ě č ř š ř š č ě š ě é é č ř č č é é ž ř ě ěš ž óě Í ř ě ř ě ě š ě ě ř ě é ž é šť ě ř ě ě č č č šé ě ř ě é é Č é š

Více

č ý ž ř č č š č ž č úč úř š č úč Č ř č š ň ů č ř š ý ř Ž č Ž Ž č Ž úř ř č č Ž ď ř ý č ý č š ř ý ř š ó č ý ř č ý Ž Ž ď č ř č Ž Ž č ý č ř č Ž ř č ů ž š ů ř Ž š ý ň ů ů ř š ž š ý ř ý ř ž č č Ž ř ýš ř č č

Více

ř é ů ř ř š Š ě ř é ů Š ě ř é ů ř ř é ě š ů ď ě ý ů ú é ú é ú é ú é ý ú é ř ř ů ř ě ý é ů ě é ř ě Ž é ú ř ý ě ý ř ď ů é Í ě é ě ý Š ěř é ýř é ř ů ó ě ý ř ě ř ě ý ů ě ě š ř ů ú ýš ě ů ú ý ť ě ý ý ď ě ď

Více

ý ě ě ě ú Ť ř ě ě ř ě Ž ě Ř Í Í ě ě Č ř ě ě ř ě ř ě ú ú ř ě ě ř ě Ť ě ě ěř ú ř ý ý ž ů Í ý šó š š ě ů ý ů ž ěř ý ž ž ý ř ě ěš ěř ý ř ř ů ů ů ý ů ů ý ý Ž š š ý Ž ů ž Ž ě ř ý ý ě š ů Í ř ř ě š ů ř ý ů ž

Více

Úř Ú Ř Á Á Ý Ú ú Úř ř ň ě ý ř Ú Š ř Úř úř ř š ě ý ě ý úř ě š ř ž ý ě ý ř Ú ě ý ž ý š ůž ž ř ž ř ř ě úř ř ě ž ě š ý ý ř ý ě ě š ř ů ý ě ž ř ě ů ý ů Úř š ů ř ě ř ě ř ě ě ř ř ř ě ž Úř š ě ž ř ž š Ž ř ů ý

Více

č é é ý ů é Í č ě Í řĺč ě ĺ ĺ Č ř ř ů Í Řĺ ř é ě ý Ž č ř Ć č ú ĺ ĺ Ą ž é ě é Ž řĺ é č é č ý ě é ú é š ÍŽ ý Ú ě Í ř ř š é ř č ĺ é é ĺ ý ĺ Ů é Ú ř ř Ž ř é ě ř é ě ŠÍ č ř Í é Úč é é ú ĺ š ě ě Ž č é ř ý Ž

Více

ž íč é á í Ž ř š á í é ů é í ř á á é ý á í ř ě š í ř ř ě á Ří ř í ř Š č í íč íš Ž éř á á é ě á ž í ď á á í í Ť ř é ý š íáš ě ě ů á ý ý í ě ý é č ť ý íč ř á ý ší ů ž é í ě ě íč íž á Íš ž í ýš í é é é ří

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

Statistická analýza dat - Indexní analýza

Statistická analýza dat - Indexní analýza Statistiká analýza dat Indexní analýza Statistiká analýza dat - Indexní analýza Index mohou být:. Stejnorodýh ukazatelů. Nestejnorodýh ukazatelů Index se skládají ze dvou složek:... intenzita (úroveň znaku)...

Více

01-09.7 10.14.CZ Zpětné ventily a zpětné uzavíratelné ventily ZV 226 a ZV 236

01-09.7 10.14.CZ Zpětné ventily a zpětné uzavíratelné ventily ZV 226 a ZV 236 01-09.7 10.14.CZ Zpětné ventily zpětné uzvírtelné ventily ZV 226 ZV 26-1- ZV 226 ZV 26 Zpětné ventily zpětné uzvírtelné ventily 15 ž 200, PN 16, 25 Popis Zpětné ventily ZV 2x6 jsou smočinné uzávěry s vynikjícími

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více