IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc.

Rozměr: px
Začít zobrazení ze stránky:

Download "IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc."

Transkript

1 IDEÁLÍ PLY I Prof. RDr. Eanuel Soboda, CSc.

2 DEFIICE IDEÁLÍHO PLYU (MODEL IP) O oleulách ideálního plynu ysloujee 3 předpolady: 1. Rozěry oleul jsou zanedbatelně alé e sronání se střední zdáleností oleul od sebe poažujee je za hotné body.. Moleuly na sebe zájeně nepůsobí io zájené srážy. (E p = 0) 3. Vzájené srážy a srážy se stěnai nádoby jsou doonale pružné. Doplnění: IP obsahuje elý počet částic (poronááe s { A })

3 ÚLOHA 1 ZE CVIČEÍ 4 Odhadněte na záladě údajů uedených MFChT počet oleul plynů zduchu (bez CO a odních par) o objeu 1,0 c 3 za norálních podíne. (hustota zduchu 1,9 g -3, olární hotnost zduchu asi 9 g.ol -1 ) Řešení n A M A V M A 6 1,91,0 10 6, ,

4 ZÁKLADÍ CHARAKTERISTIKY o lidoá hotnost částice IP hotnost daného nožstí plynu V hustota částic plynu hustota plynu n látoé nožstí plynu počet částic určité lastnosti d eleentární počet částic dané lastnosti (např. rychlost dané interalu) /V = /V stejná hustota částic / = V/ V = V. V d = V. dv

5 ROZDĚLEÍ MOLEKUL PLYU PODLE RYCHLOSTÍ Laertů pous (s parai oů Pb, Bi, Sn; historicy páry Hg) d =. ; =. d

6 TABULKA ROZDĚLEÍ MOLEKUL PODLE RYCHLOSTÍ KYSLÍK O Relatiní četnost počtu oleul s rychlosti interalu (, + )

7 HISTOGRAM ROZDĚLEÍ MOLEKUL PLYU PODLE RYCHLOSTÍ KYSLÍK O g( )

8 GRAF ROZDĚLEÍ MOLEKUL PODLE RYCHLOSTÍ PRO DVĚ RŮZÉ TEPLOTY g( )

9 POJMY d dw d g( ) d d Relatiní četnost počtu částic s rychlosti interalu (, + ) Relatiní četnost počtu částic s rychlosti interalu (, + d) Praděpodobnost ýsytu částic s rychlosti interalu (, + d) dw d Hustota pp ýsytu rychlosti interalu (, + d) rozděloací funce g() dw g( ) d Praděpodobnost, že rychlosti částic jsou interalu (, + d)

10 HUSTOTA PP VÝSKYTU MOLEKUL PLYU - ROZDĚLOVACÍ FUKCE; PRAVDĚPODOBOST g( ) d d d w g( ). d Geoetricý ýzna dw určení z grafu g() Pozor: nezaěňoat průběh Maxwelloy řiy s Gaussoou řiou(ta je syetricá)

11 TVARY ROZDĚLOVACÍ FUKCE MAXWELL STATISTICKÝ ZÁKO , JK -1 Boltzannoa onstanta R 8,31 JK -1 ol 1 olární plynoá onstanta M olární hotnost plynu

12 ROZBOR GRAFU ROZDĚLOVACÍ FUKCE = 0, nesyetričnost grafu axiu g() nejpraděpodobnější rychlost p p p T 0 RT M

13 HLEDÁÍ MAXIMA ROZDĚLOVACÍ FUKCE 0 d d p g( ) 0 e 0 p p p T e α T e 0 p p T Kořeny ronice: ( p ) 1 =0; ( p ) = p T, Fyziální ýzna: M RT T 0 p

14 PŘÍKLADY HODOT RYCHLOSTÍ V P Při teplotě 73 K: yslí O 377 s -1 odí H 1507 s -1 xenon Xe 186 s -1 zduch 396 s -1

15 ÚLOHA ZE CVIČEÍ 4 Vypočtěte, při teré teplotě je nejpraděpodobnější rychlost oleul odíu rona 000 s 1. Řešení: p RT M T p M R T o K 481K tj. asi 08 C 8, 31

16 STŘEDÍ RYCHLOST A STŘEDÍ KVADRATICKÁ RYCHLOST o M RT T 3 3 T T g o )d exp( 4 d ) (. o s M RT T d g ) ( 1 0 1! )d exp(. n n n x x x d n n n n x x x. )...(.. ).exp(

17 POROVÁÍ RYCHLOSTÍ V P, V S A V K Kyslí O s p

18 PŘÍKLADY HODOT RYCHLOSTÍ V K Plyn T 1 = 73 K = s 1 T = 373 K = s 1 Dusí Kyslí O Vodí H Xenon 8 67 Vzduch

19 ÚLOHA 3 ZE CVIČEÍ 4 Oěřte si názorně pro 5 různě zolených číselných hodnot rychlosti, že je rozdíl ezi hodnotai a

20 ÚLOHA 4 ZE CVIČEÍ 4 Vypočtěte střední adraticou rychlost yslíu O za teploty 7 o C. Řešení: 3RT M 38, s s 1 Poronat ypočtenou hodnotu s předchozí tabulou

21 ÚLOHY 5 A 6 ZE CVIČEÍ 4 Proč trá i půl inuty, než se ná rozšíří ůně parféu? Odpoěď: eli složitá cesta oleul něterých parféů ezi oleulai plynů zduchu Může být rychlost zuu dané plynu ětší, než střední adraticá rychlost oleul tohoto plynu? Oěřte např. pro odí nebo zduch. Odpoěď: zuoá lna se šíří poocí sráže ezi jednotliýi oleulai, neboli rychlost enší než střední adraticá rychlost; oleuly se pohybují šei sěry, ne jen e sěru šíření lny. Pro odí je = 190 s 1, rychlost zuu e odíu 1350 s 1.

22 ÚLOHA 7 ZE CVIČEÍ 4 (A RELATIVÍ ČETOST MOLEKUL) ádoba je naplněna yslíe O při 7 o C. Určete : a) střední adraticou rychlost oleul O ; b) relatiní četnost oleul s rychlosti interalu 599 s 1 ; 601 s 1. Doporučení: Zolte rozděloací funci, e teré se ysytuje M plynu a použijte lineární interpolaci.

23 ŘEŠEÍ 3RT 3 8, a) M s 483 s 3 b) = s 1 alý interal, proto yhodnotíe rychlostí = 600 s 1 Lineární interpolace M RT M 4 RT 4 A e B 3 e 9 A,9 10 s B,31 9,31 4, e,610 3 Asi 0,3 % oleul z celoého počtu (zolili jse alou šíři interalurychlostí) 3 3

24 ÚLOHA 8: GRAFICKÉ ŘEŠEÍ RELATIVÍHO POČTU ČÁSTIC S RYCHLOSTMI V DAÉM ITERVALU Úloha: Koli % oleul argonu (A r 40) se pohybuje při teplotě 373 K s rychlosti interalu (47,5 s 1, 630 s 1 )? Řešte graficy. Zolte rozděloací funci uedenou přehledu na 1. řádu. Řešení: Substituce: p Integrací: T o d u d p 4 o T u u 1 o T p d e e 4 p 4 u e u du u d d 4 e u du

25 GRAFICKÉ ŘEŠEÍ ÚLOHY Odhadnee průběh funce f ( u ) 4 u u e Tabula u 0,4 0,8 1,0 1, 1,6,0, f(u) 0,31 0,76 0,83 0,77 0,45 0,16 0,1 Graf p 394 /s u 1 1, u 1,6 4 %

26 KOTROLA VÝPOČTEM ITEGRÁLU 4. 0, , 47 5 %

27 GRAF CHYBOVÉ FUKCE

28 ROZDĚLOVACÍ FUKCE PRO ROZDĚLEÍ MOLEKUL PLYU PODLE JEJICH KIETICKÝCH EERGIÍ Východiso g()d : Kin. energie 1 částice: Dif. zěna rychlosti: Dosazení: Po úpraě: T ( ) g T o o d e 4 d 3 o o o E E E 1 d d E E o 3 e 4 )d ( E de E T E E g o T E o o T E E T E g 3 e 1 ) (

29 POKR. Podína pro extré: Vyhoující řešení: ax dg(e de ) 0 ezáislost na hotnosti částice E T Pro T = 300 K: E ax , J 1, 10 J Pro odí H ypočtee nejpraděpodobnější rychlost: p T RT 8, o M 10 s s 1 Kdyby E ax ( p ), pa by yšlo T esí se zaěňoat!!!!! dojnásobe

30 BAROMETRICKÁ ROVICE Zěna hustoty částic atosféře se zěnou ýšy nad porche Zeě (pro T = onst., g = onst.) V Vo e gh o T Vo e M gh RT Pro tla platí staoá ronice p T T e V Vo M gh RT p o e Mgh RT eboli p p o e Mgh RT Platí přibližně, tla není přío úěrný ýšce h (na rozdíl od hydrostat. tlau); li proudění, zěny teploty

31 ÚLOHA 9 Vypočtěte, jaé ýšce (s teplotou 0 o C) á atosféricý tla tíhoé poli Zeě poloiční hodnotu oproti at. tlau při porchu Zeě (se stejnou teplotou). Řešte nejdříe obecně, proeďte zoušu jednote a pa řešte početně.molární hotnost zduchu 9 gol 1. Řešení Logaritoání Po úpraě 1 e M gh RT Mgh ln RT Číselně h RTln M g h J K 1 gol ol 1 1 K s h 8, 3173ln , 81 5,5

32 ÚLOHA 10 Poocí baroetricé ronice odoďte záislost hustoty atosféricého zduchu tíhoé poli Zeě na ýšce. Řešení: p p o e M gh RT Staoá ronice pv = T p T V T Dosazení do baroetricé ronice dostanee T T e o Mgh RT ebo yjít z ronice pv = p o V o (p / = p o / o ) o e M gh RT

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

Kinetická teorie plynu

Kinetická teorie plynu Kineticá teorie plnu Kineticá teorie plnu, terá prní poloině 9.století doázala úspěšně spojit lasicou fenoenologicou terodnaiu s echaniou, poažuje pln za soustau elého počtu nepatrných hotných částic oleul,

Více

Termodynamická soustava Vnitřní energie a její změna První termodynamický zákon Řešení úloh Prof. RNDr. Emanuel Svoboda, CSc.

Termodynamická soustava Vnitřní energie a její změna První termodynamický zákon Řešení úloh Prof. RNDr. Emanuel Svoboda, CSc. Vnitřní energie a její zěna erodynaická soustava Vnitřní energie a její zěna První terodynaický zákon Řešení úloh Prof. RNDr. Eanuel Svoboda, CSc. erodynaická soustava a její stav erodynaická soustava

Více

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady Příklady 1. Jaký je tlak vzduchu v pneuatice nákladního autoobilu při teplotě C a hustotě 8, kg 3? Molární hotnost vzduchu M 9 1 3 kg ol 1. t C T 93 K -3 ρ 8, kg, M 9 1 3 kg ol 1 p? p R T R T ρ M V M 8,31

Více

2.6.6 Sytá pára. Předpoklady: 2604

2.6.6 Sytá pára. Předpoklady: 2604 .6.6 Sytá ára Předolady: 604 Oaování: aaliny se vyařují za aždé teloty. Nejrychlejší částice uniají z aaliny a stává se z nich ára. Do isy nalijee vodu voda se ostuně vyařuje naonec zůstane isa rázdná,

Více

3.1.6 Dynamika kmitavého pohybu, závaží na pružině

3.1.6 Dynamika kmitavého pohybu, závaží na pružině 3..6 Dynaia itavého pohybu, závaží na pružině Předpolady: 303 Pedagogicá poznáa: Na příští hodinu by si všichni ěli do dvojice přinést etrový prováze (nebo silnější nit) a stopy. Poůcy: pružina, stojan,

Více

VZDUCH V MÍSTNOSTI POMŮCKY NASTAVENÍ MĚŘICÍHO ZAŘÍZENÍ. Vzdělávací předmět: Fyzika. Tematický celek dle RVP: Látky a tělesa

VZDUCH V MÍSTNOSTI POMŮCKY NASTAVENÍ MĚŘICÍHO ZAŘÍZENÍ. Vzdělávací předmět: Fyzika. Tematický celek dle RVP: Látky a tělesa VZDUCH V MÍSTNOSTI Vzdělávací předět: Fyzika Teatický celek dle RVP: Látky a tělesa Teatická oblast: Měření fyzikálních veličin Cílová skupina: Žák 6. ročníku základní školy Cíle pokusu je určení rozěrů

Více

2. Definice plazmatu, základní charakteristiky plazmatu

2. Definice plazmatu, základní charakteristiky plazmatu 2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se

Více

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se:

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: CEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ Teorie Složení roztoků udává vzájený poěr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: MOTNOSTNÍM ZLOMKEM B vyjadřuje poěr hotnosti rozpuštěné látky k hotnosti

Více

KAPALINY Autor: Jiří Dostál 1) Který obrázek je správný?

KAPALINY Autor: Jiří Dostál 1) Který obrázek je správný? KAPALINY Autor: Jiří Dostál 1) Který obráze je správný? a) b) 2) Vypočti hydrostaticý tla v nádobě s vodou na obrázu: a) v ístě A b) v bodě C c) Doplňové ateriály učebnici Fyzia 7 1 ) V bodě C na obrázu

Více

VLIV SLUNEČNÍHO ZÁŘENÍ NA VĚTRANÉ STŘEŠNÍ KONSTRUKCE

VLIV SLUNEČNÍHO ZÁŘENÍ NA VĚTRANÉ STŘEŠNÍ KONSTRUKCE VLIV SLUNEČNÍHO ZÁŘENÍ N VĚTRNÉ STŘEŠNÍ KONSTRUKCE ZÁKLDNÍ PŘEDPOKLDY Konstrukce douplášťoých ětraných střech i fasád ke sé spráné funkci yžadují tralé ětrání, ale případě, že proedeme, zjistíme, že ne

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

Fluidace Úvod: Úkol: Teoretický úvod:

Fluidace Úvod: Úkol: Teoretický úvod: Fluidace Úod: Fluidace je mechanická operace (hydro- nebo aeromechanická), při které se udržují tuhé částice e znosu tekuté (kapalné nebo plynné) fázi. Uplatňuje se energetice při spaloání uhlí, katalytických

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

2.1.6 Relativní atomová a relativní molekulová hmotnost

2.1.6 Relativní atomová a relativní molekulová hmotnost .1. Relativní atoová a elativní oleklová hotnost Předpoklady: Pedagogická poznáka: Tato a následjící dvě hodiny jso pokse a toch jiné podání pobleatiky. Standadní přístp znaená několik ne zcela půhledných

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

1.2.5 2. Newtonův zákon I

1.2.5 2. Newtonův zákon I 15 Newtonův zákon I Předpoklady: 104 Z inulé hodiny víe, že neexistuje příý vztah (typu příé nebo nepříé úěrnosti) ezi rychlostí a silou hledáe jinou veličinu popisující pohyb, která je navázána na sílu

Více

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č.

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č. Mendelova zemědělsá a lesnicá univerzita Provozně eonomicá faulta Výpočet charateristi ze tříděných údajů Statistia I. protool č. 2 Jan Grmela, 2. roční, Eonomicá informatia Zadání 130810, supina Středa

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního uělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v ráci OP VK - EU peníze školá Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Hustota v praxi

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

1.8.9 Bernoulliho rovnice

1.8.9 Bernoulliho rovnice 89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství)

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství) . Mechanika - úvod. Základní pojy V echanice se zabýváe základníi vlastnosti a pohybe hotných těles. Chcee-li přeístit těleso (echanický pohyb), potřebujee k tou znát tyto tři veličiny: hota, prostor,

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Změna skupenství, Tání a tuhnutí, Sublimace a desublimace Vypařování a kapalnění Sytá pára, Fázový diagram, Vodní pára

Změna skupenství, Tání a tuhnutí, Sublimace a desublimace Vypařování a kapalnění Sytá pára, Fázový diagram, Vodní pára Zěny skupenství átek Zěna skupenství, Tání a tuhnutí, Subiace a desubiace Vypařování a kapanění Sytá pára, Fázový diagra, Vodní pára Zěna skupenství = fyzikání děj, při které se ění skupenství átky Skupenství

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Poznámky k cvičením z termomechaniky Cvičení 9.

Poznámky k cvičením z termomechaniky Cvičení 9. Voda a vodní pára Při výpočtech příkladů, které jsou zaěřeny na výpočty vody a vodní páry je důležité si paatovat veličiny, které jsou kritické a z hlediska výpočtu i nezbytné. Jedná se o hodnoty teploty

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

Základy vztlakové síly v pokusech

Základy vztlakové síly v pokusech Základy vztlakové síly v pokusech Václav Piskač 1, Gynáziu tř. Kpt. Jaroše, Brno Po celou dobu své pedagogické praxe se snaží vyučovat poocí deonstračních a žákovských pokusů. Následující řádky považujte

Více

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015 Řešení testu b Fyzika I (Mechanika a olekulová fyzika) NOFY0 9. listopadu 05 Příklad Zadání: Kulička byla vystřelena vodorovně rychlostí 0 /s do válcové roury o průěru a koná pohyb naznačený na obrázku.

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz

Více

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m Vlastní itání oscilátoru Kitavý pohb Kitání periodicý děj zařízení oná opaovaně stejný pohb a periodic se vrací do určitého stavu. oscilátor zařízení, teré ůže volně itat (závaží na pružině, vadlo) it

Více

Chemie - cvičení 2 - příklady

Chemie - cvičení 2 - příklady Cheie - cvičení 2 - příklady Stavové chování 2/1 Zásobník o objeu 50 obsahuje plynný propan C H 8 při teplotě 20 o C a přetlaku 0,5 MPa. Baroetrický tlak je 770 torr. Kolik kg propanu je v zásobníku? Jaká

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

4 SÁLÁNÍ TEPLA RADIACE

4 SÁLÁNÍ TEPLA RADIACE SÁLÁNÍ TEPLA RADIACE Vyzařovaná energie tělese se přenáší elektroagnetický vlnění o různé délce vlny. Podle toho se rozlišuje záření rentgenové, ultrafialové, světelné, infračervené a elektroagnetické

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

Práce, energie, výkon

Práce, energie, výkon I N V E S T I C E D O R O Z V O E V Z D Ě L Á V Á N Í TENTO PROEKT E SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laoratorní práce č. 6 Práce,, výon Pro potřey projetu

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Soustava SI. SI - zkratka francouzského názvu Système International d'unités (mezinárodní soustava jednotek).

Soustava SI. SI - zkratka francouzského názvu Système International d'unités (mezinárodní soustava jednotek). Soustava SI SI - zkratka francouzského názvu Systèe International d'unités (ezinárodní soustava jednotek). Vznikla v roce 1960 z důvodu zajištění jednotnosti a přehlednosti vztahů ezi fyzikálníi veličinai

Více

= T = 2π ω = 2π 12 s. =0,52s. =1,9Hz.

= T = 2π ω = 2π 12 s. =0,52s. =1,9Hz. XIII Mechanicé itání Příad 1 Těeso itá haronicy s periodou 0,80 s, jeho apituda je 5,0 c a počátečnífáze nuová Napište rovnici itavého pohybu /y = 0,05 sin, 5πt) / Stručné řešení: Patí T = 0,8 s = ω =

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc.

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc. Molekulová fyzik Reálný lyn Prof. RNDr. Enuel Svood, CSc. Reálný lyn Existence vzájeného silového ůsoení ezi částicei (tzv. vn der Wlsovské síly) Odudivá síl ezi částicei (interkce řekryvová) ři dosttečně

Více

Srovnání klasického a kvantového oscilátoru. Ondřej Kučera

Srovnání klasického a kvantového oscilátoru. Ondřej Kučera Srovnání klasického a kvantového oscilátoru Ondřej Kučera Seestrální projekt 010 Obsah 1. Úvod... 3. Teorie k probleatice... 4.1. Mechanika... 4.1.1. Klasická echanika... 4.1.1.1. Klasický oscilátor...

Více

MĚŘENÍ NA ASYNCHRONNÍM MOTORU

MĚŘENÍ NA ASYNCHRONNÍM MOTORU MĚŘENÍ NA ASYNCHRONNÍM MOTORU Základní úkole ěření je seznáit posluchače s vlastnosti asynchronního otoru v různých provozních stavech a s ožnosti využití provozu otoru v generátorické chodu a v režiu

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 11: Speciální případy použití MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 2. Nelineární funkce

Více

Atomová hmotnostní jednotka, relativní atomové a molekulové hmotnosti Atomová hmotnostní jednotka u se používá k relativnímu porovnání hmotností

Atomová hmotnostní jednotka, relativní atomové a molekulové hmotnosti Atomová hmotnostní jednotka u se používá k relativnímu porovnání hmotností . Základí cheické výpočty toová hotostí jedotka, relativí atoové a olekulové hotosti toová hotostí jedotka u se používá k relativíu porováí hotostí ikročástic, atoů a olekul a je defiováa jako hotosti

Více

Stanovení závislosti měrné energie čerpadla Y s na objemovém průtoku Q v

Stanovení závislosti měrné energie čerpadla Y s na objemovém průtoku Q v LS2007 VYSOKÁ ŠKOLA BÁŇSKÁ-TU OSTRAVA MĚŘENÍ Č.1 ČERPACÍ TECHNIKA A POTRUBÍ Stanoení záislosti měrné energie čerpadla Y s na objemoém průtoku Q Skupina G442 Jan Noák Zadání: Stanote měřením záislost měrné

Více

ř Á ř ů Č é ú Č ř ů ž ž Ž ř é ú Č Š Š Č ř é ž ž ú é ř Š ř ž é ž ú ů é ž é é Č ř ř é ž ř ů Č Č ň é ř ž ů é Š Š ú ř ř ř é é é é ř ů ř ř ř ř Ž ž ž ž ř ó ú ř ř ř ř ó ř ó ř ř é é ó Ů Ž Č é ř é ř ř ř é Č é é

Více

1.6.7 Složitější typy vrhů

1.6.7 Složitější typy vrhů .6.7 Složitější tp rhů Předpoklad: 66 Pedaoická poznámka: Tato hodina přesahuje běžnou látku, probírám ji pouze případě, že mám přebtek času. Za normálních podmínek není příliš reálné s ětšinou tříd řešit

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

Identifikátor materiálu: ICT 2 54

Identifikátor materiálu: ICT 2 54 Identifikátor ateriálu: ICT 2 54 Registrační číslo projektu Název projektu Název příjece podpory název ateriálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního ateriálu Druh interaktivity

Více

Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková Náze a adesa školy: Střední škola ůysloá a uěleká, Oaa, řísěkoá oganizae, Paskoa 399/8, Oaa, 7460 Náze oeačního ogau: OP zděláání o konkueneshonost, oblast odoy.5 Registační číslo ojektu: CZ..07/.5.00/34.09

Více

Podívejte se na časový průběh harmonického napětí

Podívejte se na časový průběh harmonického napětí Střídavý proud Doteď jse se zabývali pouze proude, který obvode prochází stále stejný sěre (stejnosěrný proud). V praxi se ukázalo, že tento proud je značně nevýhodný. kázalo se, že zdroje napětí ůže být

Více

Rovnice v oboru komplexních čísel

Rovnice v oboru komplexních čísel Rovnice v oboru komplexních čísel Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu Šablona CZ.1.07/1.5.00/34.0218 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_01a

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ

nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ HYDRODYNAMIKA 5.37 Jaké objemové nmožství nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ. d 0mm v 0.3ms.850kgm

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

Výpo ty Výpo et hmotnostní koncentrace zne ující látky ,

Výpo ty Výpo et hmotnostní koncentrace zne ující látky , "Zracováno odle Skácel F. - Tekáč.: Podklady ro Ministerstvo životního rostředí k rovádění Protokolu o PRTR - řehled etod ěření a identifikace látek sledovaných odle Protokolu o registrech úniků a řenosů

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:

Více

MĚŘENÍ POVRCHOVÉHO NAPĚTÍ VODY

MĚŘENÍ POVRCHOVÉHO NAPĚTÍ VODY LABORATORNÍ PRÁCE Č. 3 MĚŘENÍ POVRCHOVÉHO NAPĚTÍ VODY TEORETICKÉ ZÁKLADY CO JE POVRCHOVÉ NAPĚTÍ Jednotlivé olekuly vody na sebe působí přitažlivýi silai, lepí se k sobě. Důsledke je například to, že se

Více

Úkol měření. Použité přístroje a pomůcky. Tabulky a výpočty

Úkol měření. Použité přístroje a pomůcky. Tabulky a výpočty Úkol měřeí ) Na základě vějšího fotoelektrického pole staovte velikost Plackovy kostaty h. ) Určete mezí kmitočet a výstupí práci materiálu fotokatody použité fotoky. Porovejte tuto hodotu s výstupími

Více

Úvod do lineárního programování

Úvod do lineárního programování Úvod do lieárího programováí ) Defiice úlohy Jedá se o optimalizaí problémy které jsou popsáy soustavou lieárích rovic a erovic. Kritéria optimalizace jsou rovž lieárí. Promé v této úloze abývají reálých

Více

Ideální struktura MIS Metal-Insulator-Semiconductor M I S P. Ideální struktura MIS. Ideální struktura MIS. Ochuzení. Akumulace U = 0 U > 0 U < 0 U = 0

Ideální struktura MIS Metal-Insulator-Semiconductor M I S P. Ideální struktura MIS. Ideální struktura MIS. Ochuzení. Akumulace U = 0 U > 0 U < 0 U = 0 truktura M Akuulace, ochuzeí, slabá a silá iverze rahové apětí, způsob vziku iverzí vrstv Kapacitor M, proud dielektrickou vrstvou razistor MOF truktura, pricip čiosti deálí VA charakteristika odporová

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Metoda datových obalů DEA

Metoda datových obalů DEA Metoda datoých obalů DEA Model datoých obalů složí ro hodoceí techické efektiit rodkčích jedotek ssté a základě elosti stů a ýstů. Protože stů a ýstů ůže být íce drhů, řadí se DEA ezi etod icekriteriálího

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

Výpočty podle chemických rovnic

Výpočty podle chemických rovnic Výpočty podle cheických rovnic Cheické rovnice vyjadřují průběh reakce. Rovnice jednak udávají, z kterých prvků a sloučenin vznikly reakční produkty, jednak vyjadřují vztahy ezi nožstvíi jednotlivých reagujících

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Elektrický proud v elektrolytech

Elektrický proud v elektrolytech Elektrolytický vodič Elektrický proud v elektrolytech Vezěe nádobu s destilovanou vodou (ta nevede el. proud) a vlože do ní dvě elektrody, které připojíe do zdroje stejnosěrného napětí. Do vody nasypee

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

Název: Chemická rovnováha II

Název: Chemická rovnováha II Název: Chemicá rovnováha II Autor: Mgr. Štěpán Miča Název šoly: Gymnázium Jana Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, fyzia Roční: 6. Tématicý cele: Chemicá rovnováha (fyziální

Více

Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň

Více

Á Ý Á Í Š š ů Š ž ú ř ž ú ř ř š ů ř ř ů Ů ř ů ň ů ř š é ů ž ř š ž é ř é ř š š ž ř ž ř ů ž ř ů ž ů é ř ž é ž ž ř ř ň ž ř ř ů š é ř ž ů ŠÍ é ř ň ů ř š é ř é ř š é ů ž š é ů é ú š é ž š š é é ř é é š ř ň

Více

ú Í Š Š Ť Í Š Š ň Ó Š Í Í Š Í ž Í Í Í ú Š Ů Č Š Š Á Í Š ú Í Ť Ů Í ž ž Ť Š Í ž ú ž Č ž Ú ž ť Í Í ú Ú ž ú ú Í ž Í Í Í ú ú Ú Í Ó ú Í Ů ú ú Ú Ó Í Í Í ú ú ž ú Í ú ž Č Ú Í ň É Í ú Í ú Í Č ň ň Č Ú ň ň ž Í Í ž

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

2. Určete optimální pracovní bod a účinnost solárního článku při dané intenzitě osvětlení, stanovte R SH, R SO, FF, MPP

2. Určete optimální pracovní bod a účinnost solárního článku při dané intenzitě osvětlení, stanovte R SH, R SO, FF, MPP FP 5 Měření paraetrů solárních článků Úkoly : 1. Naěřte a poocí počítače graficky znázorněte voltapérovou charakteristiku solárního článku. nalyzujte vliv různé intenzity osvětlení, vliv sklonu solárního

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. 3 arctg x 1+x 2 dx 2. (x 2 + 2x + 17)e x dx 3. 1 x 3 x dx Vypočtěte integrál: 3 arctg x 1 + x 2 dx Příklad 1. Řešení: Použijeme substituci: arctg x = t 3 arctg x dx = 1 dx = dt 1+x 2

Více

CZ.1.07/1.5.00/34.0556

CZ.1.07/1.5.00/34.0556 CZ.1.07/1.5.00/34.0556 Číslo projektu Číslo ateriálu Název školy Autor Teatický celek Ročník CZ.1.07/1.5.00/34.0556 VY_32_INOVACE_ZF_POS_11 Zkoušky kaeniva Střední průyslová škola a Vyšší odborná škola,

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA DOPLŇKOVÉ TEXTY BB0 PAVEL CHAUER INTERNÍ MATERIÁL FAT VUT V BRNĚ HYDRODYNAMIKA Obsah Úod... Průtok kapaliny... Ronice kontinuity... 3 Energie proudící kapaliny... 3 Objemoá hustota energie... 3 Bernoulliho

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

PRÁCE S ROZTOKY A JEJICH KONCENTRACE

PRÁCE S ROZTOKY A JEJICH KONCENTRACE LABORATORNÍ PRÁCE Č. 3 PRÁCE S ROZTOKY A JEJICH KONCENTRACE PRINCIP Roztoky jsou hoogenní soustavy sestávající se ze dvou nebo více složek. V cheii se kapalné roztoky skládají z rozpouštědla (nejčastěji

Více

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 S Á ČK Y NA PS Í E XK RE ME N TY SÁ ČK Y e xk re m en t. p o ti sk P ES C Sá čk y P ES C č er né,/ p ot is k/ 12 m y, 20 x2 7 +3 c m 8.8 10 bl ok

Více