Typové příklady pro přijímací zkoušky do navazujících magisterských studijních programů

Rozměr: px
Začít zobrazení ze stránky:

Download "Typové příklady pro přijímací zkoušky do navazujících magisterských studijních programů"

Transkript

1 Tyé říklady r řijímaí zkušky d naazujíí magisterský studijní rgramů Meanika těles Na brázku je ačký meanismus nu alié čeradla salaí mtru, na který ůsbí naí mment M a zátěžná síla F. Sestate je lastní ybu rnii.. K isu ly sustay zlte nezáislu suřadnii. Vyjádřete kinetiku energii jak funki tét suřadnie a její časý deriaí.. Vyjádřete zbeněnu sílu. Přitm uažujte i lastní tíy členů.. Sestate lastní ybu rnii ačké meanismu užitím Lagrangeý rni drué druu.. Vli asiní drů zanedbejte. Dán: m, m, I A, F, M, e, r, a, δ, g 9,8 ms - Vačký meanismus - řešení d Ek Ek Q dt Ad. φ Ad. E k IAω m ω ϕ y esinϕ r e ϕ sϕ E k IA me s ( ϕ) ϕ Ad. Q ~ ω M ~ mg~ s ( F sin mg) ~ ω ϕ δ ~ ~ ω e ~ ~ eω sϕ Q M m m ) g F sin δ s Ad. [ ] ϕ ( e

2 E k ( IA me ϕ s ϕ) ϕ d Ek ( IA me s ϕ) ϕ me sϕ ( sinϕ) ϕ dt ϕ E k m e sϕ ( sinϕ) ϕ ϕ [( m m ) g F sin δ ] e sϕ ( I A me s ϕ) ϕ m e sϕ sinϕ ϕ M Termmeanika Příklad A: V diagrame je zakreslen rnáaí bě salaí ísté mtru. Jsu známi tlaky a telty e še ýznamný bde tt běu (iz. tabulka). Praním médiem je zdu (κ,, r87j/ -.K - ). Jak se tent rnáaí bě nazýá? Určete měrné řiedené a dedené tel, měrnu rái běu a termiku účinnst tt běu. [MPa],,9,9,8 T [K] 88,5 59,8 7,5 75,

3 Řešení: Dieselů bě ( T T ),5( 7,5 59,8) 9755J. ( T T ) 77,5( 88,5 75, ) 6687J. w J. w η t 6687, 9755 r κ 87, 77,5J.. K κr,.87,5j. κ,. K Příklad B: V diagrame je zakreslen rnáaí bě salaí ísté mtru. Jsu známi tlaky a telty e še ýznamný bde tt běu (iz. tabulka). Praním médiem je zdu (κ,, r87j/ -.K - ). Jak se tent rnáaí bě nazýá? Určete měrné řiedené a dedené tel, měrnu rái běu a termiku účinnst tt běu. [MPa],,87,5,88 T [K] 9,5,5 67,5 6,8

4 Řešení: Ottů bě ( T T ) 77,5( 67,5,5 ) ( T T ) 77,5( 9,5 6,8) 8988J. 659J. w J. η t w 659, 8988 r κ 87, 77,5J.. K Meanika tekutin Příklad A: Stante ýsledný silý účinek dy na čtrtálé ík a stante úel, který sírá s drným směrem. Vík má lměr R,6m a délku b,5m. Je lube,m. Hustta dy je /m a tíé zrylení g9,8m/s. R,6 Fx ρg R. b.9,8,,6*,5 76,N F y πr ρg R π.,6 b.9,8.,*,6,5 555,N F F x F y 898,66N tgϕ F F y x ϕ 8,7 Příklad B: Nássku na brázku rtéká da. Výšky jsu,8m,,m. Celká délka trubí je L5m. Průměr trubí je dmm. Sučinitel třeí ztrát je λ,, ztrátý sučinitel na stuu je

5 ,9, každém kleně k, ( místě je ztráta. k ) a e entilu en,5. Jiné ztráty neuažujte. Naište Bernulliu rnii r reálnu kaalinu mezi ladinu a ýtkým trem, yčítejte bjemý tk Q[m /s] a tlaku ztrátu z [Pa] ři růtku dy nássku. Hustta dy je /m a tíé zrylení g9,8m/s. ( ) ( ) ( ) Pa d L s m d Q m s d L g d L g en k z en k en k 8,5.,,9, 5,,7.,..,,5.,,9, 5,,.9,8,8 λ ρ π λ λ ρ ρ

6 Pružnst a enst

7 Alikaná matematika. Zdůdněte existeni a určete abslutní extrémy funke f(x, y) xy x y y na úseče M { [x, y] E ; y x, x }.. Je dána funke f(x) ln(x ) x. a) Vyčítejte. a. deriai tét funke. Naište rnii tečny ke grafu tét funke bdě [x, f(x )], je-li x. b) Naište Taylrů lynm T (x) stuně středu x zadané funke f. Pmí T (x) určete řibližně dntu f(x) r x /. ) Naište Lagrangeů tar zbytku R (x). Pmí R (/) dadněte elikst yby řibližné ýčtu dnty f(/) z úly b).,,. a) Určete lastní čísla matie A,,., 8, b) Určete sektrální lměr ρ(a), tj. nejětší z abslutní dnt lastní čísel matie A. ) Zlte jedn z lastní čísel. Naište sustau rni r ýčet lastní ektrů a ty ak určete.. a) Načrtněte lu Q {[x, y, z] E ; z x y, z }. Narněte její arametrizai a naište ektr klmý k lše Q ři tét arametrizai. b) Vyčítejte tk ektré le f (y, x, z) lu Q rientanu nrmálým ektrem, který sírá s ektrem k (,, ) strý úel. ) Vyčítejte tk tt ektré le f lu σ, která je ně rientaným rem tělesa M {[x, y, z] E ; z x y }. ( K ýčtu lze užít Gaussu Ostrgradské ětu). 5. a) Určete fundamentální systém a naište bené řešení mgenní difereniální rnie. řádu ẍ ẋ 5x. b) Užitím metdy dadu naište tar artikulární řešení nemgenní rnie ẍ ẋ 5x e t s t. Partikulární řešení určete. ) Naište bené řešení nemgenní rnie z úly b). 6. Je dána autnmní sustaa ẋ x y, ẏ x(y ). a) Ukažte, že každým bdem fázé riny rází ráě jedna fázá trajektrie tét sustay. b) Určete imliitní tar fázý trajektrií dané sustay. Naište rnii fázé trajektrie, která rází bdem M [, ]. ) Určete šeny bdy rnáy zadané sustay. Další dbné úly lze nalézt nař. následujíí texte: [] S. Kračmar, F. Mráz, J. Neustua: Sbírka říkladů z Matematiky I. Skritum. Česká tenika - nakladatelstí ČVUT, Praa 7 (též ). [] E. Bržíká, M. Kittlerá, F. Mráz: Sbírka říkladů z Matematiky II. Webé stránky Ústau teniké matematiky, ředmět Matematika II, tt://mat.fs.ut.z/. [] S. Čiera: Řešené říklady z Matematiky III. Skritum Strjní fakulty. Vydaatelstí ČVUT, Praa 8.

8 Alikaná matematika, ýsledky. Daná mnžina M (úsečka) je uzařená a mezená. Zadaná funke je definaná a sjitá E, tedy je sjitá též na mn. M E. Tím je zaručena existene abslutní extrémů, tj. nejětší i nejmenší dnty dané funke na dané úseče. Vyjádření úsečky, tj. y x dsadíme d f(x, y), čímž získáme funki ϕ jedné rměnné x: ϕ(x) f(x, x) 6x x, x,. Jedná se sjitu funki na mezeném uzařeném interalu. Ta nabýá abslutní extrémů, a t některém z tz. kritiký bdů. Mezi ně atří krajní bdy a dále nitřní bdy, niž je deriae nulá neb neexistuje. Ve še nitřní bde interalu, má funke ϕ deriai ϕ (x) x. Rnie ϕ (x) má jediný křen x /. Slu s krajními bdy interalu, tak máme uze tři bdy, e který daná funke může nabýat abslutní maxima, res. minima. Pr zadanu úlu funke du rměnný ještě každém získaném bdě dčítáme dídajíí dntu y. Pak už stačí yčítat funkční dnty f(x, y) tět bde: f(; ) 9, f(; ), f(/; /) 5/. Záěr: Na dané úseče je max f f(/; /) 5/, min f f(; ) 9.. a) Deriae f (x) x, f (x) (x ), tečna: y x, b) T (x) x x, f(/). T (/) /, f 6 (x) (x ), R 8 (x) ( ξ ) x, ξ leží mezi x a x, R (/) f(/) T (/) /.. a) det(a λe) ( λ)(λ λ ), lastní čísl λ, dě kmlexní lastní čísla: λ, ± i, ρ(a) ; r λ jsu lastní ektry X (,, ) T, R,.. a) a b) iz [], řešený říklad 557: Při arametrizai z x y, kde [x, y] B : x y je klmý ektr n (x, y, ). Hledaný tk, tj. lšný integrál Q f d je ak dán dntu djné integrálu B (y, x, z) (x, y, ) dx dy B (x y ) dx dy. Ten yčteme mí lární suřadni s ýsledkem 8 π. Pznámka: Celý ýčet lze říadně rést arametrizaí dané ly mí ylindriký suřadni. ) K ýčtu lze užít Gaussu ětu, jejíž ředklady jsu slněny. Ptm ledaný tk, tj. lšný integrál σ f d je ren trjnému integrálu M dx dy dz, nebt di f. Výsledek 8 π může být získán též bez Gaussy ěty, tj. ýčtem integrálu σ f d jak sučtu Q f d P f d 8 π 8 π, kde la P : x y, z, tj. kru rině z. 5. iz [], řešený říklad.: a) Fundamentální systém tří funke ϕ (t) e t s t, ϕ (t) e t sin t. Obené řešení mgenní rnie je x (t) C e t s tc e t sin t, t R. b) Odad artikulární řešení je x Ae t B s t C sin t. Partikulární řešení je tm x (t) e t 8 s t sin t. ) Obené řešení 8 x(t) x (t) x (t), t R. 6. iz [], řešený říklad.5: a) Jabia matie je sjitá E. b) x (y ) y C, C R, x (y ) y, )[, ], [, ], [, ].

9 Části strjů

10 Tenlgie Pr álitý ýtažek z nízkulíké eli růměru mm, ýše mm a tlušťe mm: a) načrtněte říslušný nástrj a značte je laní části b) určete rzměry třebné ltaru ) určete třebný čet taů d) určete třebnu sílu lisu ( max. síla na začátku tažení) Při ýčtu zanedbejte zablení dna, aniztrii leu, změny tlušťky leu, řídaek na zarnání kraje ýtažku a tření mezi materiálem a nástrjem. Carakteristiky uažané materiálu: - R m 5 MPa, - sučinitel tažení r. tažnu erai m d /D,6 - sučinitel tažení r říadné další erae m n d n /d n-,8 Řešení: a) stačí brázek e D Tažník Tažnie Přidržač bdy bdy b) Ze zaání bjemu ři nezměněné tlušťe ylýá D 56,9 mm 57 mm bdy ) d D x m x m x m x 56,9 x,6 x,8 x,8 jsu třebné tay bdy d) Nejětší síla dídá síle na řetržení ýtažku ři. tau F R m.π.d.s 5. π.(,6.56,9) 69 N 7 kn 7 t bdy

11 OBRÁBĚNÍ Pr říad délné sustružení nější álé ly na dluém řídeli na CNC sustruu latí následujíí tenlgiké (řezné) dmínky: arametr zadání A řezná rylst [m/min] 6 (axiální) su f [mm/t], lubka třísky a [mm] enst materiálu Rm [N/mm ] 7 bráběný růměr D [mm] 8 bráběná délka L [mm] Vyčtěte následujíí eličiny r zadaný zůsb brábění: a) táčky řetena n [min - ], které je nutné nastait na strji, b) růřez dřezáané třísky (rsty) A D [mm ], ) řeznu slžku síly F [N] ( slžka ýsledné síly řezání e směru laní ybu ), kefiient k lte rn, d) řezný říkn P [kw] ( užitečný říkn ynalžený na debrání třísky), e) strjní čas t AS [s] ( jak dlu bude nástrj řezu), Vyraání: a) Řezná rylst ůsbí na bdu sučásti. Z t nám ylyne zre π d n. Ten uraíme a i s uažáním rzdílný jedntek dsazaný eličin dstaneme n 6 5 min. π d π 8 b) Průřez dřezáané třísky je dán sučinem axiální suu a lubky třísky, A D f a,,8 mm. ) Řezná slžka síly F se sčítá s mí měrné řezné síly k a růřezu dřezáané třísky A D, F k A D. Měrná řezná síla se sčítá ze zre k k R m, kde: R m je zadaná mez ensti materiálu k.. je knstanta (r sustružení je její dnta 5, zlíme ). Výsledná řezná síla je tedy F k R m A D 7,8 N. d) Řezný říkn P je dán sučinem řezné síly a řezné rylsti, tedy P F, s řilédnutím na různé jedntky P F 6,7 kw. 6 6 e) Nástrj se za jednu táčku sune dntu axiální suu, za minutu se nástrj sune zdálenst suu násbenu táčkami. Strjní čas je ak dílem bráběné délky a minutým suem, tedy (i ředu jedntek) t AS 6 L 6 6 s. f n, 5 (Při ýčtu času našem říadě můžeme ignrat délky náběu a ýběu, jelikž nebyly zadané. I rt, že neznáme nástrju gemetrii, která může linit zejména délku náběu nástrje.)

Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb. na ak. rok 2012/2013 FS ČVUT v Praze

Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb. na ak. rok 2012/2013 FS ČVUT v Praze Zráa o růběu řijímaío řízení na ysoký školá dle Vylášky MŠMT č. /00 a její změně 76/00 Sb. na ak. rok 0/0 S ČVUT Praze. Informae o řijímaí zkoušká Studijní rogram: N0 Strojní inženýrstí Studijní obor :

Více

Gaussův zákon elektrostatiky

Gaussův zákon elektrostatiky Gaussů zákn elektrstatiky elektrstatickém pli nyní staníme hdntu určitéh integrálu : d tk (ektru) elektrické intenzity uzařenu plchu Tt pjmenání pět pchází z hydrdynamiky, kde se čast pčítá analgický integrál

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

Konstrukce paraboly dané dvěma tečnami s body dotyku. Příklad: Sestrojte parabolu p, jsou-li dány její tečny t 1, t 2 s body T 1, T 2 dotyku.

Konstrukce paraboly dané dvěma tečnami s body dotyku. Příklad: Sestrojte parabolu p, jsou-li dány její tečny t 1, t 2 s body T 1, T 2 dotyku. Gemetrie Další užitečné knstrukce parably Řešené úlhy Knstrukce parably dané děma tečnami s bdy dtyku Příklad: Sestrjte parablu p, jsu-li dány její tečny, s bdy, dtyku. zlme dě různběžné přímky, a na každé

Více

Odchylka přímek. ϕ 0;180. Předpoklady: 7208, 7306

Odchylka přímek. ϕ 0;180. Předpoklady: 7208, 7306 74 Odchlka římek Předklad: 708, 706 Př : Zakj a rej defiici a mžé hdt: a) laimetrick zaedeé dchlk římek b) úhl ektrů zaedeéh aaltické gemetrii Na základě ráí arhi st r ýčet dchlk římek aaltické gemetrii

Více

Přijímací zkouška na navazující magisterské studium 2014

Přijímací zkouška na navazující magisterské studium 2014 Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

ZOBRAZENÍ ELIPSY POMOCÍ AFINITY

ZOBRAZENÍ ELIPSY POMOCÍ AFINITY echnická univerzia v Liberci Fakula řírdvědně-humaniní a edaggická Kaedra maemaiky a didakiky maemaiky ZORZENÍ ELIPY POMOÍ FINIY Pmcný učební ex Pera Pirklvá Liberec, září 03 Nejdříve si řekneme, c jsu

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

Přijímací zkoušky z matematiky pro akademický rok 2018/19 NMgr. studium Učitelství matematiky ZŠ, SŠ

Přijímací zkoušky z matematiky pro akademický rok 2018/19 NMgr. studium Učitelství matematiky ZŠ, SŠ Přijímací zkoušky z matematiky pro akademický rok 8/9 NMgr studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 3 4 5 Celkem Body Ke každému příkladu uved te

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

0. Struktura matematické teorie

0. Struktura matematické teorie 0. Strktra matematické terie Jedna kapitla celk Výrká lgika se zabýala ýstab matematiky matematické terie). Na pdrbnsti pjmů dkazji d text ýrké lgice. Zde prádím strčný ýčet staebních prků. Aximy trzení,

Více

1.6.3 Osová souměrnost

1.6.3 Osová souměrnost 1.6.3 Osvá suměrnst Předklady: 162 Pedaggická známka: Je třeba stuvat tak, aby se v hdině stihnul vyracvat a zkntrlvat bd 5. Pedaggická známka: Hned u střídání vázy je třeba dát zr. Narstá většina dětí

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf

Více

Š ÍŠ Ť ž Ť Ý č ď č š Ť č č č š č Ť š š Ť Í šč š č č č č Ď č Ť č š š ť Š Ť Ť Š č č č ž Š č č š Ť Ť ž Ť ť Ť č š š Ť ť Ť ť č č Ť ž š Ť š Ť Ť š Ť š Ť Ť ť Č š Ť č š Ť č Ť ť č č š Ť ť Ý Ť š ď š Í Ť Í ť Ť ť š

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

VY_32_INOVACE_G 21 17

VY_32_INOVACE_G 21 17 Název a adresa škly: Střední škla růmyslvá a umělecká, Oava, řísěvkvá rganizace, Praskva 399/8, Oava, 7460 Název eračníh rgramu: OP Vzdělávání r knkurenceschnst, blast dry.5 Registrační čísl rjektu: CZ..07/.5.00/34.09

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení

Více

❷ s é 2s é í t é Pr 3 t str í. á rá. t r t í str t r 3. 2 r á rs ý í rá á 2 í P

❷ s é 2s é í t é Pr 3 t str í. á rá. t r t í str t r 3. 2 r á rs ý í rá á 2 í P ❷ s é 2s é í t é Pr 3 t str í Úst 2 t t t r 2 2 á rá t r t í str t r 3 tí t 2 2 r á rs ý í rá á 2 í P ZADÁNÍ DIPLOMOVÉ PRÁCE I. OSOBNÍ A STUDIJNÍ ÚDAJE Příjmení: Hurský Jméno: Tomáš Fakulta/ústav: Fakulta

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Opakování (skoro bez zlomků)

Opakování (skoro bez zlomků) 2.2.27 Oakvání (skr bez zlmků) Předklady: 010217 Pedaggická známka: v Tét hdině užívám systém takzvanéh výstuu. Žáci čítají samstatně s tím, že zájemcům máhám, nikd však nemůže čekávat, že budu stát řád

Více

2. cvičení vzorové příklady

2. cvičení vzorové příklady Příklad. cvičení vzrvé příklady Nakreslete zatěžvací brazce slžek ydrstatickýc sil, půsbícíc na autmatický segementvý jezvý uzávěr s ybným ramenem. Vypčtěte dntu suřadnice, udávající plu ladiny v tlačené

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

22 Základní vlastnosti distribucí

22 Základní vlastnosti distribucí M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

ž á ž á á Ž á á ž é á é Ť á é á é žá š é é Ť ÍŽ á é á á ň ť á á Í Ť á á á á ť ž á é á ň Ť ť Ď á é é ť é Í ž á á á é é á á é áž Í ť ď á š é á Í Ž Č ď ř ť Í á ď é ď ť ž é á Í š á é ď á é é é á á ž á á á

Více

TECHNOLOGIE VÝROBY II

TECHNOLOGIE VÝROBY II Vyské učení technické v Brně Fakulta strjníh inženýrství Prf. Ing. Karel KOCMAN, DrSc. Dc. Ing. Jarslav PROKOP, CSc. TECHNOLOGIE VÝROBY II Řešené příklady 0 0 ZPRACOVÁNO V RÁMCI PROJEKTU STUDIJNÍCH OPOR

Více

Pracovní listy KŘIVKY

Pracovní listy KŘIVKY Technická univerzita v Liberci Fakulta přírdvědně-humanitní a pedaggická Katedra matematiky a didaktiky matematiky KŘIVKY Petra Pirklvá Liberec, květen 07 . Určete, který z phybů je levtčivý a který pravtčivý..

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

s p nazýváme směrový vektor přímky p, t je parametr bodu

s p nazýváme směrový vektor přímky p, t je parametr bodu MATE ZS 2013 KONZ 3A Analytická geometrie lineárních útvarů v rovině a v rostoru Přímka v rovině 1 Parametrická rovnice římky v rovině: t R s o : X = A + t s, kde, Vektor s nazýváme směrový vektor římky,

Více

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F Příkad 1 ( y ) Dokažte, že funkce F (x, y) = x n f x 2, kde f je spojitě diferencovatelná funkce, vyhovuje vztahu x F x + 2y F y = nf ; x 0 Ukažte, že každá funkce F (x, y), která má spojité parciální

Více

1 ROVNOVÁHA BODU Sestavte rovnice rovnice rovnováhy bodu (neznámé A,B,C) Určete A pro konstrukci z příkladu

1 ROVNOVÁHA BODU Sestavte rovnice rovnice rovnováhy bodu (neznámé A,B,C) Určete A pro konstrukci z příkladu Sbírka bude dplňvána. Příští dplněk budu příklady na vnitřní síly v diskrétních průřeech. Připmínky, pravy, návrhy další příklay jsu vítány na rer@cml.fsv.cvut.c. mbicí sbírky je hlavně jedntně definvat

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

ř ý Ř É Á Ě Ě Ú é á í í č ě á é š Ťťé ó í ú ýó í ř š ě š í á ě í ý í Ř ú í é í í ú ů íš ě í í Í ď ňí ý í ýř čá ě á é š é é í ž í ó Í íóď ř ě é í ý č ě

ř ý Ř É Á Ě Ě Ú é á í í č ě á é š Ťťé ó í ú ýó í ř š ě š í á ě í ý í Ř ú í é í í ú ů íš ě í í Í ď ňí ý í ýř čá ě á é š é é í ž í ó Í íóď ř ě é í ý č ě ř ý Ř É Á Ě Ě Ú č š Ťť ó ú ýó ř š š ý Ř ú ú ů š Í ď ň ý ýř č š ž ó Í óď ř ý č ř š š ď ý Ť č É č ú ž ý ř ú ř šú Í ž ř ř ř ď Í ř Ú ř ý É ů ž ý ý ř Ů ř ý ň ď ř ř ž ř ž ž ř ý š ý ž ú Ú š ý Ťž É ú ž ř ň ž ž

Více

OPAKOVÁNÍ Z 5. ROČNÍKU

OPAKOVÁNÍ Z 5. ROČNÍKU OPKOÁNÍ Z 5. ROČNÍKU ❺ Letecká dvlená na Gran Canaria stjí v dbě jarních rázdnin 18 990 Kč r dsělu sbu a 8 999 Kč r dítě. Je mžn si řikuit výlet strvě v ceně 799 Kč r dsělu sbu a 599 Kč r dítě. Klik celkem

Více

ok s k s k s k s k s k s k s k a o j ks k s k s jk s k s k s k s k k

ok s k s k s k s k s k s k s k a o j ks k s k s jk s k s k s k s k k s 0.Je ce - st tr - ním p - se - tá, ež li - li - e - mi pr- vé - tá. 1.Kd Kris- tu v - lá "u - ři - žu", 1.ten v hře- by mě - ní - zy svů, 2.N ru - tých sud-ců p - y - ny, svů l - tář vzl Pán ne - vin

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika AA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2005 () Jsou dány matice A = AB BA. [ AB BA

Více

NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL

NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL 1. ZADÁNÍ Navrhněte růměr a výztuž vrtané iloty délky L neosuvně ořené o skalní odloží zatížené v hlavě zadanými vnitřními silami (viz

Více

Přijímací zkoušky z matematiky pro akademický rok 2016/17 NMgr. studium Učitelství matematiky ZŠ, SŠ

Přijímací zkoušky z matematiky pro akademický rok 2016/17 NMgr. studium Učitelství matematiky ZŠ, SŠ Přijímací zkoušky z matematiky pro akademický rok 6/7 NMgr. studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 3 5 Celkem Body Ke každému příkladu uved te

Více

Derivace a monotónnost funkce

Derivace a monotónnost funkce Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je

Více

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika BA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 005 () Určete rovnici kručnice o poloměru

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje. 1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/

Více

TERMOMECHANIKA 2. Stavová rovnice ideálních plynů

TERMOMECHANIKA 2. Stavová rovnice ideálních plynů FSI U Brně, Energetický ústa Odbr terechaniky a techniky rstředí rf. Ing. Milan Paelek, CSc. ERMOMECHNIK. Staá rnice ideálních lynů OSNO. KPIOLY gadrů zákn Gay-Lussaců zákn Charlesů zákn Byleů Maritteů

Více

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla.

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla. říklad 1 ro dvounáravové hnací kolejové vozidlo motorové trakce s mechanickým řenosem výkonu určené následujícími arametry určete moment hnacích nárav, tažnou sílu na obvodu kol F O. a rychlost ři maximálním

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

Obecnou rovnici musíme upravit na středovou. 2 2 2 2 2 2 2 2. leží na kružnici musí vyhovovat její rovnici dosadíme ho do ní.

Obecnou rovnici musíme upravit na středovou. 2 2 2 2 2 2 2 2. leží na kružnici musí vyhovovat její rovnici dosadíme ho do ní. 75 Hledání kružnic I Předpklady: 750, kružnice z gemetrie Př : Kružnice je dána becnu rvnicí x y x y plměr Rzhdni, zda na kružnici leží bd A[ ; ] + + + 6 + = 0 Najdi její střed a Obecnu rvnici musíme upravit

Více

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2 4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch

Více

Přijímací zkouška na navazující magisterské studium 2014

Přijímací zkouška na navazující magisterské studium 2014 Přijímací zkouška na navazující magisterské studium 24 Příklad (25 bodů) Spočtěte Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A M x 2 dxdy, kde M = {(x, y) R 2 ;

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Konoidy přímkové plochy

Konoidy přímkové plochy Knidy přímkvé plchy Knidy jsu speciální zbrcené přímkvé plchy. Opět jsu určeny třemi křivkami, v případě knidů jsu t: -křivka rvinná (kružnice, elipsa, parabla, ) či prstrvá (šrubvice, ) -vlastní přímka

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

Otázky k ústní zkoušce, přehled témat A. Číselné řady

Otázky k ústní zkoušce, přehled témat A. Číselné řady Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte

Více

Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ

Základy stavby výrobních strojů Tvářecí stroje I KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ URČEN ENÍ PRÁCE KLIKOVÉHO LISU URČEN ENÍ SETRVAČNÍKU KLIKOVÉHO LISU KLIKOVÉ MECHANISMY MECHANICKÝCH LISŮ KLIKOVÁ HŘÍDEL OJNICE KLIKOVÁ HŘÍDEL BERAN LOŽISKOVÁ TĚLESA

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva

Více

Řešení úloh celostátního kola 60. ročníku fyzikální olympiády Úlohy navrhli J. Thomas (1, 2, 3) a V. Wagner (4)

Řešení úloh celostátního kola 60. ročníku fyzikální olympiády Úlohy navrhli J. Thomas (1, 2, 3) a V. Wagner (4) Řešení úlo elostátnío kola 60. ročníku fyzikální olympiády Úloy narli J. Tomas 1,, 3) a V. Wagner 4) 1.a) Z ronosti ydrostatiký tlaků 1,5Rρ 1 g = 1 ρ g 1 = 1,5R ρ 1 = 3 R = 3,75 m. ρ 8 1 b) Označme ýšku

Více

Diferenciální rovnice

Diferenciální rovnice Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT

Více

Parabola. Definice a ohniskovјі vlastnosti. (nebo jinak: odchylka roviny 0 0ezu od osy je rovna odchylce povrchov 0 5ch p 0 0ЈЊmek)

Parabola. Definice a ohniskovјі vlastnosti. (nebo jinak: odchylka roviny 0 0ezu od osy je rovna odchylce povrchov 0 5ch p 0 0ЈЊmek) Parabla 0 5kla efinice a hniskјі lastnsti 6І1 prstrјђ efinice (iz brјђzek nah 0 0e): parabla je pr 0 1se 0 0nu k 0 0iku rinnјіh 0 0ezu na rta 0 0nЈЊ ku 0 6elЈІ pl 0 8e, jestli 0 6e 0 0eznЈЂ rina mјђ taku

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více

z vektorového prostoru V se nazývá lineárně nezávislá jestliže rovnice...

z vektorového prostoru V se nazývá lineárně nezávislá jestliže rovnice... Cičení z lineání lgey 9 Vít Vndák Cičení č. 7 Lineání záislst nezáislst. Lineání kmine. Báze. Lineání záislst nezáislst Definie: Knečná mnžin ektů }... { k S z ektéh stu V se nzýá lineáně nezáislá jestliže

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

( ) ( ) Úloha 1. Úloha 2

( ) ( ) Úloha 1. Úloha 2 Úl Záí Těle i jeé ře klku ělee i uíe z kliu klěé riě úlu klu α z ýšk Určee je rcl kci klěé ri říě bez řeí i řeí (keficie f) Úl Záí D jké iálí ýšk uá ěle i klěé riě úlu klu α jeliže je čáečí rcl je keficie

Více

7.3. Diferenciální rovnice II. řádu

7.3. Diferenciální rovnice II. řádu Diferenciální rovnice 7 Diferenciální rovnice II řádu Ve stručném přehledu se budeme zabývat výhradně řešením lineárních diferenciálních rovnic II řádu s konstantními koeficienty Obecný tvar: ay + ay +

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus Zkoušková písemná práce č. 1 z předmětu 01MAB4 pondělí 25. května 2015, 9:00 11:00 Vypočítejte integrál y d(, y), kde Ω Objekt Ω načrtněte do obrázku! Ω = { (, y) R 2 :, y 0 4 + y 4 1 ( 4 + y 4 ) 3 16

Více

Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body

Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body Zkouška ze Základů vyšší matematiky ZVTA (LDF, 8.2.202) 60 minut 2 3 4 5 6 7 Jméno:................................. Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit,

Více

Příklady pro cvičení 22. dubna 2015

Příklady pro cvičení 22. dubna 2015 Úvod Předběžná verze (015) 1 1 Normy vektorů a matic, vlastnosti matic Příklad 1.1 Pro dané vektory x = ( 1; ; 1) T, y = (; 3; 1) T určete x =? x =? x 1 =? y =? y =? y 1 =? Příklad 1. Je dán vektor x =

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ Cíle a předpklady - snaží se ysětlit makrskpické chání plynů na ákladě chání jedntliých mlekul (jejich rychlstí, pčtu náraů na stěnu nádby, srážek s statními mlekulami Tat terie bere

Více

Transformace Aplikace Trojný integrál. Objem, hmotnost, moment

Transformace Aplikace Trojný integrál. Objem, hmotnost, moment Trojný integrál Dvojný a trojný integrál Objem, hmotnost, moment obecne ji I Nez zavedeme transformaci dvojne ho integra lu obecne, potr ebujeme ne kolik pojmu. Definice Necht je da no zobrazenı F : R2

Více

Celková energie molekuly je tedy tvořena pouze její energií kinetickou.

Celková energie molekuly je tedy tvořena pouze její energií kinetickou. Ideální lyn 7. 9. stletí, kdy vládl řesvědčení, že klasická mechanika ředstavuje dknalý nástrj r is našeh světa, byli vědci velmi udiveni zvláštním chváním lynů, které tent stav hmty výrazně dlišval d

Více

Přijímací zkoušky z matematiky pro akademický rok 2017/18 NMgr. studium Učitelství matematiky ZŠ, SŠ

Přijímací zkoušky z matematiky pro akademický rok 2017/18 NMgr. studium Učitelství matematiky ZŠ, SŠ Přijímací zkoušky z matematiky pro akademický rok 7/8 NMgr. studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 5 Celkem Body Ke každému příkladu uved te podrobný,

Více

ý Í č ší í ě í ů ý í ě á íó í í á ě í ě í š í ť é ř š ě Í é é Í á í ří í íř í íž í í í í ů ží í ý í ů í ší ěá Í á é á í í ě ě í ó ý ý í í í ť í á ší í

ý Í č ší í ě í ů ý í ě á íó í í á ě í ě í š í ť é ř š ě Í é é Í á í ří í íř í íž í í í í ů ží í ý í ů í ší ěá Í á é á í í ě ě í ó ý ý í í í ť í á ší í ý Í č š ě ů ý ě á ó á ě ě š ť é ř š ě Í é é Í á ř ř ž ů ž ý ů š ěá Í á é á ě ě ó ý ý ť á š ě ž é é č Á ž á Í ř Ě ó é ř á ú Í ě ý é ě š č ý Í ě ř ů ě ú ň Í ť é ě ě š Ě ó á ř č ě ó ů ř ř á Íř ží ř ě č ě

Více

Jméno... Cvičení den... hodina... Datum...rok... Počet listů... Varianta A

Jméno... Cvičení den... hodina... Datum...rok... Počet listů... Varianta A æ æ Jméno... Cvičení den... hodina... Datum...rok... Počet listů.......... Varianta A 4 3 2 1 2 8 0 1 0 3 1. Vzhledem k reálnému parametru a diskutujte hodnost matice 2 1 0 1 2. 0 1 2 1 2 4 3 1 1 a 2.

Více

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 S Á ČK Y NA PS Í E XK RE ME N TY SÁ ČK Y e xk re m en t. p o ti sk P ES C Sá čk y P ES C č er né,/ p ot is k/ 12 m y, 20 x2 7 +3 c m 8.8 10 bl ok

Více

Uzavřené a otevřené množiny

Uzavřené a otevřené množiny Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,

Více

Kombinované namáhání prutů s aplikací mezních podmínek pro monotónní zatěžování.

Kombinované namáhání prutů s aplikací mezních podmínek pro monotónní zatěžování. Cvičení Kmbinvané namáhání prutů s aplikací mezních pdmínek pr mntónní zatěžvání. Prutvá napjatst V bdech prutu má napjatst zvláštní charakter značuje se jak prutvá a je určena jedním nrmálvým σ a jedním

Více

Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb. na ak. rok 2016/2017 FS ČVUT v Praze

Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb. na ak. rok 2016/2017 FS ČVUT v Praze Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 4/2002 a její změně 276/2004 Sb. na ak. rok 2016/2017 FS ČVUT v Praze 1. Informace o přijímacích zkouškách Studijní program:

Více

Příloha č. 1. Pevnostní výpočty

Příloha č. 1. Pevnostní výpočty Příloha č. 1 Pevnostní výpočty Pevnostní výpočty navrhovaného CKT byly provedeny podle normy ČSN 69 0010 Tlakové nádoby stabilní. Technická pravidla. Vzorce a texty v této příloze jsou převzaty z této

Více

Nelineární optimalizace a numerické metody (MI NON)

Nelineární optimalizace a numerické metody (MI NON) Nelineární optimalizace a numerické metody (MI NON) Magisterský program: Informatika Obor: Teoretická informatika Katedra: 18101 Katedra teoretické informatiky Jaroslav Kruis Evropský sociální fond Praha

Více

ELEKTRICKÝ VÝKON A ENERGIE. spotřebičová orientace - napětí i proud na na impedanci Z mají souhlasný směr

ELEKTRICKÝ VÝKON A ENERGIE. spotřebičová orientace - napětí i proud na na impedanci Z mají souhlasný směr ZÁKLADNÍ POJMY ELEKRCKÝ ÝKON A ENERGE Okamžitá hdnta výknu je deinvána: p u.i [,, A] sptřebičvá rientace - napětí i prud na na impedanci Z mají suhlasný směr výkn p > 0 - impedance Z je sptřebičem elektrické

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

CVIČENÍ 5: Stabilita částice v korytě, prognóza výmolu v oblouku

CVIČENÍ 5: Stabilita částice v korytě, prognóza výmolu v oblouku CVIČENÍ 5: Stabilita částice korytě prognóza ýmolu oblouku Výpočet stability (odolnosti koryta) metoda tečnýc napětí Výpočtem stability se prokazuje že koryto jako celek je pro nároé ydraulické zatížení

Více

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1 ZADÁNÍ Č. Potrubí růměru a élky l je nalněno voou ři atmosférickém tlaku. Jak velký objem V je nutno vtlačit o otrubí ři tlakové zkoušce, aby se tlak zvýšil o? Potrubí ovažujte za tué, měrná motnost voy

Více

2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n.

2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n. Písemka matematika 3 s řešením 1. Vypočtěte lim n( 1 + n 2 n), n lim n (( 1 + 1 n e ) n ) n. 1/2, 1/ e 2. Určte hromadné body, limitu superior a limitu inferior posloupností: a n = sin nπ ( 2, b n = n

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2.

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2. Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ

Více

MATEMATIKA I - vybrané úlohy ze zkoušek v letech

MATEMATIKA I - vybrané úlohy ze zkoušek v letech MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné

Více