9. REGRESNÍ A KORELAČNÍ ANALÝZA

Rozměr: px
Začít zobrazení ze stránky:

Download "9. REGRESNÍ A KORELAČNÍ ANALÝZA"

Transkript

1 Pravděpodobot a tattka 9. REGRESNÍ A KORELAČNÍ ANALÝZA Průvodce tudem V předchozí kaptole jme uvedl způob, jak popat leárí závlot mez dvěma argumety a její míru. Užtím korelačích poměrů je možé zjtt, zda má myl hledat jý typ závlot mez proměým ež leárí. Předpokládaé zalot Pojmy z předchozích kaptol. Cíle Cílem této kaptoly je vyvětlt pojmy regree, korelace, regreí fukce, metoda ejmeších čtverců odchylek, de korelace. Výklad 9.. Leárí regree Grafcké zobrazeí dvojrozměré áhodé velčy, tattcký oubor dvěma tattckým zaky (,y ); =,,..., (korelačí pole): Hledejme vyjádřeí této "tattcké" závlot "ejlepším" fukčím předpem. A pro začátek předpokládejme teto předp leárí:

2 Pravděpodobot a tattka = a+ b Jako krtérum pro "ejlepší" fukčí předp vezměme z určtých důvodů (zámých už apř. Gauov v počtu pravděpodobot apř. proto, že e takový přítup úpěšě uplatňuje v jých tuacích vz. ukázka pouze a webu) mmalzac umy kvadrátů odchylek emprckých hodot y od teoretckých hodot zíkaých pomocí předpu y t : ( ) ( ) ( ) S a, b = y = a+ b y = m = = Hodota velčy S záví a voltelých hodotách a a b a je to tedy fukce dvou proměých. Její etrém e ajde ulováím parcálích dervací podle těchto proměých. S =. ( a + b y). = 0 a = S =. ( a + b y). = 0 b = Po úpravě dojdeme k outavě leárích rovc pro určeí a a b. (V dalším tetu budeme ěkdy zjedodušovat záp umačí ymbolky.) a. + b. = y. +. = a b y

3 Pravděpodobot a tattka Tuto outavu můžeme vyřešt moha způoby. Například pomocí determatu matce outavy, který lze upravt a vyjádřeí pomocí rozptylu:, D =. =. takže koefcety rovce přímky akoec jou: y y a =. y. y b =. Po poěkud pracějších úpravách ( využtím vyjádřeí cetrálích mometů pomocí mometů počátečích): y y. y y = +... y y y y = + y y y y. y = + +. y y.. = y +. y. ( ) ( ) y. = y+. y. ( ) dotáváme jou podobu rovce regreí přímky, z íž vyplývá, že tato přímka prochází

4 Pravděpodobot a tattka tzv. cetrálím bodem, y (, y jou tředí hodoty proměých, y) a že měrc přímky, tzv. koefcet regree, ovlvňuje jak kovarace, tak rozptyl té proměé, která byla prohlášea za ezávlou: ( ) cov y y y =. Tuto volbu můžeme pochoptelě změt a tak e dojde aalogckou cetou k jé regreí přímce: y ( ) cov y =. y y Vykrelíme-l obě takto zíkaé přímky do jedé ouřadcové outavy, dotaeme tzv. regreí ůžky: cov y cov y Směrce obou regreích přímek by = a b y = azýváme regreí koefcety př závlot y a, rep. a y a mají velm důležtou praktckou terpretac: udávají přírůtek závle proměé př jedotkové změě ezávle proměé. (Dokažte!) Zároveň umožňují vypočít koefcet leárí korelace, který jme výše defoval jako ormovaý míšeý momet druhého tupě, vypočít jým způobem: y.

5 Pravděpodobot a tattka ( cov y) by. by = = r. y Zaméko přdělíme podle zaméka kteréhokolv regreího koefcetu, apř.: ( ) r g b. b. b = y y y Dá e dokázat, že teto koefcet abývá hodoty z tervalu, a měří vhodot leárí fukce vyjádřt tattckou závlot mez velčam a y. Čím je hodota koefcetu blíže krajím hodotám, tím je áhrada těější. V případě, že teto koefcet abývá hodoty ebo -, leží všechy body a regreí přímce a závlot velč a y je přeě leárí. Staovt tupc oceňující závlot (závlot "labá", "tředí", "lá") eí úkol pro matematka, ale pro profeího odboríka. Podobé tupce bývají oučátí oborových orem. Leárí průběh emuí vždy vythovat vzájemé chováí obou ložek dvojrozměré áhodé velčy. Nc ale etojí v cetě přrozeému zobecěí předešlých úvah a potupů. Uvažujme jako výše korelačí pole (,y ); =,,..., a fukc (kterou volíme pouze jejím charakterem, ale kolv jejím parametry, které určují detalě průběh fukce) = f (, a0, a,, ak ), která by měla vyjádřt vztah mez ložkam a y. A hledejme možu koefcetů a tak, aby byl plě požadavek MNČ (metody ejmeších čtverců):

6 Pravděpodobot a tattka S(, a, a,, a ) = f (, a, a,, ak) y = m 0 k 0 = Řešeím outavy rovc: (,,,, ) S a a a 0 a j k = 0; j = 0,..., k, vzklé ulováím parcálích dervací fukce S podle jedotlvých hledaých koefcetů, dotaeme hledaou regreí fukc. Mohou však atat problémy algebrackého charakteru. Vzklá outava rovc může být velm eado řeštelá (zvlášť bez použtí výpočetí techky). Proto e zpravdla hledají vhodé regreí fukce pouze mez tzv. adčím fukcem: (,,,, ) = +. ( ) + +. ( ) f a a a a a f a f 0 k 0 k k Ty totž vedou k řešeí outavy leárích rovc, jak lze ado ukázat. Na případy adčích fukcí e čato převádějí fukce multplkatví, jako je apř. fukce mocá č epoecálí. Learzace logartmováím fukčího předpu však obecě dává pouze uboptmálí řešeí z hledka MNČ. Potup ukážeme a regreí fukc = a.e b Tuto fukc použjeme za předpokladu, že rychlot růtu závle proměé je přímo úměrá její velkot. Př určováí kotat a, b zlogartmujeme fukc: l = la + b Jetlže yí položíme Z = l, a = la, je fukce Z = a + b leárí v parametrech a můžeme použít jž zámého potupu. Hledáme tedy mmum fukce ( a ) + b z.

7 Pravděpodobot a tattka Po etaveí outavy rovc e můžeme vrátt k původím proměým. Soutava bude mít tedy tvar: N l a+ b = l y l a + b = l y Podobě potupujeme apř. pro fukc = a. b (kde b eí přrozeé čílo) ebo = a + b Φ (v tomto případě lze použít traformace ( ) Z = ). Pozámka Hledko umercké áročot regreí aalýzy e tává v oučaé době druhořadé, eboť tadardí počítačové programy abízejí automatzovaé řešeí této úlohy. Podtatější problém atává př měřeí vhodot regreí fukce. Koefcet leárí korelace tu ztrácí vůj výzam a je třeba ajít jou míru těot uvažovaého vztahu a daého korelačího pole. Zaveďme tato ozačeí pro pecálím způobem defovaé rozptyly: ( y ) y =. y ( ) =. y = ( y ), y. když je fukčí hodota regreí fukce přílušá -té -ové ložce. Všměme, jaký mez m etuje vztah:

8 Pravděpodobot a tattka ( ) ( ) ( ) ( ) (( y ) ( y) ( y ) ( y) ). ( ). ( ) y =. y y =. y + y = = = y. + + y y Dá e dokázat (ukázka pouze a webu), že poledí výraz a pravé traě je rove ule. Pak = + y y a podíl = 0; bývá používá jako míra těot, vhodot y y y regreí fukce (koefcet determace). Udává vlatě, jaká čát dperze zaku y je způobea závlotí a. Doplěk koefcetu determace do jedé zameá podíl áhodé ložky a dperz. Odmoca I y = = (de korelace) má aalogckou y y y terpretac jako koefcet korelace (pro leárí regreí vztah jde o zcela totožý výledek). Pozámka K poouzeí míry vhodot regreí fukce může loužt také pouze hodota = y ( ) y. - rezduálí (zbytkový) oučet čtverců (rozptyl). Nejvhodější regreí fukcí je pak amozřejmě ta fukce, která má rezduálí oučet čtverců ejžší. Řešeé úlohy Příklad 9... Vyrovejte data v tabulce regreí přímkou y 3,5 5, 5,5 6, 5,9 6,4 7,8 Řešeí: Ukážeme, jak by e tato úloha řešla v Ecelu: Nejdříve ozačíme data a klkeme a Vložt Graf..., přčemž vybereme typ grafu

9 Pravděpodobot a tattka X bodový: Máme-l aktví oko grafu, v abídce Ecelu přbude položka Graf, vybereme možot Přdat pojc tredu...:

10 Pravděpodobot a tattka Chceme-l daty proložt přímku, vybereme Typ tredu - leárí: Pro zobrazeí rovce regree a hodoty polehlvot R (druhá moca deu korelace) klkeme a kartu Možot a zaškrteme přílušé položky: Koečá podoba řešeí:

11 Pravděpodobot a tattka Z grafu vdíme, že rovce regree je: y = 0, ,8089, de korelace: I = 0,8635 = 0,99 y V tomto případě etuje další možot, jak vypočít koefcety a, b v rovc regree a de korelace. Rovc regree vypočteme pomocí v Ecelu předdefovaé fukce LINREGRESE, kterou ajdeme v kategor tattcké. Nuto mít a pamět, že výledkem budou dvě hodoty, proto před vyvoláím této fukce ozačíme dvě buňky vedle ebe a př použtí tkeme oučaě klávey CTRL+SHIFT+ENTER (matce a výtupu). V ašem příkladě by e tato fukce zadávala takto: LINREGRESE(C3:C9;B3:B9;). Ide korelace je v tomto případě hodý koefcetem korelace (vz. kaptola 8), tudíž použjeme předdefovaou fukc: CORREL(B3:B9;C3:C9) Předchozí úlohu můžete otevřít vyřešeou v Ecelu.

12 Pravděpodobot a tattka Pozámka Na druhém ltě řešeí předchozího příkladu v Ecelu je provedea regreí aalýzu pomocí doplňkového átroje Aalýza dat (použtí popáo v 7. kaptole, příkladu 7.3..), aalytcký átroj Regree. Pozámka Jak je patré z třetího obrázku v řešeí předchozího příkladu, obdobě bychom potupoval v případě, že bychom potřeboval daty proložt apř. logartmckou, epoecálí, mocou fukc, případě polyom.-6. tupě. Řešeé úlohy Příklad 9... Charakterzujte závlot proměé y a regreí fukcí ve tvaru hyperboly b y = a y 3 3,6 4,,8,4 3,8,4 3,8,4,8,4 3 Řešeí: Úlohu vyřešíme opět v Ecelu, použjeme obdobě jako v předchozím příkladě předdefovaou fukc LINREGRESE, která počítá koefcety v leárí regreí fukc y = a. + b. Pouze míto proměé do této rovce doadíme proměou : Tato fukce je v tomto příkladě kokrétě zadáa LINREGRESE(C3:P3;C4:P4;) 55,45 Řešeím je tedy regreí křvka ve tvaru hyperboly: y = 0, 44 +

13 Pravděpodobot a tattka Podobým způobem vypočteme de korelace: CORREL(C3:P3;C4:P4). Ide korelace je tedy rove: I y = 0,608. Tuto úlohu můžete otevřít vyřešeou v Ecelu. Pozámka Podobě bychom mohl amozřejmě hledat koefcety v dalších regreích fukcích ve tvaru ve tvaru y = a.f() + b (apř. y = a. 3 + b). V rámc cvčeí e věujte áledujícím úlohám: alezeí regreí přímky př tadardím zadáí ouboru bodů (, y ) (potup př řešeí v Ecelu) alezeí regreí přímky př zadáí dvojrozměrého ouboru četotí tabulkou (dokočete řešeí příkladu z mulé kaptoly) alezeí eleárí regreí fukce podle abídky kalkulátoru Ecel alezeí eleárí regreí fukce podle MNČ bez předešlé learzace (užtím umerckého řešeí, které abízí řeštel Ecelu (epoecála, mocá fukce) hledáí zadáí úloh z odboré profee čteáře, které by vedly a regreí aalýzu

14 Pravděpodobot a tattka Úlohy k amotatému řešeí 9.. Charakterzujte závlot proměé y a regreí fukcí ve tvaru = a + b y 3,5 5, 5,5 6, 5,9 6,4 7,8 9.. Charakterzujte závlot proměé y a regreí fukcí ve tvaru: b a) = a + b) = a + b + c Určete dey korelace y Př ekoku parašutty byla měřea závlot mez rychlotí v [m/] a tlakem p [0,mPa] a povrchu padáku. Výledky vyrovejte parabolou p = a + bv. Vypočtěte de korelace. v,4 3,5 5 6,89 0 p 0,04 0,08 0,056 0,5 0, Charakterzujte těot zvoleé závlot ve tvaru = a + b. log mez proměým a y. Vypočtěte de korelace y Př zjšťováí závlot velč a y byly aměřey hodoty uvedeé v tabulce. Určete vhodou regreí fukc y 3 3,6 4,,8,4 3,8,4 3,8,4,8, Zjšťovalo e, zda u ouboru chlapců je závlot v počtu provedeých hybů a klků. Výledky jou zazameáy v tabulce: chlapec počet hybů počet klků a) Určete, zda je mez počtem hybů a počtem klků lá leárí závlot, určete její míru. b) Najděte ejvhodější regreí fukc závlot mez počtem hybů a klků.

15 Pravděpodobot a tattka Výledky úloh k amotatému řešeí 9.. y = 0, , 809 5, a) = 6, 06 ; I = 0, 985 ; b) = 5, +, 94 0, 93 ; I = 0, p = 0, , 00506v ; I = 0, = 88, ,. log ; I = 0, , 43 = 0, Leárí fukce: y = 6,6939 +,6463; I y = 0,97577 Kvadratcká fukce: y = 0,43 + 4, ,7354; I y = 0,93043

} kvantitativní znaky

} kvantitativní znaky Měřeí tattcké závlot, korelace, regree Obecé prcpy závlot vzájemá ouvlot měřeých zaků Prof. RNDr. Jaa Zvárov rová,, DrSc. fukčí závlot x tattcká závlot átroje pro měřeí závlot leár rí regree korelace }

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

Odhady a testy hypotéz o regresních přímkách

Odhady a testy hypotéz o regresních přímkách Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI

8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI 8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -

Více

Momenty a momentové charakteristiky

Momenty a momentové charakteristiky Lekce 3 Momety a mometové charaktertky Pokud jme e v předešlém výkladu zmňoval o ěkteré tattcké charaktertce, zpravdla jme rověž uváděl, zda j řadíme mez více ebo méě důležté. A byly to právě artmetcký

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.)

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.) Aktvta Semář základů tattky a workhop (Prof. Ig. Mla Palát, CSc., Ig. Krta Somerlíková, Ph.D.) Stattcké tříděí Základí metoda tattckého zpracováí. Sekupováí hodot proměé, které jou z hledka klafkačího

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

Statistické charakteristiky (míry)

Statistické charakteristiky (míry) Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

Charakteristiky úrovně

Charakteristiky úrovně Charaterty úrově Měřeí úrově Úroveň (poloha) je jedou ze záladích vlatotí tattcých dat, v úrov e mohou tattcá data lšt ebo aopa hodovat. Výzačé hodoty varačí řady ejou ctlvé a změu jedotlvých hodot Medá

Více

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru. Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

8 NELINEÁRNÍ REGRESNÍ MODELY

8 NELINEÁRNÍ REGRESNÍ MODELY 8 NELINEÁRNÍ REGRESNÍ MODELY 8 Tvorba eleárího regresího modelu Postup tvorby eleárího regresího modelu se dá rozčlet do těchto kroků: Návrh regresího modelu Obvykle se jako eleárí regresí model používá

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Téma 4: Výběrová šetření

Téma 4: Výběrová šetření Výběrová šetřeí Téma : Výběrová šetřeí Předáška Výběrové charaktertky a jejch rozděleí Výzam a druhy výběrového šetřeí tattcké šetřeí úplé vyčerpávající eúplé výběrové výběrové šetřeí aha o to aby výběrový

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

U. Jestliže lineární zobrazení Df x n n

U. Jestliže lineární zobrazení Df x n n MATEMATICKÁ ANALÝZA III předášky M. Krupky Zmí semestr 999/ 3. Iverzí a mplctí zobrazeí V této kaptole uvádíme dvě důležté věty, které acházeí aplkace v moha oblastech matematky: Větu o verzím a větu o

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE V této kaptole se dozvíte: jak je oecě defováa kolmost (ortogoalta) vektorů; co rozumíme ortogoálí a ortoormálí ází; co jsou to tzv relace ortoormalty a Croeckerovo delta;

Více

7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY

7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY 7 VYUŽITÍ METOD OERAČNÍ ANALÝZY V TECHNOLOGII DORAVY Operačí aalýza jao jeda z oblatí apliovaé matematiy achází vé široé uplatěí v průmylových a eoomicých apliacích. Jedím z oborů, ve teré hraje ezatupitelou

Více

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech)

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech) Pozámk k tématu Koelace a jedoduchá leáí egee (Téma eí ve kptech) Mějme data, ),...,(, ), kteá jou áhodým výběem z ějaké populace. Data ted pokládáme za ezávlé ealzace dvojce áhodých velč ( X, Y ). Půmě

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost

Více

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě. 3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet

Více

a další charakteristikou je četnost výběrového souboru n.

a další charakteristikou je četnost výběrového souboru n. Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

KVALITA REGRESNÍHO MODELU Radek Fajfr

KVALITA REGRESNÍHO MODELU Radek Fajfr UNIVERZITA PARDUBICE FAKULTA EKONOMICKO-SPRÁVNÍ KVALITA REGRESNÍHO MODELU Radek Fajfr Bakalářská práce 00 Prohlášeí Tuto prác jsem vypracoval samostatě. Veškeré lterárí pramey a formace, které jsem v

Více

IV. MKP vynucené kmitání

IV. MKP vynucené kmitání Jří Máca - katedra mechaky - B35 - tel. 435 4500 maca@fsv.cvut.cz IV. MKP vyuceé kmtáí. Rovce vyuceého kmtáí. Modálí aalýza rozklad do vlastích tvarů 3. Přímá tegrace pohybových rovc 3. Metoda cetrálích

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

Téma 5: Analýza závislostí

Téma 5: Analýza závislostí Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.

Více

,6 32, ,6 29,7 29,2 35,9 32,6 34,7 35,3

,6 32, ,6 29,7 29,2 35,9 32,6 34,7 35,3 Př 7: S 95% polehlivotí odhaděte variabilitu (protředictvím odhadu měrodaté odchylky) a tředí hodotu obahu vitamíu C u rajčat. Záte-li výledky rozboru 0-ti vzorků rajčat: 3 4 5 6 7 8 9 0 9,6 3,4 30 3,6

Více

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat 4. Korelace 4. Teoretcké základy korelace 4. Způsoby měřeí závslostí pro růzé typy dat Př prác se statstckým údaj se velm často setkáváme s daty, která jsou tvořea dvojcem, trojcem hodot. Složky takovýchto

Více

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v

Více

3. cvičení 4ST201 - řešení

3. cvičení 4ST201 - řešení cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry

Více

Lekce Úroveň a její měření. aritmetický průměr; geometrický průměr; harmonický průměr; medián; mocninový

Lekce Úroveň a její měření. aritmetický průměr; geometrický průměr; harmonický průměr; medián; mocninový Lece Nejjedodušší Měřeí a charaterty úrově vlatotí datového ouboru je jeho úroveň, azývaá taé poloha. Charaterty úrově dělíme především podle toho, zda jou tvořey a báz výzamých hodot ebo zda jou fucem

Více

Posouzení vlivu vybraných makroekonomických veličin na vývoj systému sociálního zabezpečení

Posouzení vlivu vybraných makroekonomických veličin na vývoj systému sociálního zabezpečení 5. mezárodí koferece Fačí řízeí podku a fačích ttucí Otrava VŠ-TU Otrava, Ekoomcká fakulta, katedra Fací 7.-8. září 5 Poouzeí vlvu vraých makroekoomckých velč a vývoj tému ocálího zaezpečeí Jaa Zahálková

Více

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2 Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

ARITMETICKÉ POSLOUPNOSTI s-tého STUPNĚ. Daniela Bittnerová

ARITMETICKÉ POSLOUPNOSTI s-tého STUPNĚ. Daniela Bittnerová The Mthemtc Educto to the t Cetury Project Proceedg of the Itertol Coferece The Decdble d the Udecdble Mthemtc Educto Bro, Czech Republc, September 00 ARITMETICKÉ POSLOUPNOSTI -TÉHO STUPNĚ Del Btterová

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Téma 1: Pravděpodobnost

Téma 1: Pravděpodobnost ravděpodobot Téma : ravděpodobot ředáša - ravděpodobot áhodého evu Náhodý pou a áhodý ev Náhodý pou - aždá čot, eíž výlede eí edozačě urče podmíam, za terých probíhá apř hod otou, měřeí dély, běh a 00

Více

Popisná statistika. (Descriptive statistics)

Popisná statistika. (Descriptive statistics) Popá tatta Decrptve tattc Výledem měřeí je oubor aměřeých hodot vytvářející datový oubor D { } V datovém ouboru e mohou vyytovat tytéž hodoty vícerát, zejméa tehdy, mají-l velčy drétí epojtou povahu počet

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

Úvod do zpracování měření

Úvod do zpracování měření Úvod do zpracováí měřeí Teore chb Opakujeme-l měřeí téže fzkálí velč za stejých podmíek ěkolkrát za sebou, dostáváme zpravdla růzé hodot. Měřeé velčě přísluší však jedá správá hodota. Každou odchlku aměřeé

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc.

Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc. Metody statstcké aalýzy doc. Ig. Dagmar Blatá, CSc. Bakoví sttut vysoká škola, a.s. Praha 0 METODY STATISTICKÉ ANALÝZY Autor: Recezet: Vydal: Tsk: Vydáí: doc. Ig. Dagmar Blatá, CSc. doc. Ig. Jří Trešl,

Více

SP2 Korelační analýza. Korelační analýza. Libor Žák

SP2 Korelační analýza. Korelační analýza. Libor Žák Korelačí aalýza Přpomeutí pojmů áhodá proměá áhodý vetor áhodý vetor Náhodý výběr: pro áhodou proměou : pro áhodý vetor : pro áhodý vetor : Přpomeutí pojmů - ovarace Kovarace áhodých proměých ovaračí oefcet

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ PRÁCE Praha 8 Pavel Třasák ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA SPECIÁLNÍ GEODÉZIE DIPLOMOVÁ

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Analýza bodové množiny

Analýza bodové množiny alýza bodové možy Petra Suryková Faculty of Mathematcs ad Physcs, Charles Uversty Prague Sokolovská 83, 186 7 Praha 8, Czech Republc emal: petra.surykova@mff.cu.cz bstrakt. V příspěvku se zaměříme a jedu

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Chyby přímých měření. Úvod

Chyby přímých měření. Úvod Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DA prof. Ig. Jří Holčík, CSc. INVESICE Isttut DO bostatstky ROZVOJE VZDĚLÁVÁNÍ a aalýz IV. LINEÁRNÍ KLASIFIKACE pokračováí Isttut bostatstky a aalýz (SUPPOR VECOR MACHINE SVM) SEPARABILNÍ

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více

Měření závislostí. Statistická závislost číselných znaků

Měření závislostí. Statistická závislost číselných znaků Měřeí závslostí Statstcká závslost číselých zaků - závslost dvou velč lze vádřt ako ech fukčí vztah vzorcem, taulkou hodot příslušé fukce eo grafck; - mez zak zkoumaých evů zšťueme estec příčé (kauzálí

Více

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI SEMESTRÁ LNÍ PRÁ CE Lceč í tudum STTISTICKÉZPRCOVÁ NÍ DT PŘ I KONTROLE Ř ÍZENÍ JKOSTI Předmě t MTEMTICKÉPRINCIPY NLÝ ZY VÍCEROZMĚ RNÝ CH DT Ú ta epemetá lí bofamace, Hadec Ká loé Ig. Mata Růžčkoá PDF byl

Více

jsou varianty znaku) b) při intervalovém třídění (hodnoty x

jsou varianty znaku) b) při intervalovém třídění (hodnoty x Výběr z eřeštelých příkladů ze zkouškových testů Jde o výběr z tpů příkladů, jejchž úspěšost řešeí u zkoušek se blíží ule. Itervalové versus bodové tříděí V tabulce je uvedeo rozděleí četostí a) př bodovém

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí

Více

Spojité (kontinuální) - nap. podle vykázaného zisku, tržeb, náklad Nespojité (diskrétní) - nap. podle potu len v rodin

Spojité (kontinuální) - nap. podle vykázaného zisku, tržeb, náklad Nespojité (diskrétní) - nap. podle potu len v rodin Aktvta 3 Semá základ tattk a workhop (Prof. Ig. Mla Palát, CSc., Ig. Krta Somerlíková, Ph.D.) Stattcké tídí Základí metoda tattckého zpracováí. Sekupováí hodot promé, které jou z hledka klafkaího zaku

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tty - NOV NOV tty provádí pomocí aalýzy rozptylů NOV ouhré tty pro víc ěž dva výběry. NOV paramtrcká ttováí charaktrtk z zámých rozdělí pokud

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné CHYBY MĚŘENÍ Opakovaé měřeí téže fyzkáí večy evede vždy k přesě stejým výsedkům. Této skutečost bychom se evyhu, kdybychom měřeí provádě s ejvětší důkadostí a precsostí aopak, čím ctvější a přesější jsou

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

Testování statistických hypotéz

Testování statistických hypotéz Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou

Více

Spojitost a limita funkcí jedné reálné proměnné

Spojitost a limita funkcí jedné reálné proměnné Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

8. STATISTICKÝ SOUBOR SE DVĚMA ARGUMENTY

8. STATISTICKÝ SOUBOR SE DVĚMA ARGUMENTY 8. STATISTICKÝ SOUBOR SE DVĚMA ARGUMETY Stattcký oubor e dvěma argument Průvodce tudem Vužeme znalotí z předchozí kaptol, která poednávala o tattckém ouboru edním argumentem a rozšíříme e. Předpokládané

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pedgogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM / CIFRIK Zdáí: Vyšetřete všem probrým prostředky polyom Vyprcováí: Rcoálí kořey Podle věty: Nechť p Q je koře polyomu q

Více

5 - Identifikace. Michael Šebek Automatické řízení

5 - Identifikace. Michael Šebek Automatické řízení 5 - Idetface Mchael Šebe Automatcé řízeí 06 8-3-6 Idetface Automatcé řízeí - Kybereta a robota Aeb ja zíat model ytému z dat (a valdovat ho a jých datech) whte box (víme vše): ze záladích prcpů (fyz-chem-bo-

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

11. Regresní analýza. Čas ke studiu kapitoly: 60 minut. Cíl VÝKLAD Úvod

11. Regresní analýza. Čas ke studiu kapitoly: 60 minut. Cíl VÝKLAD Úvod . egresí aalýza Čas ke studu kaptoly: 6 mut Cíl Po prostudováí tohoto odstavce udete umět vysvětlt pojem oecý leárí model prcp leárího regresího modelu používat výsledky regresí aalýzy verfkovat regresí

Více

III. METODY MĚŘENÍ A ZPRACOVÁNÍ MĚŘENÍ

III. METODY MĚŘENÍ A ZPRACOVÁNÍ MĚŘENÍ III. METODY MĚŘENÍ A ZPRACOVÁNÍ MĚŘENÍ Způsob, jímž se provádí fzkálí měřeí, závsí jedak a povaze měřeé velč, jedak a tom, ze kterých vztahů pro měřeou velču vjdeme a jakých přístrojů použjeme. Všech měřcí

Více

3. cvičení 4ST201. Míry variability

3. cvičení 4ST201. Míry variability cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více