5 - Identifikace. Michael Šebek Automatické řízení
|
|
- Růžena Konečná
- před 7 lety
- Počet zobrazení:
Transkript
1 5 - Idetface Mchael Šebe Automatcé řízeí
2 Idetface Automatcé řízeí - Kybereta a robota Aeb ja zíat model ytému z dat (a valdovat ho a jých datech) whte box (víme vše): ze záladích prcpů (fyz-chem-bo- ) grey box (víme ěco): záme třeba typ modelu, hledáme parametry blac box (evíme c): ezáme a typ modelu, řád, eleartu,... V ARI uážeme jedoduché expermetálí metody, off-le, ope-loop z čaové odezvy z frevečí odezvy zálady ejmeších čtverců V dalších předmětech oftovaé tochatcé metody typu blac box reuretí, o-le, v uzavřeé myčce pro poročlé zájemce (a drétí ytémy) L. Ljug: Sytem Idetfcato: heory for the Uer (d Ed.) Pretce Hall, 999. ISBN Matlab: Sytem Idetfcato oolbox Mchael Šebe ARI-05-05
3 Automatcé řízeí - Kybereta a robota Aproxmace ze oové odezvy - Bump tet Hledáme leárí odchylový model tomu přzpůobíme expermet pozor a pracoví bod a velot ou Potup. Expermetálě změříme oovou odezvu graf ebo tabula. Na í aměříme ěol vybraých bodů 3. Doadíme hodoty do obecě vypočítaé odezvy a řešíme rovce pro ezámé parametry je to obtížé, ta hledáme zvláští hodoty Metody Klacé, jedoduché metody, off-le, ope-loop Determtcé - fugují, je dyž ejou (jou malé) šumy, tattcé vlatot ezáme Soutava muí být tablí! Poud má ytém dopraví zpožděí, odečteme ho předem Poud má ytém ofet, odečteme ho předem D Mchael Šebe ARI
4 . Řád bez uly Automatcé řízeí - Kybereta a robota Aplujeme u () = G () = + a hledáme y( ) 0,63 y( ) t y( t) = ( e ). Změříme y( ) a vypočteme = y( ). Najdeme 0.63 y( ) a odměříme Pro G () =. Odměříme y() Koečě pro a vypočteme je = y() y() = yt () = t 0 0 u + p G () = + p = Mchael Šebe ARI p
5 . řád bez ul - mtavý případ Automatcé řízeí - Kybereta a robota Hledáme ω G () = + ζω + ω y( ) %OS ±%. Změříme y( ),% OS,. Vypočteme ( OS ) ( OS ) l % 00 4 y( ) ζ =, ω, = = π + l % 00 ζ Mchael Šebe ARI
6 Já metoda pro. řád bez ul mtavý Automatcé řízeí - Kybereta a robota Hledáme ω G () = Aplujeme. Změříme + ζω + ω u () = y( ), A, A, d y( ) A d A yt (). Vypočteme y( ) A µ π = = = = u( ) A 4 +, µ l, ζ, ω π µ d ζ Klacé ázvoloví: A A fator útlumu, 0 čaová otata µ tzv. logartmcý deremet útlumu Pro zajímavot A ζω A π d = e, µ = l = ζω, dále platí dωd = A A Mchael Šebe ARI d
7 Zvláští ytém tegračího charateru bez ul Automatcé řízeí - Kybereta a robota Pro ytém tegračím chováím G () = ( + ). arelíme aymptotu v eoeču. odečteme τ 3. odečteme τ a vypočteme = Obdobě pro ložtější. = měrce aymptoty. a platí a = aymptota u () = t h() t = t + e h () t = t = t h = e G () = ( )! ( + ) Mchael Šebe ARI h τ h
8 Automatcé řízeí - Kybereta a robota Obecější ytém tegračího charateru Pro ytém tegračím chováím G () =, u () = I = ( + ) dy() t lm = lm ( y( ) ) = lm ( G( ) u( )) = t dt 0 0. Narelíme aymptotu v eoeču. Odečteme její měrc a vypočteme (odečteme) I 3. Potom uděláme dervac odezvy a 4. z í detfujeme ytém proporcoálího charateru éhož doáheme použtím mpulzího vtupu ut () = cδ () t ympule() = Gc () = GP () c u () = c Mchael Šebe ARI I yd () = y() = G() GP () = G() = I = I ( + ) Ja realzovat Drac? Krátým obdélíovým pulem plochou c!
9 . řád bez ul - emtavý případ Automatcé řízeí - Kybereta a robota Pro L G () = e, ( + )( + ) je oová odezva y [ ] 0., yt () e = t ( t L) ( t L) ( t L) ( t L) e e = e t [ ] V horím grafu odezev pro 0., y e zdají být růzé, ale po ormalzac čau a t ( je vdět, že jou podobé + ) A proto je těžé určt parametry robutě ze oové odezvy, šlo by to lépe z mpulzí Protíají e přblžě v bodě ( τ.56, f ( τ) 0.7), toho využívá Strejcova metoda vz přílady 0.7 τ.56 [ ] 0., τ = t ( + ) Mchael Šebe ARI
10 Automatcé řízeí - Kybereta a robota Sytém dervačího charateru ( ulou v ule) Pro ytém dervačího charateru (tedy ulou v = 0) G( ) = D ( + ) D y () = G () = ( + ) D yi ( ) = y() = ( + ). Soovou odezvu dervačího čleu ejprve tegrujeme. A pa detfujeme vhodou z předchozích metod totéž po tegrac Soová odezva dervačího čleu y( ) = 0 éhož doáheme vybuzeím rampou u() t = ct u() = c. Pa výtup rovou odpovídá oové odezvě ytému proporcoálího charateru y () c D c ramp = G () = + Mchael Šebe ARI
11 Idetface z frevečí odezvy Automatcé řízeí - Kybereta a robota Odezva většou aměřeá (aalyzátorem, typcy 0-00Hz), ale může být vypočteá (přílad: mechacý model a metoda oečých prvů) Metody Podívat e, odhadout vlatot a zumo apaovat aymptoty (Ne paperbac 0.3 traa 665) Obecé metody terpolace, fttg, ejmeší čtverce Specálí metody (tarší) pro Bodeho ebo Nyqutův graf Mchael Šebe ARI-05-05
12 Nejmeší čtverce Leat Square Automatcé řízeí - Kybereta a robota Přeurčeá outava leárích rovc ( A je m, m> ) poud Varata - Nejmeší čtverce Ax ra A ra[ A b] = b emá řešeí! m x Ax m ( ax ) j j j b b = = = evvaletí mmalzac bez odmocy (vadrátu ormy) r = Ax b e azývá rezduum ebo odchyla Řešeí mmalzující ormu rezdua e azývá řešeí ejmeším čtverc Pro A plé loupcové hodot ajdeme řešeí pomocí peudoverze: ( ) x= AA Ab Mchael Šebe ARI-05-06
13 Data fttg Automatcé řízeí - Kybereta a robota Vhodým výběrem oefcetů apaujte fuc (leárí ombac bázových fucí ebol regreorů g t ) a data (ebol měřeí) ta, aby x, x,, x = g t xg t xg t xg t ( t, y ),( t, y ),, ( t, y ) g t y, g t y,, g t y Obvyle je m a eextuje přeé řešeí aže hledáme ejlepší řešeí ve mylu ejmeších čtverců m m = g t = y, g t = y,, g t = y ( xg ) t + xg t + + xg t y Mchael Šebe ARI
14 Data fttg Automatcé řízeí - Kybereta a robota Data fttg převedeme a matcový problém pomocí m x Ax b ( ) g t g t g t x y g t g t g t x y A=, x=, b= g( tm) g( tm) g( tm) x ym Mchael Šebe ARI
15 Data fttg polyomy Automatcé řízeí - Kybereta a robota Pro = g t x xt xl xt 3 Jou bázové fuce a =,,, g t t t t t x y x t t t y A=, x=, b= t x m tm tm ym Př terpolac je m a g t = y plíme přeě řešeím Ax = = b Př aproxmac je m> a ažíme e o malou odchylu m Ax b x Mchael Šebe ARI
16 Automatcé řízeí - Kybereta a robota Idetface metodou ejmeších čtverců Drétí leárí model, azývaý v oblat detface Auto-Regreve model wth exogeou put (ARX) Daý buď leárí dferečí rovcí e tochatcým čleem y t + a y t + + a y t = b u t + bu t + + b u t + e t a 0 b ebo přeoem (polyomálím popem) b d a( d) y( t) = b( d) u( t) + e( t) y( t) = u( t) + e t a d a d, a 0 a d = + ad+ + a d b d = b + bd+ + b d Poud je předem záme pevé dopraví zpožděí a b d a( d) y( t) = b( d) u( t d) + e( t) y( t) = u( t d) + e t a d a d b b b Mchael Šebe ARI
17 Automatcé řízeí - Kybereta a robota Celý oubor aměřeých dat e zpracuje ajedou Kompatě zapáo b = Ax + r, de Jedorázová detface ( a) ( b) y y 0 y y u u 0 u y y y 0 y a u u u b b= A= y( m) y( m ) y( m ) y( m a) u( m) u( m ) u( m b) a e( ) a e( a ) x= r = b0 e( m) b b je vetor měřeí výtupů, matce dat, vetor parametrů a vetor chyb predce, Hledáme m r = Ax b x Mchael Šebe ARI
18 LS detface další jemot Automatcé řízeí - Kybereta a robota Stochatcý (Bayeový) přítup důazy Numercá mplemetace jedorázová detface průběžá detface - reurzví potup Proměé parametry zapomíáí, měrové zapomíáí adaptví řízeí Zabudováí aprorí formace Idetfovaý ytém eí dotatečě vybuze leárí závlot dat apř. detface v uzavřeé myčce ávrh expermetu / volba budcího gálu o vše v dalších předmětech Mchael Šebe ARI
5 - Identifikace. Michael Šebek Automatické řízení
5 - Idetfce Mchel Šee Automtcé řízeí 08 6-3-8 Automtcé řízeí - Kyeret root Idetfce Zísáí modelu systému z dt ( jeho vldce jých dtech) whte ox (víme vše): ze záldích prcpů (fyz-chem-o- ) grey ox (víme ěco):
VíceRegrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
Více10 - Přímá vazba, Feedforward
0 - Přímá vazba, Feedforward Michael Šebek Automatické řízeí 03 4--3 Motivace (FF podle Atroma) Automatické řízeí - Kberetika a robotika Už máme avržeu zpětovazebí čát Chceme zajitit přeo referece rový
VícePříklady k přednášce 3 - Póly, nuly a odezvy
Příklady k předášce 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 06 9--6 Schurův doplěk - odvozeí Automatické řízeí - Kyberetika a robotika Obecě ( + l) ( + l) ( + l) ( + m) ( + m) ( + m) I 0
VícePříklady k přednášce 3 - Póly, nuly a odezvy
Příklady k předášce 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 08 9-6-8 Nuly přeou Automatické řízeí - Kyberetika a robotika Pro přeo G ( ) = ( + ) ( + ) pólem = a ulou z = porovejme odezvy
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
VíceStatistické charakteristiky (míry)
Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty
VíceLineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
VíceSoustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.
Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:
VícePříklady k přednášce 5 - Identifikace
Příklady k předášce 5 - Idetifikace Michael Šebek Automatické řízeí 05 3-3-5 Automatické řízeí - Kyberetika a robotika Jiá metoda pro. řád bez ul kmitavý Hledáme ω Gs () k s + ζω s + ω Aplikujeme u( )
VícePRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
VíceCharakteristiky úrovně
Charaterty úrově Měřeí úrově Úroveň (poloha) je jedou ze záladích vlatotí tattcých dat, v úrov e mohou tattcá data lšt ebo aopa hodovat. Výzačé hodoty varačí řady ejou ctlvé a změu jedotlvých hodot Medá
VícePříklady k přednášce 6 - Ustálený stav, sledování a zadržení poruchy
Přílady přdnášc 6 - Utálný tav, ldování a zadržní poruchy Mchal Šb Automatcé řízní 05 9-3-5 Frvnční odzva - odvozní Automatcé řízní - Kybrnta a robota Na vtup tablního ytému přnom y () = Gu ()(), trý j
Více3 - Póly, nuly a odezvy
3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 8 9-6-8 Automatické řízeí - Kyberetika a robotika Póly přeou a póly ytému Póly přeou jou kořey jmeovatele pro g () = b () a () jou to komplexí číla
VíceTéma 1: Pravděpodobnost
ravděpodobot Téma : ravděpodobot ředáša - ravděpodobot áhodého evu Náhodý pou a áhodý ev Náhodý pou - aždá čot, eíž výlede eí edozačě urče podmíam, za terých probíhá apř hod otou, měřeí dély, běh a 00
VíceMetody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
VícePříklady k přednášce 6 - Ustálený stav, sledování a zadržení poruchy
Přílady přdnášc 6 - Utálný tav, ldování a zadržní poruchy Mchal Šb Automatcé řízní 08 3-3-8 Automatcé řízní - Kybrnta a robota Frvnční odzva, charatrta, přno Má-l tablní LTI ytém y () = Gu ()() na vtupu
Více3. cvičení 4ST201 - řešení
cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry
VíceIV. MKP vynucené kmitání
Jří Máca - katedra mechaky - B35 - tel. 435 4500 maca@fsv.cvut.cz IV. MKP vyuceé kmtáí. Rovce vyuceého kmtáí. Modálí aalýza rozklad do vlastích tvarů 3. Přímá tegrace pohybových rovc 3. Metoda cetrálích
Víceu, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,
Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou
Více7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY
7 VYUŽITÍ METOD OERAČNÍ ANALÝZY V TECHNOLOGII DORAVY Operačí aalýza jao jeda z oblatí apliovaé matematiy achází vé široé uplatěí v průmylových a eoomicých apliacích. Jedím z oborů, ve teré hraje ezatupitelou
VíceOdhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
VíceOdhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
Více11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15
- Regulátory Michael Šebe Automaticé řízení 5 4-3-5 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní
VícePříklady k přednášce 5 - Identifikace
Příklady k přednášce 5 - Identifikace Michael Šebek Automatické řízení 07 5-3-7 Jiná metoda pro. řád bez nul kmitavý Hledáme ωn Gs () k s + ζωn s + ωn Aplikujeme u( ) us () s. Změříme y( ), A, A, Td y(
VícePRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
VíceTento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
VíceNEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
Více2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT
2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic
VícePříklady k přednášce 12 - Frekvenční metody
Příklady k předášce 1 - Frekvečí metody Michael Šebek Automatické řízeí 018 8-3-18 Frekvečí charakteristika OL a mez stability CL Pro esoudělý OL přeos Ls () platí: 1) Je-li s C pól CL, pak 1 + Ls () =
Více1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
Více11 - Regulátory. Michael Šebek Automatické řízení
- Regulátory Michael Šebe Automaticé řízení 7 6-3-7 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní
VíceTestování statistických hypotéz
Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky
VíceTéma 5: Analýza závislostí
Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.
Více1. Přirozená topologie v R n
MATEMATICKÁ ANALÝZA III předášy M Krupy Zií seestr 999/ Přirozeá topologie v R V prví části tohoto tetu zavádíe přirozeou topologii a ožiě R ejprve jao topologii orovaého prostoru a pa jao topologii součiu
Více2. Vícekriteriální a cílové programování
2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
Více3. cvičení 4ST201. Míry variability
cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty
VíceSP2 Korelační analýza. Korelační analýza. Libor Žák
Korelačí aalýza Přpomeutí pojmů áhodá proměá áhodý vetor áhodý vetor Náhodý výběr: pro áhodou proměou : pro áhodý vetor : pro áhodý vetor : Přpomeutí pojmů - ovarace Kovarace áhodých proměých ovaračí oefcet
Více9. REGRESNÍ A KORELAČNÍ ANALÝZA
Pravděpodobot a tattka 9. REGRESNÍ A KORELAČNÍ ANALÝZA Průvodce tudem V předchozí kaptole jme uvedl způob, jak popat leárí závlot mez dvěma argumety a její míru. Užtím korelačích poměrů je možé zjtt, zda
Více} kvantitativní znaky
Měřeí tattcké závlot, korelace, regree Obecé prcpy závlot vzájemá ouvlot měřeých zaků Prof. RNDr. Jaa Zvárov rová,, DrSc. fukčí závlot x tattcká závlot átroje pro měřeí závlot leár rí regree korelace }
VíceDoc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
Více1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor
1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců
Vícek(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln
Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =
Více7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy
7 - Utálený tav kmitavý a nekmitavý, ledování a zadržení poruchy Michael Šebek Automatické řízení 018 31-3-18 Automatické řízení - ybernetika a robotika zeílení ytému na frekvenci ω je G( jω) - viz amplitudový
VícePopisné (deskriptivní) metody. Statistické metody a zpracování dat. II. Popisné statistické metody. Rozdělení četností. Skupinové rozdělení četností
Popé (derptví) metody Číme závěry pouze z určtého zpracovávaého ouboru výběrového, popujeme je to, co bylo zjštěo, bez zobecňováí Stattcé metody a zpracováí dat II. Popé tattcé metody Petr Dobrovolý Derptví
VíceInterpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2
Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z
VíceL A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.
Více1.1. Primitivní funkce a neurčitý integrál
Mateatia II. NEURČITÝ INTEGRÁL.. Priitiví fuce a eurčitý itegrál Defiice... Říáe, že fuce F( ) je v itervalu ( ab, ) priitiví fucí fuci f ( ), platí-li pro všecha ( ab, ) vztah F = f. Defiice... Možia
VíceProstředky automatického řízení
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ Protředky automatického řízeí Měřící a řídící řetězec Vypracoval: Petr Oadík Akademický rok: 006/007 Semetr: letí Zadáí Navrhěte měřicí
VíceLineární a adaptivní zpracování dat. 12. Adaptivní filtrace a predikce III.
Leárí a adatví zracováí dat 12. Adatví ftrace a redce III. Dae Scharz Ivestce do rozvoje vzděáváí Adatví ftrace aace 1. Idetface systémů 2. Potačeí šumu 3. Leárí redce Vždy utá dostuost chybové sevece
Více1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků
1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,
Více21 Diskrétní modely spojitých systémů
21 Dikrétní modely pojitýc ytémů Micael Šebek Automatické řízení 2015 29-4-15 Metoda emulace Automatické řízení - Kybernetika a robotika pojitý regulátor nazývá e také aproximace, dikrétní ekvivalent,
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
VíceExperimentální identifikace regulovaných soustav
Expermetálí etfkace reglovaých sostav Cílem je zhotoveí matematckého moel a záklaě formací získaých měřeím. Požívá se možství meto. Výběr metoy je ůležtý, protože a ěm závsí přesost áhraího moel. Záklaím
Více25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13
5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )
VíceP1: Úvod do experimentálních metod
P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu
VíceMěření na trojfázovém transformátoru naprázdno a nakrátko.
Úol: Měřeí a trojfázovém trasformátoru aprázdo a aráto. 1. Změřte a areslete charateristiy aprázdo trojfázového trasformátoru 2,, P, cos = f ( 1) v rozmezí 4-1 V. Zdůvoděte průběh charateristi 2 = f (
VíceInterval spolehlivosti pro podíl
Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této
Více7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ
7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
Více3. Charakteristiky a parametry náhodných veličin
3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo
VíceUniverzita Karlova v Praze Pedagogická fakulta
Uverzt Krlov v Prze Pedgogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM / CIFRIK Zdáí: Vyšetřete všem probrým prostředky polyom Vyprcováí: Rcoálí kořey Podle věty: Nechť p Q je koře polyomu q
VícePOLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde
POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti
VícePopisná statistika. (Descriptive statistics)
Popá tatta Decrptve tattc Výledem měřeí je oubor aměřeých hodot vytvářející datový oubor D { } V datovém ouboru e mohou vyytovat tytéž hodoty vícerát, zejméa tehdy, mají-l velčy drétí epojtou povahu počet
VícePočítačová analýza fraktálních množin
Počítačová aalýza fratálích mož Petr Pauš Výzumý úol Šoltel : Zaměřeí : Katedra : Aademcý ro : Ro tuda : Dr Ig Mchal Beeš Tvorba oftware KM 2004/2005 4 Obah ÚVOD 3 2 HAUSDORFFOVA DIMENZE 4 2 HAUSDORFFOVA
VíceMomenty a momentové charakteristiky
Lekce 3 Momety a mometové charaktertky Pokud jme e v předešlém výkladu zmňoval o ěkteré tattcké charaktertce, zpravdla jme rověž uváděl, zda j řadíme mez více ebo méě důležté. A byly to právě artmetcký
VíceZÁKLADY POPISNÉ STATISTIKY
ZÁKLADY POPISNÉ STATISTIKY Statitia věda o metodách běru, zpracováí a vyhodocováí tatiticých údaů. Statiticé údae ou apř. údae o přirozeém přírůtu či migraci obyvateltva, obemu výroby průmylových podiů,
VíceAnalýza bodové množiny
alýza bodové možy Petra Suryková Faculty of Mathematcs ad Physcs, Charles Uversty Prague Sokolovská 83, 186 7 Praha 8, Czech Republc emal: petra.surykova@mff.cu.cz bstrakt. V příspěvku se zaměříme a jedu
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr
VíceNejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A
Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota
Více[ jednotky ] Chyby měření
Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá
VíceMATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
VícePříklady k přednášce 9 - Zpětná vazba
Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat
VícePRAVDĚPODOBNOST A STATISTIKA
SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje
Více, jsou naměřené a vypočtené hodnoty závisle
Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,
Více- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.
MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je
VíceDůkazy Ackermannova vzorce
Důkazy Akermaova vzore Rady studetům: Důkaz je trohu zdlouhavý, ale přirozeý. Tak byste při odvozeí postupovali, kdybyste vzore předem ezali. Důkaz je krátký, ale je založe a triku, a který byste předem
VíceObr Lineární diskrétní systém
Mtetcé odel Uvžue leárí dsrétí ssté (or.. ). Or.. Leárí dsrétí ssté Steě u spotýc sstéů t u dsrétíc sstéů exstue ěol ožostí půsou věšío popsu cováí, teré vdřuí vt e výstupí velčou ( ) dsrétí vstupí velčou
Více4. KRUHOVÁ KONVOLUCE, RYCHLÁ FOURIEROVA TRANSFORMACE (FFT) A SPEKTRÁLNÍ ANALÝZA SIGNÁLŮ
4. KRUHOVÁ KOVOLUCE, RYCHLÁ FOURIEROVA TRASFORMACE FFT A SEKTRÁLÍ AALÝZA SIGÁLŮ Kruová cylcá ovoluce Ryclá Fourerova trasformace Aplace DFT a aalogové sgály, frevečí aalýza perodcýc aalogovýc sgálů s využtím
VíceLineární a adaptivní zpracování dat. 8. Modely časových řad I.
Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK
Více8.2.7 Vzorce pro geometrickou posloupnost
7 Vzoce po geometicou poloupot Předpoldy: 0, 0 Př : Po geometicou poloupot pltí ; q Uči čle, iž by učovl Mohli bychom pomocí vzoce po -tý čle učit čle p pomocí tejého vzoce učit i Teto potup je ložitější
Více5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém
VíceLekce Úroveň a její měření. aritmetický průměr; geometrický průměr; harmonický průměr; medián; mocninový
Lece Nejjedodušší Měřeí a charaterty úrově vlatotí datového ouboru je jeho úroveň, azývaá taé poloha. Charaterty úrově dělíme především podle toho, zda jou tvořey a báz výzamých hodot ebo zda jou fucem
Více6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
VíceIterační metody řešení soustav lineárních rovnic
Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro
Více1. Základy měření neelektrických veličin
. Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost
Více3 - Póly, nuly a odezvy
3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud
VíceJednoduchá lineární závislost
Jedoduchá leárí závlot Regreí fuce: ),...,, ( 0 m f Předpolad: Fuce je leárí v parametrech: ) (... ) 0 ( 0 f f m m f 0 ()... f m () regreor 0... m regreí parametr určujeme METODOU NEJMENŠÍCH ČTVERCŮ Regreí
VíceDoplňky k přednášce 23 Diskrétní systémy Diskrétní frekvenční charakteristiky
Doplňky k přednášce 3 Dikrétní ytémy Dikrétní frekvenční charakteritiky Michael Šebek Automatické řízení 011-1-11 Automatické řízení - Kybernetika a robotika e jω Matematika: Komplexní exponenciála = coω+
VíceFrekvenční metody syntézy
Frevenční metody yntézy Autor: etr Havel, havelp@fel.cvut.cz 23..25 Frevenční metody návrhu e naží upravit frevenční charateritiu otevřené myčy L ta, aby výledná frevenční charateritia uzavřené myčy T
VíceStatistická rozdělení
Úvod Statstcá rozděleí Václav Adamec vadamec@medelu.cz Náhodá proměá: matematcá velča, jejíž hodot osclují. Produt áhodého procesu lze charaterzovat fucí Hodot proměé v oboru přípustých hodot Rozděleí
Více8.1.2 Vzorec pro n-tý člen
8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu
VíceLineární a adaptivní zpracovní dat. 5. Lineární filtrace: FIR, IIR
Leárí a adaptví zpracoví dat 5. Leárí fltrace: FIR, IIR Dael Schwarz Ivestce do rozvoje vzděláváí Opakováí 2 Co je to fltrace? Co je to fltr? A jak ho popsujeme? Jaký je vztah Z trasformace a Fourerovy
Více1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá
Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická
VíceLineární programování
Lieárí programováí Adjugovaý problém lieárího programováí V případě řešeí problému lieárího programováí LP ma{ c T : A b 0} získáváme výchozí přípustou jedotkovou bázi u doplňkových proměých a za předpokladu
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a
VíceRovnice 1.řádu. (taková řešení nazýváme singulární řešení). řeší rovnici (*) na intervalu ( a, b)
Rovce řáu Rovce se separovaým proměým Derecálí rovc tvaru g h * azýváme rovcí se separovaým proměým latí: Nechť g je spojtá uce a tervalu a b h je spojtá a eulová uce a tervalu c Ozačme postupě G a H prmtví
VícePřednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
Více