Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky
|
|
- Jaroslava Švecová
- před 8 lety
- Počet zobrazení:
Transkript
1 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky HLEDÁNÍ NEJKRATŠÍCH CEST NA TROJÚHELNÍKOVÝCH SÍTÍCH Semestrální práce z předmětu Matematické modelování Martina Smitková, A67 smitkova@students.zcu.cz Matematické inženýrství. února 7
2 Úvod motivace hledání nejkratší cesty Hledání nejkratších cest je intenzivně diskutovanou otázkou zejména při řešení navigačních úloh at už máme na mysli historickou mořeplavbu či moderní navigaci pomocí globálního polohového systému GPS. Odjakživa bylo potřeba dostat se z výchozího do cílového místa co nejrychleji a s co nejmenšími náklady na cestu a tyto důvody podněcovaly a stále podněcují zájem o problematiku nejkratších cest. V geodézii se tento problém řeší již velice dlouho a je známý pod názvem druhá základní geodetická úloha ze zadaných souřadnic koncových bodů je úkolem vypočítat délku geodetické křivky mezi těmito dvěma body a azimuty křivky v koncových bodech. Na klasických referenčních plochách je tato úloha jednoduše řešitelná v rovině převodem kartézských souřadnic na polární, na kulové ploše pomocí aparátu sférické trigonometrie a na rotačním elipsoidu numerickým řešením soustavy obyčejných diferenciálních rovnic. TIN model zemského povrchu Abychom mohli nejkratší cesty hledat co nejpřesněji, použijeme lokální vektorový model zemského povrchu nepravidelnou trojúhelníkovou sít neboli TIN (z anglického Triangular Irregular Network). TIN reprezentuje povrch jako soubor trojúhelníků, z nichž každý je definován třemi vrcholy body o známých prostorových souřadnicích. Každá hrana v TIN (s výjimkou obvodu TIN) je sdílena právě dvěma sousedními trojúhelníky. Výhodou to- hoto modelu je věrný a přesný popis tvarů zemského povrchu a optimalizace uložení dat, jeho nevýhodou je složitost datové struktury a tím i algoritmů s ní pracujících.
3 Obrázek : Příklad TIN. 3 Hledání nejkratší cesty na TIN Vstupem úlohy hledání nejkratší cesty na TIN je TIN a dva různé body na TIN výchozí bod a cílový bod, výstupem je nejkratší cesta po TIN mezi těmito dvěma body. Nepovinným vstupem může být váhová funkce F, která pro každý vrchol TIN definuje možnou rychlost pohybu v tomto vrcholu (například v závislosti na prostupnosti terénu). Výstupem pak je nejkratší vážená cesta, která minimalizuje celkový čas cesty mezi danými dvěma body. Ve své práci problém hledání nejkratší cesty na TIN řeším ve dvou krocích:. Výpočet časové funkce T, která pro každý vrchol TIN udává minimální čas cesty do výchozího bodu.. Vlastní výpočet nejkratší cesty návrat z cílového do výchozího bodu podél záporně vzatého gradientu funkce T gradient udává směr největší změny funkce T a tedy i lokální směr nejkratší cesty. 3. Výpočet časové funkce T 3.. Formulace úlohy Uvažujme rovinu xy. Časová funkce T (x, y) pro každý bod (x, y) udává nejkratší čas, ve kterém je možné se dostat z výchozího bodu do tohoto bodu. Odvodíme nyní rovnici pro funkci T. Použijeme-li známý vztah, že vzdálenost = rychlost čas, pak v jednorozměrném případě dostáváme
4 F dt =. () dx Ve více dimenzích platí, že T je ortogonální k hladinám funkce T a podobně jako v předchozím případě je jeho velikost nepřímo úměrná rychlosti, tedy T F =, T = v A, () kde A je výchozí bod. Rovnici T F = se říká eikonalová rovnice. Budeme ji numericky řešit na TIN. 3.. Schéma pro jednoduchou trojúhelníkovou sít Uvažujme jednoduchou trojúhelníkou sít jako na obrázku. D A X B C Obrázek : Jednoduchá trojúhelníková sít. Zaměřme se na trojúhelník tvořený body X, A a C s hodnotami T X, T A a T C a předpokládejme, že hodnoty T A a T C jsou známé a že hodnotu T X chceme určit. Představme si, že hodnoty T v těchto třech bodech definují jakousi rovinu, kartézský souřadnicový systém má počátek v bodě X a platí AX = CX = h. Rovnice roviny vyjádřené jako funkce dvou proměnných pak je ( TX T A h ) x + ( TX T C h ) y + T X = T (x, y). (3) 3
5 Gradient této funkce je ( TX T A T =, T ) X T C. (4) h h Řešíme eikonalovou diferenciální rovnici T F =, musí tedy platit ( ) ( ) TX T A TX T C + = h h F. (5) Lze říci, že hledanou hodnotou T X T A, T C zdviháme rovinu tak, aby velikost gradientu byla rovna /F Schéma pro ostroúhlou TIN Ostroúhlou TIN rozumějme TIN, jejíž trojúhelníky nejsou tupoúhlé. Uvažujme trojúhelníkovou sít jako na obrázku 3. X Obrázek 3: Skupina trojúhelníků okolo společného centrálního bodu X. V obecnějším případě ostroúhlé TIN může velké množství trojúhelníků sdílet centrální bod (viz bod X na obrázku 3). Pomocí následujícího postupu, inspirovaného jednoduchou trojúhelníkovou sítí z předchozí části, se pokoušíme vypočítat vhodnou hodnotu T pro centrální bod z každého trojúhelníku, který má vrchol v tomto centrálním bodě. Může ovšem dojít k situaci, že z různých trojúhelníků obdržíme více různých přípustných hodnot T a musíme tedy jednu z nich vybrat v tomto případě volíme minimum z možných hodnot T. 4
6 Uvažujme netupoúhlý trojúhelník ABC (viz obrázek 4), ve kterém chceme určit T (C). Předpokládejme, že T (B) > T (A) a u = T (B) T(A). Pro T (C) platí T (C) = T (A) + t. E u I B a Ö t B H C è h b G D A C h G D A Obrázek 4: Odvození vztahu pro výpočet funkce T na trojúhelníku. Obrázek vlevo rovinný pohled na trojúhelník ABC, označení některých bodů, úseček a úhlů. Obrázek vpravo prostorový pohled na trojúhelník ABC, označení dalších bodů a úseček. Platí t = CE = T (C) T (A) a u = BI = T (B) T (A). Body A, E a I definují myšlenou rovinu funkce T nad trojúhelníkem ABC. Pro myšlenou rovinu funkce T nad trojúhelníkem ABC platí T = t u h, (6) kde h je výška v trojúhelníku BCD. Hledáme tedy t = EC, které splňuje eikonalovou rovnici t u = h F. (7) Označme a = BC a b = AC. Z podobnosti trojúhelníků AEC a AHD plyne 5
7 t b = DH AD, (8) takže Z kosinové věty plyne CD = b AD = b bu t b(t u) =. (9) t BD = a + CD a CD cos θ () a ze sinové věty Potom z pravoúhlého trojúhelníka CBG dostáváme h = a sin φ = a CD BD sin θ = sin φ = CD sin θ. () BD a CD sin θ a + CD a CD cos θ. () Po dosazení za h z rovnice (7) a za CD z rovnice (9) a jednoduchých úpravách máme kvadratickou rovnici pro t: F (a + b ab cos θ) t + +buf (a cos θ b) t+ +b (u F a sin θ) =. (3) Řešení t musí splňovat nerovnost t > u a dále požadujeme, aby záporně vzatý vektor gradientu směřoval dovnitř trojúhelníku, což zajistíme pomocí této nerovnice: a cos θ < b(t u) t Dostáváme tedy následující způsob výpočtu: < a cos θ. (4) Pokud u < t a zároveň a cos θ < b(t u) t < a cos θ, 6
8 pak T (C) = min {T (C), T (A) + t}; { jinak T (C) = min T (C), T (A) + b F, T (B) + a }. F Pořadí, v jakém budeme v jednotlivých bodech trojúhelníkové sítě počítat hodnotu funkce T je určeno principem metody Fast Marching, detailně rozebrané v [3] Rozšíření pro obecnou TIN V [3] je velmi stručně naznačeno, jak rozšířit metodu tak, aby bylo možné ji použít i pro obecně tupoúhlou TIN. Nejjednodušší způsob je přetvořit tupoúhlou TIN na ostroúhlou a tímto převést problém na již vyřešený případ ostroúhlé TIN. Jinou možností je pomocí rozvinování sousedních trojúhelníků do jedné roviny přidávat jakési virtuální hrany, které tupé úhly v trojúhelnících rozdělí na dva ostré. Problematikou tupoúhlé TIN jsem se ale nezabývala. 3. Vlastní výpočet nejkratší cesty V úvodu této kapitoly bylo uvedeno, že výpočet nejkratší cesty vlastně znamená návrat z cílového do výchozího bodu podél záporně vzatého gradientu časové funkce T gradient udává směr největší změny funkce T a tedy i lokální směr nejkratší cesty. Matematicky řečeno řešíme soustavu obyčejných diferenciálních rovnic dx(s) = T, (5) ds kde X(s) popisuje nejkratší cestu z cílového do výchozího bodu. 3.3 Aproximace gradientu funkce T K řešení diferenciální rovnice použijeme schéma druhého řádu s případným přepínáním na schéma prvního řádu. 7
9 3.3. Schéma prvního řádu Funkci T pro jednotlivé trojúhelníky nahrazujeme rovinou o rovnici Ax + By + C = T, (6) kde koeficienty A, B a C určíme ze souřadnic vrcholů daného trojúhelníka (viz obrázek 5) a z hodnot funkce T v těchto vrcholech jako řešení soustavy rovnic Pro gradient pak platí Ax + By + C = T Ax + By + C = T (7) Ax 3 + By 3 + C = T 3 T (A, B) (8) V 3 V V Obrázek 5: Trojúhelník pro výpočet T Schéma druhého řádu Nyní funkci T pro jednotlivé trojúhelníky nahrazujeme plochou druhého stupně o rovnici Ax + By + Cxy + Dx + Ey + F = T, (9) kde koeficienty A, B, C, D, E a F určíme ze souřadnic vrcholů daného trojúhelníka a tří okolních trojúhelníků (viz obrázek 6) a z hodnot funkce T v těchto vrcholech jako řešení soustavy rovnic 8
10 Ax i + By i + Cx i y i + Dx i + Ey i + F = T i i =,..., 6 () Pro gradient pak platí T (Ax + Cy + D, By + Cx + E) () V 3 V 5 V 6 V V V 4 Obrázek 6: Čtveřice trojúhelníků pro výpočet T. Nesmí ovšem dojít k situaci jako na obrázku 7. Plocha by byla určena jen pěti body a soustava rovnic by měla nekonečně mnoho řešení. V této situaci je nutné vyvolat výpočet prostřednictvím schématu prvního řádu. V 3 V 5 V V V 4 Obrázek 7: Situace, kdy není možné použít schéma druhého řádu. 3.4 Výpočet jednotlivých bodů nejkratší cesty Nejkratší cestu do výchozího bodu pak získáme následujícím způsobem:. Zvolíme trojúhelník v TIN. Jeho těžiště bude bodem G prvním bodem nejkratší cesty. Pro tento trojúhelník vypočteme aproximaci 9
11 gradientu funkce T. Bod G a záporně vzatý vektor gradientu určují přímku, určíme tedy průsečík této přímky s některou ze stran výchozího trojúhelníka. Nalezený průsečík je bodem G druhým bodem nejkratší cesty. G T G Obrázek 8: Počátek výpočtu jednotlivých bodů nejkratší cesty.. Máme určený bod G i i-tý bod nejkratší cesty a hledáme bod G i+. Bod G i leží na hraně, která je společná dvěma trojúhelníkům přes jeden trojúhelník jsme již nejkratší cestou přešli a nyní chceme přejít přes druhý. Podobně jako v předchozím případě určíme aproximaci gradientu funkce T pro trojúhelník, přes který chceme nyní přejít, a pomocí bodu G i a záporně vzatého vektoru gradientu vyjádříme přímku a vypočteme její průsečík s některou ze zbylých dvou hran trojúhelníka. Nalezený průsečík je bodem G i+ dalším bodem nejkratší cesty. G i G i T G i+ G i Obrázek 9: Průběh výpočtu jednotlivých bodů nejkratší cesty. 3. Jsme-li již dostatečně blízko bodu, do kterého máme za úkol se dostat, pak tento bod přidáme jako poslední bod do hledané nejkratší cesty a ukončíme výpočet.
12 4 Implementace a výsledky Pro testovací účely byla použita jednoduchá rovinná TIN složená z rovnostranných trojúhelníků viz obrázek Obrázek : Jednoduchá rovinná TIN. 4. Výpočet bez váhové funkce F Budeme-li jako výchozí bod uvažovat vrchol uprostřed této TIN a budeme-li předpokládat, že váhová funkce F =, pak by hodnota časové funkce T v každém vrcholu TIN měla být rovna vzdálenosti tohoto vrcholu od výchozího bodu. Vizualizace přesného řešení je na obrázku. Vizualizace řešení eikonalové rovnice metodou Fast Marching bez uvažování váhové funkce F je na obrázku. Odchylky těchto dvou řešení jsou znázorněny na obrázku 3. Je vidět, že odchylky jsou závislé na poloze bodů v TIN.
13 Obrázek : Přesné řešení rovnice T = na jednoduché TIN Obrázek : Výsledek numerického výpočtu funkce T na TIN.
14 Obrázek 3: Odchylky mezi přesným a přibližným řešením. 4. Výpočet s váhovou funkcí F Nyní budeme uvažovat netriviální váhovou funkce F. Funkce F je znázorněná na obrázku 4. Výsledná funkce T je na obrázku Prostorová TIN Nemusíme se samozřejmě omezovat jen na rovinnou TIN, algoritmus pro výpočet časové funkce T je určen pro prostorovou TIN. Ukázka výpočtu funkce T na prostorové TIN je na obrázcích 6 až 9. 3
15 Obrázek 4: Váhová funkce F na TIN Obrázek 5: Výpočet časové funkce T na TIN s úvahou váhové funkce F. 4
16 Obrázek 6: Výpočet časové funkce T na prostorové TIN Obrázek 7: Výpočet časové funkce T na triangulované kulové ploše. 5
17 Obrázek 8: Váhová funkce F na triangulované kulové ploše. Obrázek 9: Výpočet časové funkce T na TIN s úvahou váhové funkce F. 6
18 4.4 Výpočet nejkratší cesty na TIN Chybí už jen poslední krok pomocí vypočtené funkce T začít konstruovat nejkratší cesty na TIN podle algoritmu popsaného v části 3.. Výsledky jsou vizualizovány na následujících obrázcích. Obrázek : Nejkratší cesty na rovinné TIN. 7
19 Obrázek : Nejkratší vážené cesty na rovinné TIN. Obrázek : Nejkratší cesty na prostorové TIN. 8
20 Obrázek 3: Nejkratší cesty na triangulované kulové ploše. Obrázek 4: Nejkratší vážené cesty na triangulované kulové ploše. 9
21 5 Závěr využitelnost získaných výsledků V této práci byl navržen a implementován postup, jak najít nejkratší spojnici mezi danými dvěma body na trojúhelníkové síti. Využití tohoto postupu je možné nalézt například v oblasti turistických GPS přístrojů. Klasický GPS přístroj hledá nejkratší cestu mezi dvěma body v průmětu na referenční elipsoid, takže při výpočtu cesty nebere ohled na terénní reliéf ani na rozmístění vodstva, vegetace a podobně. Pokud bychom GPS přístroji dodali informaci o reliéfu ve formě trojúhelníkové sítě a informaci o průchodnosti terénu ve formě váhové funkce, bylo by možné využitím zde popsaného postupu hledat nejkratší cestu mezi danými dvěma body přesněji než dosud. Literatura [] KIMMEL, Ron SETHIAN, James. Computing Geodesic Paths on Manifolds. Proceedings of National Academy of Sciences, USA, 95(5): , 998. [] SETHIAN, James. Fast Marching Methods. SIAM Review. Vol. 4, No., pp Society for Industrial and Applied Mathematics. Philadelphia, 999. [3] SETHIAN, James. Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science. nd edition. Cambridge University Press. Cambridge, 999. ISBN
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
Teorie sférické trigonometrie
Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.
CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce
63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice
63. ročník matematické olympiády Řešení úloh krajského kola kategorie B 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice (x y)(x + y 6) = 0, (y z)(y + z 6) = 0, které spolu s
Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
Název: Práce s parametrem (vybrané úlohy)
Název: Práce s parametrem (vybrané úlohy) Autor: Mgr. Jiří Bureš, Ph.D. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: matematika a její aplikace Ročník: 6. (4.
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem
Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 49 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Kolik hodnot proměnné a R existuje takových, že diference aritmetické
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
19 Eukleidovský bodový prostor
19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma
Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,
Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v
Úlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Internetová matematická olympiáda listopadu 2008
Internetová matematická olympiáda - 5. listopadu 008 ŘEŠENÍ ÚLOH 1. Obrazec na Obrázku 1 je složen z 44 čtverců o straně 6 mm. Bodem A veďte jedinou přímku, která daný obrazec rozdělí na dva obrazce o
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
11. cvičení z Matematické analýzy 2
11. cvičení z Matematické analýzy 11. - 15. prosince 17 11.1 (trojný integrál - Fubiniho věta) Vypočtěte (i) xyz dv, kde je ohraničeno plochami y x, x y, z xy a z. (ii) y dv, kde je ohraničeno shora rovinou
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1
SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec
2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce
e-mail: RadkaZahradnikova@seznam.cz 1. července 2010
Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018
Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Úlohy krajského kola kategorie A
62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,
CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
6. Základy výpočetní geometrie
6. Základy výpočetní geometrie BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení
STEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114
STEREOMETRIE Odchylky přímek Mgr. Jakub Němec VY_32_INOVACE_M3r0114 ODCHYLKA DVOU PŘÍMEK V PROSTORU Další typy příkladů, v nichž budeme počítat vzdálenost dvou objektů, by bylo velmi složité počítat bez
4. Matematická kartografie
4. Země má nepravidelný tvar, který je dán půsoením mnoha sil, zejména gravitační a odstředivé (vzhledem k rotaci Země). Odstředivá síla způsouje, že tvar Země je zploštělý, tj. zemský rovník je dále od
Přijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 017, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé
CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)
Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené
y ds, z T = 1 z ds, kde S = S
Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných
STEREOMETRIE. Odchylky přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0117
STEREOMETRIE Odchylky přímky a roviny Mgr. Jakub Němec VY_3_INOVACE_M3r0117 ODCHYLKA PŘÍMKY A ROVINY Poslední kapitolou, která se týká problematiky odchylek v prostoru, je odchylka přímky a roviny. V této
SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE
SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015
4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina
Dvojné a trojné integrály příklad 3. x 2 y dx dy,
Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je
Extremální úlohy v geometrii
Extremální úlohy v geometrii Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava 30.4. 2013 Petr
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 40 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Vypočtěte pro a 1; 3 hodnotu výrazu 4 + a 3 + a 3 ( 2). 1 bod VÝCHOZÍ TEXT
CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,
2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
Kombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
Úlohy klauzurní části školního kola kategorie A
62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,
Nejprve si uděláme malé opakování z kurzu Množiny obecně.
@021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
VE 2D A 3D. Radek Výrut. Abstrakt Tento článek obsahuje postupy pro výpočet Minkowského sumy dvou množin v rovině a pro výpočet Minkowského sumy
25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Radek Výrut VÝPOČET MINKOWSKÉHO SUMY VE 2D A 3D Abstrakt Tento článek obsahuje postupy pro výpočet Minkowského sumy dvou množin v rovině a pro výpočet Minkowského
CVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 29 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Smrk má vysokou klíčivost, jen 5 % semen nevyklíčí.
= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621
ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete
CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f
Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,
( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.
76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky
6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme
Úlohy klauzurní části školního kola kategorie A
6. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A. V oboru reálných čísel řešte soustavu rovnic y + 3x = 4x 3, x + 3y = 4y 3. 2. V rovině uvažujme lichoběžník ABCD se základnami
May 31, Rovnice elipsy.notebook. Elipsa 2. rovnice elipsy. SOŠ InterDact Most, Mgr.Petra Mikolášková
Elipsa 2 rovnice elipsy SOŠ InterDact Most, Mgr.Petra Mikolášková 1 Název školy Autor Název šablony Číslo projektu Předmět SOŠ InterDACT s.r.o. Most Mgr. Petra Mikolášková III/2_Inovace a zkvalitnění výuky
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky
CVIČNÝ TEST 6. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 6 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Každý z n žáků jedné třídy z gymnázia v Přelouči se
b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm
b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.
M - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
Úlohy krajského kola kategorie A
64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
SOUŘADNICE BODU, VZDÁLENOST BODŮ
Registrační číslo projektu: CZ.1.07/1.1.14/01.001 SOUŘADNICE BODU, VZDÁLENOST BODŮ SOUŘADNICE BODU NA PŘÍMCE ČÍSELNÁ OSA na přímce je určena počátkem O a jednotkou měření. Libovolný bod A na číselné ose
5. Statika poloha střediska sil
5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny
M - Příprava na 3. čtvrtletní písemnou práci
M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
KŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE
KŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE Jiří Novotný Ústav matematiky a deskriptivní geometrie, Fakulta stavební, Vysoké učení technické v Brně Abstrakt: V rámci řešení projektu Inovace bakalářského studia Počítačová
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Jaroslav Tuma. 8. února 2010
Semestrální práce z předmětu KMA/MM Odstraňování šumu z obrazu Jaroslav Tuma 8. února 2010 1 1 Zpracování obrazu Zpracování obrazu je disciplína zabývající se zpracováním obrazových dat různého původu.
Elementární křivky a plochy
Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin
PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE
PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE Příklad Představme si, že máme vypočítat integrál I = f(, y) d dy, M kde M = {(, y) R 2 1 < 2 + y 2 < 4}. y M je mezikruží mezi kružnicemi o poloměru 1 a 2 a se
(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,
1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
Geometrické transformace pomocí matic
Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace
Parametrické rovnice křivky
Křivkový integrál Robert Mařík jaro 2014 Tento text je tištěnou verzí prezentací dostupných z http://user.mendelu.cz/marik/am. Křivkový integrál Jedná se o rozšíření Riemannova integrálu, kdy množinou
Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu
Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Václav Čibera 12. února 2009 1 Motivace Na obrázku 1 máme znázorněný mechanický systém, který může představovat
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
Příklady pro předmět Aplikovaná matematika (AMA) část 1
Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Mgr. Zora Hauptová ANALYTICKÁ GEOMETRIE PŘÍMKY TEST VY_32_INOVACE_MA_3_20 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti
CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179