GENEROVÁNÍ VÍCEKANÁLOVÉHO DITHERU
|
|
- Bedřich Bartoš
- před 8 lety
- Počet zobrazení:
Transkript
1 GEEROVÁÍ VÍCEKÁLOVÉHO DITHERU Z. ureš, F. Kdlec ČVUT v Prze, Fkult elektrotechnická, ktedr rdioelektroniky bstrkt Při kvntizci zvukových signálů dochází ke vzniku chybového signálu, který ovlivňuje kvlitu zprcovávného zvuku. Z účelem zlepšení perceptuálních vlstností kvntizčního šumu je využíván ditivní šum, tzv. dither. V následujícím článku je uveden metod efektivního generování ditheru pro víceknálový udio signál. Úvod Číslicové zprcování zvukových signálů (DSP) s sebou přináší jevy, které mjí vliv n vnímnou kvlitu zvuku. Chybový signál vznikjící při kvntizci signálu, tzv. kvntizční šum, se negtivně projevuje zejmén u signálů nízké úrovně. Zde ztrácí chrkter šumu zčne se projevovt vznikem hrmonických složek []. Podsttným spektem kvntizčního šumu je závislost jeho vlstností n vstupním kvntovném signálu. Ukzuje se, že pro zlepšení vnímné jkosti zvuku je nutné tuto závislost potlčit, nebo lespoň zčásti odstrnit. Z tímto účelem je využíván ditivní šum, tzv. dither. Dither je pseudonáhodný signál přičítný ke vstupnímu signálu, jehož vlstnosti, zejmén rozdělení hustoty prvděpodobnosti (PDF), determinují prmetry výsledného chybového signálu. Pomocí nesubtrktivního ditheringu lze zručit nezávislost pouze zákldních sttistických momentů chybového signálu n vstupním signálu []. Z hledisk vnímné kvlity se jko perceptuálně význmné jeví první dv sttistické momenty ditheru, tedy střední hodnot rozptyl. Jejich nezávislost n vstupním signálu je zjištěn použitím pseudonáhodného signálu s lespoň trojúhelníkovým rozdělením hustoty prvděpodobnosti. Použitím ditheringu docílíme potlčení nežádoucích složek vznikjících v průběhu DSP zvukových signálů. čkoliv přidáním ditheru dochází ke snížení celkové úrovně odstupu signálu od šumu, vnímání tkto uprvených zvukových signálů je příznivější. Víceknálový zvuk implikuje potřebu generovt součsně více relizcí ditheru. Pro optimální prostorový vjem chybového signálu je vhodné, by n kždý zvukový knál byl plikován nezávislá relizce ditheru. Při použití jedné relizce pseudonáhodného signálu ve více knálech by mohlo docházet ke korelci šumu mezi knály, s negtivním dopdem n vjem kvlity. Generování nezávislé relizce ditheru pro kždý knál smosttně může všk být výpočetně neúnosné. Vhodný víceknálový dither lze efektivně generovt pomocí speciálně nvržených mtic. Zákldní definice Při zprcování zvukových signálů budeme předpokládt /D převodník, který provádí v podsttě oříznutí či zokrouhlení vstupního signálu x. Dither ν je náhodný signál, přidný ke vstupnímu signálu před kvntizcí, z účelem dosžení nezávislosti zákldních sttistických momentů celkového chybového signálu ε n vstupu, kde ε y x ν () Oznčíme-li q mplitudu odpovídjící nejméně význmnému bitu (LS), můžeme definovt náhodný proces s rovnoměrnou hustotou rozložení prvděpodobnosti (RPDF) jko p ( x) q q q pro - < x () jink
2 Sečteme-li n náhodných RPDF procesů, budeme výsledný náhodný proces oznčovt jko nrpdf. Důležitý je výsledek, který říká, že nesubstrktivní dither, generovný sumcí n sttisticky nezávislých RPDF procesů, dává n prvních sttistických momentů celkové chyby nezávislých n vstupu systému, pro n způsobuje celkový chybový výkon rovný ( n + ) q / []. Pro zprcování zvukových signálů stčí obvykle použít dither typu RPDF, tedy s trojúhelníkovou hustotou prvděpodobnosti, neboť pouze první dv sttistické momenty (střední hodnot rozptyl) se jeví jko perceptuálně význmné. Pokud jsou nvíc jednotlivé vzorky ditheru vzájemně nezávislé, pk má chybový signál chrkter bílého šumu je vhodný tké pro systémy s tvrováním šumu. 3 Generování pseudonáhodných signálů Pro generování ditheru používném při zprcování zvukových signálů postčují jednoduché kongruenční generátory, jsou-li vhodně nvrženy. Lineární kongruenční generátor tvoří periodické posloupnosti kldných celých čísel I n tk, že I ( JI ) mod M n n + +, n,, 3,, M (3) kde J je zvolená konstnt, počáteční člen I lze volit libovolně. Period posloupnosti je zřejmě menší nebo rovn M. Period je přímo rovn M, pokud J 4 K + L M (4) kde K L jsou celá čísl tk, že M > J. L lze chápt jko délku slov v bitech. Pro zprcování stereofonního zvukového signálu při vzorkovcí frekvenci 44, khz je třeb zvolit L >. Vhodné je npříkld volit J ( ) 4 + I 9 3 M (5) áhodný signál typu RPDF lze vytvořit sečtením párů vzorků ze dvou RPDF sekvencí. Tkový dither pk může být pomocí D/ převodníku s vysokým rozlišením veden n nlogový vstup systému jko nlogový dither. 4 Víceknálový dither Jk bylo řečeno, dither typu nrpdf lze vytvořit generováním n nezávislých náhodných procesů s rovnoměrným rozložením hustoty prvděpodobnosti jejich součtem. Pro víceknálový systém je všk tento způsob znčně neefektivní může být výpočetně příliš náročný. Proto je snh využít náhodných čísel vícekrát. příkld při zprcování stereofonního signálu lze generovt dvě RPDF posloupnosti η η, pro jeden knál vzorky sčítt pro druhý odečítt [3]: ν + ν (6) η η η η Tkto jednoduše vzniklé posloupnosti RPDF nejsou ovšem nvzájem sttisticky nezávislé, je tedy třeb prokázt, že jejich použití nepovede ke vzájemné korelci chybových signálů mezi knály. Výše popsný způsob lze zobecnit pro více knálů s tím, že vyloučíme vzájemné korelce chybových signálů mezi knály. Výstup generátoru ditheru budeme uvžovt jko sloupcový vektor
3 T ( ν,..., ν ν ) rovněž vektorem, kde je počet zvukových knálů. Jednotlivé vnitřní RPDF procesy lze oznčit η T ( η,..., ) η M, obecně M. Pk pltí ν η (7) kde ( ) (8) ij je konstntní mtice M. Lze dokázt [], že není možné generovt více než nekorelovných náhodných procesů kombincemi náhodných procesů, tedy M. Pro výše uvedené schém je npříkld (9) Pro vyloučení vzájemné korelce chybového signálu mezi knály je nutné, by řádky mtice byly vzájemně ortogonální. by bylo vektorů délky M ortogonálních, je třeb, by M, tudíž nelze generovt více ortogonálních náhodných procesů, než kolik dodáme dílčích. Ztímco mtice splňující podmínku ortogonlity řádkových vektorů jsou čsté, poždvek, by výstupní dithery byly řádu nrpdf situci podsttně komplikuje. Pk totiž kždý řádek mtice musí obshovt právě n prvků, rovných buď nebo, zbytek nuly. η j ν i 5 Optimální generování víceknálového ditheru Víceknálový generátor ditheru povžujeme z optimální, pokud poskytuje nekorelovné hodnoty ditheru v jednotlivých knálech vyžduje generování pouze jedné nové náhodné hodnoty n knál vzorek. Tto situce nstne tehdy, je-li mtice čtvercová. Tková schémt budeme nzývt (,n)-optimální, kde je počet knálů n je řád výsledného ditheru. Čtvercová mtice je (,n)-optimální, pokud [] ij,,, ),. { } ( i j. kždý řádek mtice obshuje právě n prvků bsolutní hodnoty, 3. řádky mtice jsou vzájemně ortogonální. ásledující příkldy demonstrují zákldní (,n)-optimální mtice (,n) (,), () (,n) (4,3), ()
4 (,n) (6,5), () Pro tvorbu dlších optimálních schémt pltí následující prvidl []: prohození dvou řádků či sloupců v (,n)-optimální mtici dává opět (,n)-optimální mtici, násobení řádku či sloupce (,n)-optimální mtice konstntou dává opět (,n)-optimální mtici, je-li (,n)-optimální mtice, je (,n)-optimální mtice O je nulová mtice, pk (3) T je ( +, n)-optimální mtice, je-li ( ) ij (,n )-optimální mtice je (,n )-optimální mtice, pk (4) L M M M L L je (, n n )-optimální mtice. příkld kombincí dvou zákldních (,)-optimálních mtic podle rovnice () můžeme dostt (4,)-optimální mtici, pomocí které lze optimálně vygenerovt dither pro čtyři knály, přičemž kždý z nich je RPDF (trojúhelníkové rozdělení hustoty prvděpodobnosti) (5) Pro (4,4)-optimální mtici podobně pltí (6)
5 Pro libovolný počet knálů řád ditheru n optimální mtice obecně neexistují. příkld neexistují optimální schémt pro (, n) { (3,), (3,3), (5,), (5,3), (5,4), (5,5)}. V tkovém přípdě je možné použít nejbližší větší optimální schém některé hodnoty vypustit. Poněkud to ovšem snižuje efektivitu výpočtu. 6 Implementovný generátor Tvorb ditheru pro víceknálovou zvukovou soustvu s poždovným rozdělením PDF je uskutečnitelná generováním nezávislých relizcí RPDF šumu s následným násobením optimálně nvrženou mticí. Výsledkem je pk soubor ditherů s definovnou PDF, použitelných pro víceknálový systém. lokové schém víceknálového zprcování zvukových signálů s nesubtrktivním ditherem je n obr.. Generátor ditheru η η Trnsformce signálu [] η M ν ν ν x Σ D y x Σ D y x Σ D y Obr.. lokové schém víceknálového kvntizéru s nesubtrktivním ditherem. Generátor víceknálového ditheru je implementován v prostředí MTL. Umožňuje volit typ poždovného rozdělení (rovnoměrné, trojúhelníkové Gussovo), délku ditheru (počet vzorků), mplitudu v počtu kvntovcích úrovní (minimum mximum) konečně počet knálů ( ž 6). Po zdání vstupních prmetrů ditheru se vytvoří poždovný signál. Lze vykreslit spektrum histogrm všech knálů vygenerovného ditheru. Vygenerovný signál se ukládá do specifikovného souboru typu.mt jko proměnná MTLu s názvem Dt. Proměnná Dt je ve tvru mtice, která má počet řádků roven počtu knálů počet sloupců roven délce signálu. Vzhled uživtelského rozhrní generátoru je n obr. v příloze. Pro generování signálu s rovnoměrným PDF je pouze použit funkce rnd, přičemž je uprven rozsh hodnot podle poždovné mplitudy. V přípdě generování signálu s Gussovým rozdělením PDF je situce obdobná, pouze je použit vestvěná funkce nrnd. Tto funkce generuje náhodné hodnoty s dným rozdělením o jednotkové střední hodnotě rozptylu. Vzhledem k nenulové prvděpodobnosti výskytu hodnot větších v bsolutní hodnotě než jedn, jsou hodnoty nejprve normlizovány tk, by extrémní hodnot byl rovn ±. Poté je uprven mplitud. Pro generování trojúhelníkového ditheru je využito výše popsné metody. Jsou nvrženy tři (,n)-optimální mtice: (,), (4,) (6,) pro tvorbu dvou, čtyř, resp. šesti knálů ditheru typu RPDF. V přípdě lichého počtu knálů je použit mtice s nejbližším vyšším počtem knálů, z nichž jeden je ignorován. Tím je porušen výpočetní optimlit, le pro generování běžných signálů není výpočet příliš náročný. obrázcích v příloze jsou uvedeny příkldy spekter histogrmů vygenerovných ditherů s rovnoměrným rozdělením, trojúhelníkovým konečně Gussovým PDF. U všech byl nstven vzorkovcí frekvence 44 Hz, délk s, mplitud <-,>. 7 Závěr zákldě uvedené nlýzy byl v progrmovém prostředí MTL implementován optimální generátor víceknálového ditheru, umožňující tvorbu ditivního šumu ž pro šest zvukových knálů. Vygenerovný dither je nekorelovný jeho vlstnosti lze měnit v několik stupních volnosti. Generátor bude využíván při zprcování zvukových signálů v souvislosti s psychokustickými testy.
6 Práce byl podpořen grntem GČR č. /5/54 Kvlittivní spekty zprcování udiovizuální informce v multimediálních systémech výzkumným záměrem MSM č Výzkum perspektivních informčních komunikčních technologií. Litertur [] F. KDLEC. Zprcování kustických signálů. Skript, nkldtelství ČVUT, [] R.. WMKER. Efficient Genertion of Multichnnel Dither Signls. J. udio Eng. Soc., Vol. 5, o. 6, 4 June [3] M.. GERZO, P.G. CRVE, J.R. STURT, R.J. WILSO. Psychocoustic oise-shped Improvements In CD nd Other Liner Digitl Medi. J. udio Eng. Soc. (bstrcts), Vol. 4, str. 394, 993 December, preprint 35 [4] ROERT. WMKER. Subtrctive nd onsubtrctive Dithering - Mthemticl Comprison. J. udio Eng. Soc., Vol. 5, o., 4 December Ing. Zbyněk ureš, Doc. Ing. Frntišek Kdlec, CSc. Fkult elektrotechnická, ČVUT v Prze Ktedr rdioelektroniky Technická 66 7 Prh 6 tel.: 435 8, e-mil: buresz@fel.cvut.cz, kdlec@fel.cvut.cz Příloh Obr.. Uživtelské rozhrní implementovného generátoru
7 Obr.3. Dither s rovnoměrným rozdělením PDF, kmitočtové spektrum histogrm. Symbol k oznčuje četnost výskytu, symbol x hodnotu vzorku Obr. 4: Dither s trojúhelníkovým rozdělením PDF, kmitočtové spektrum histogrm. Symbol k oznčuje četnost výskytu, symbol x hodnotu vzorku
8 Obr. 5: Dither s Gussovým rozdělením PDF, kmitočtové spektrum histogrm. Symbol k oznčuje četnost výskytu, symbol x hodnotu vzorku
Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA
Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním
VícePříklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem
Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je
VíceMatice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra
Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel
VíceObecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
VíceSouhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A
Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení
PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Vybrná spojitá rozdělení Zákldní soubor u spojité náhodné proměnné je nespočetná množin. Z je tedy podmnožin množiny reálných čísel (R). Distribuční funkce
VíceAPLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ
APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává
VíceDERIVACE A INTEGRÁLY VE FYZICE
DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická
Více2.3. DETERMINANTY MATIC
2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní
Vícem n. Matice typu m n má
MATE ZS KONZ B Mtice, hodnost mtice, Gussův tvr Mtice uspořádné schém reálných čísel: m m n n mn Toto schém se nzývá mtice typu m řádků n sloupců. m n. Mtice typu m n má Oznčujeme ji A, B,někdy používáme
Více4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33
. Determinnty Determinnt, znčíme deta, je číslo přiřzené čtvercové mtici A. Je zveden tk, by pro invertibilní mtici byl nenulový pro neinvertibilní mtici byl roven nule. Výpočet: = + = + + - - - + + +
Vícea i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11
Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n
VíceOBECNÝ URČITÝ INTEGRÁL
OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,
VíceAž dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním
Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož
Vícex + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
Více13. Exponenciální a logaritmická funkce
@11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze
VíceP2 Číselné soustavy, jejich převody a operace v čís. soustavách
P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel
Více1. LINEÁRNÍ ALGEBRA 1.1. Matice
Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme
Více{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507
58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní
Více2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem
2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice
VíceINTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL
INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci
VíceZáklady teorie matic
Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie
VícePJS Přednáška číslo 4
PJS Přednášk číslo 4 esymetrie v S Řešení nesymetrií je problemtické zejmén u lternátorů, protože díky nesymetriím produkují kompletní spektrum vyšších hrmonických veličiny v souřdném systému d, q,, které
VíceZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.
VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální
VíceLINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
VíceÚlohy krajského kola kategorie A
67. ročník mtemtické olympiády Úlohy krjského kol ktegorie A 1. Pvel střídvě vpisuje křížky kolečk do políček tbulky (zčíná křížkem). Když je tbulk celá vyplněná, výsledné skóre spočítá jko rozdíl X O,
VíceTechnická kybernetika. Regulační obvod. Obsah
Akdemický rok 6/7 Připrvil: Rdim Frn echnická kybernetik Anlogové číslicové regulátory Stbilit spojitých lineárních systémů Obsh Zákldní přenosy regulčního obvodu. Anlogové regulátory. Číslicové regulátory.
VíceSYLABUS MODULU UPLATNĚNÍ NA TRHU PRÁCE DÍLČÍ ČÁST II BAKALÁŘSKÝ SEMINÁŘ + PŘÍPRAVA NA PRAXI. František Prášek
SYLABUS MODULU UPLATNĚNÍ NA TRHU PRÁCE DÍLČÍ ČÁST II BAKALÁŘSKÝ SEMINÁŘ + PŘÍPRAVA NA PRAXI Frntišek Prášek Ostrv 011 1 : Sylbus modulu Upltnění n trhu práce, dílčí část II Bklářská práce + příprv n prxi
VícePřednáška 9: Limita a spojitost
4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty
VíceOhýbaný nosník - napětí
Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se
Více2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
VíceURČITÝ INTEGRÁL FUNKCE
URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()
Více2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
VíceVYUŽITÍ CITLIVOSTNÍ ANALÝZY V ELEKTROTECHNICE A ŘÍDÍCÍ TECHNICE - II
8 Informčné utomtizčné technológie v ridení kvlity produkcie Vernár,.-4. 9. 5 VYUŽIÍ CILIVONÍ ANALÝZY V ELEKROECHNICE A ŘÍDÍCÍ ECHNICE - II KÜNZEL Gunnr Abstrkt Příspěvek nvzuje n předchozí utorův článek
Více13. Soustava lineárních rovnic a matice
@9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky
Více6. Setrvačný kmitový člen 2. řádu
6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické
VíceRegulace f v propojených soustavách
Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny
VíceDefinice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M.
BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 2/3 Konfigurce konečného utomtu BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 4/3 Automty
VíceMultimediální technika a televize - úvod. Dr. Ing. Libor Husník
Multimediální technik televize - úvod přednášející: Prof. Ing. Miloš Klím, CSc. Dr. Ing. Libor Husník Multi-médi pokus o slovníkové heslo multi = mnoho, více médi = z ltinského medire medius = prostřední
VíceÚlohy školní klauzurní části I. kola kategorie C
52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.
VíceS t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006
8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný
VíceNávrh základních kombinačních obvodů: dekodér, enkodér, multiplexor, demultiplexor
Předmět Ústv Úloh č. 2 BDIO - Digitální obvody Ústv mikroelektroniky Návrh zákldních kombinčních obvodů: dekodér, enkodér, multiplexor, demultiplexor Student Cíle Porozumění logickým obvodům typu dekodér,
VícePetriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz
PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)
Více3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru
Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém
Více2.9.11 Logaritmus. Předpoklady: 2909
.9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).
VíceM A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)
5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26
Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz
VíceZkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.
1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)
VíceStanovení disociační konstanty acidobazického indikátoru. = a
Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející
Více1.1 Numerické integrování
1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme
VíceAPLIKACE DLOUHODOBÉHO SLEDOVÁNÍ STAVEB PŘI OCEŇOVÁNÍ NEMOVITOSTÍ
Ing. Igor Neckř APLIKACE DLOUHODOBÉHO SLEDOVÁNÍ STAVEB PŘI OCEŇOVÁNÍ NEMOVITOSTÍ posluchč doktorského studi oboru Soudní inženýrství FAST VUT v Brně E-mil: inec@volny.cz Přednášk n konferenci znlců ÚSI
VíceMĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve
Více3. Kvadratické rovnice
CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:
Vícemnožina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n,
Náplní předmětu bude klkulus R n R (přípdně R m ). Proč se zbývt funkcemi více proměnných? V prxi je čsto třeb uvžovt veličiny, které závisejí n více než jedné proměnné, npř. objem rotčního kužele závisí
Více+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
VíceKomplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.
7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1
VíceZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN
ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN pevné látky jsou chrkterizovány omezeným pohybem zákldních stvebních částic (tomů, iontů, molekul) kolem rovnovážných poloh PEVNÉ LÁTKY krystlické morfní KRYSTAL pevné
VíceDatamining a AA (Above Average) kvantifikátor
Dtmining AA (Above Averge) kvntifikátor Jn Burin Lbortory of Intelligent Systems, Fculty of Informtics nd Sttistics, University of Economics, W. Churchill Sq. 4, 13067 Prgue, Czech Republic, burinj@vse.cz
VíceV předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
VíceSprávné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010
právné řešení písemné koušky mtemtiky- vrint A Přijímcí říení do NMgr. studi učitelských oborů Příkld. Vyšetřete průběh funkce v jejím mimálním definičním oboru nčrtněte její grf y Určete pritu (sudá/lichá),
Více8. Elementární funkce
Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne
VíceAsociační pravidla. Úloha hledání souvislostí mezi hodnotami atributů. {párky, hořčice} {rohlíky} Ant Suc,
Asociční prvidl Úloh hledání souvislostí mezi hodnotmi tributů. nlýz nákupního košíku (Agrwl, 1993) obecněji {párky, hořčice} {rohlíky} Ant Suc, kde Ant (ntecedent) i Suc (sukcedent) jsou konjunkce hodnot
VíceANALYTICKÁ GEOMETRIE V PROSTORU
ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici
Více( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306
7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu
VíceDefinice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1
9. Vriční počet. Definice. Nechť k 0 celé, < b R. Definujeme C k ([, b]) = { ỹ [,b] : ỹ C k (R) } ; C 0 ([, b]) = { y C ([, b]) : y() = y(b) = 0 }. Důležitá konstrukce. Shlzovcí funkce (molifiér, bump
Více2.2.9 Grafické řešení rovnic a nerovnic
..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci
Více4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.
4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost
VíceA DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1).
A DIRACOVA DISTRIBUCE A Dircov distribuce A Definice Dircovy distribuce Dircovu distribuci δx) lze zvést třemi ekvivlentními způsoby ) Dirc [] ji zvedl vzthy δx) dx, δx) pro x ) Grficky znázorňujeme Dircovu
Více2.1 - ( ) ( ) (020201) [ ] [ ]
- FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé
Víceje jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.
10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány
Více(Text s významem pro EHP)
9.9.2015 L 235/7 PROVÁDĚCÍ NAŘÍZENÍ KOMISE (EU) 2015/1502 ze dne 8. září 2015, kterým se stnoví minimální technické specifikce postupy pro úrovně záruky prostředků pro elektronickou identifikci podle čl.
Více9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie
9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu
VíceRentgenová strukturní analýza
Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční
VíceHlavní body - magnetismus
Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického
Více( ) 1.5.2 Mechanická práce II. Předpoklady: 1501
1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením
VíceDIPLOMOVÁ PRÁCE. Teorie nekonečných her
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Teorie nekonečných her Vedoucí diplomové práce: doc. Mgr. Krel Pstor, Ph.D Rok odevzdání:
VíceVIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu
Více2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman
STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr
VíceII. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)
. NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál
VíceNEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
VíceStudijní materiály ke 4. cvičení z předmětu IZSE
ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti
Více2.4.7 Shodnosti trojúhelníků II
2.4.7 Shodnosti trojúhelníků II Předpokldy: 020406 Př. 1: oplň tbulku. Zdání sss α < 180 c Zdání Náčrtek Podmínky sss sus usu b + b > c b + c > c + c > b b α < 180 c α + β < 180 c Pedgogická poznámk: Původní
VíceDIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17
DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník
VícePružnost a plasticita II
Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná
VíceUC485S. PŘEVODNÍK LINKY RS232 na RS485 nebo RS422 S GALVANICKÝM ODDĚLENÍM. Převodník UC485S RS232 RS485 RS422 K1. přepínače +8-12V GND GND TXD RXD DIR
PŘEVODNÍK LINKY RS232 n RS485 neo RS422 S GALVANICKÝM ODDĚLENÍM 15 kv ESD Protected IEC-1000-4-2 Převodník přepínče RS232 RS485 RS422 K1 ' K2 +8-12V GND GND TXD RXD DIR PAPOUCH 1 + gnd Ppouch s.r.o. POPIS
VíceVIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.
VíceNerovnosti a nerovnice
Nerovnosti nerovnice Doc. RNDr. Leo Boček, CSc. Kurz vznikl v rámci projektu Rozvoj systému vzdělávcích příležitostí pro ndné žáky studenty v přírodních vědách mtemtice s využitím online prostředí, Operční
VíceSpojitost funkce v bodě, spojitost funkce v intervalu
10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí
Více4. cvičení z Matematiky 2
4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y
VíceM - Příprava na 3. zápočtový test pro třídu 2D
M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně
VíceZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,
ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých
VícePůjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.
4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme
Víceintegrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.
Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze
VícePosluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.
Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce
VíceLogické obvody - kombinační Booleova algebra, formy popisu Příklady návrhu
MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Logické ovody - kominční Booleov lger, ormy popisu Příkldy návrhu České vysoké učení technické Fkult elektrotechnická ABMIS Mikroprocesory
VíceKřivkový integrál funkce
Kpitol 6 Křivkový integrál funkce efinice způsob výpočtu Hlvním motivem pro definici určitého integrálu funkce jedné proměnné byl úloh stnovit obsh oblsti omezené grfem dné funkce intervlem n ose x. Řd
VícePokroky matematiky, fyziky a astronomie
Pokroky mtemtiky, fyziky stronomie Kliment Šoler Progrmovná učebnice mtemtiky pro vysoké školy technické Pokroky mtemtiky, fyziky stronomie, Vol. 14 (1969), No. 4, 182--193 Persistent URL: http://dml.cz/dmlcz/139283
Více56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25
56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou
Více8 Mongeovo promítání
8 Mongeovo promítání Pomocí metod uvedených v kpitolách 3. 4., 3. 6. bychom mohli promítnout do roviny 3 libovolný útvr U E. V prxi všk většinou nestčí sestrojit jeden průmět. Z průmětu útvru U je většinou
Více