Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Podobné dokumenty
+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

y ds, z T = 1 z ds, kde S = S

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1,

Plošný integrál Studijní text, 16. května Plošný integrál

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.

VIDEOSBÍRKA DERIVACE

Diferenciální počet funkcí více proměnných

VIDEOSBÍRKA DERIVACE

5. cvičení z Matematiky 2

VEKTOROVÁ POLE Otázky

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

MFT - Matamatika a fyzika pro techniky

Matematika I A ukázkový test 1 pro 2014/2015

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

PŘÍKLADY K MATEMATICE 3

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2

Úvodní informace. 17. února 2018

13. cvičení z Matematické analýzy 2

VEKTOROVÁ POLE VEKTOROVÁ POLE

Petr Hasil

Veronika Chrastinová, Oto Přibyl

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3,

1. Cvičení: Opakování derivace a integrály

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

Extrémy funkce dvou proměnných

Příklady pro předmět Aplikovaná matematika (AMA) část 1

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému

14. cvičení z Matematické analýzy 2

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2

Otázky k ústní zkoušce, přehled témat A. Číselné řady

Přijímací zkouška na navazující magisterské studium 2018

Cvičení z AM-DI. Petr Hasil, Ph.D. Verze: 1. března 2017

Matematika 1 pro PEF PaE

Zápočtová písemka z Matematiky III (BA04) skupina A

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Matematika pro chemické inženýry

Protože se neobejdeme bez základních poznatků vektorové algebry, připomeneme si nejdůležitější pojmy., pak - skalární součin vektorů u,

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Posloupnosti. n2 3n. lim. n4 + 2n. lim. n 1. n + n n. n! (n + 1)! n! lim. n ( 1)n! [1] lim. ln 2 n. lim. n n n sin n2 [0] lim. 2 n.

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z

5.3. Implicitní funkce a její derivace

F n = F 1 n 1 + F 2 n 2 + F 3 n 3.

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

Funkce zadané implicitně

Obsah Obyčejné diferenciální rovnice

8.4. Shrnutí ke kapitolám 7 a 8

1 Funkce dvou a tří proměnných

má spojité parciální derivace druhého řádu ve všech bodech této množiny. Výpočtem postupně dostaneme: y = 9xy2 + 2,

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy

11. cvičení z Matematické analýzy 2

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).

Matematika II: Pracovní listy do cvičení

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

QR, b = QS, c = QP. Dokaºte ºe vzdálenost bodu P od roviny spl uje. a (b c) d =

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).

14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta

4. Napjatost v bodě tělesa

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

Plošný integrál funkce

PŘÍKLADY K MATEMATICE 3

4. Diferenciál a Taylorova věta

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

diferenciální rovnice verze 1.1

Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

2 Odvození pomocí rovnováhy sil

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY 3 Jiří Bouchala. Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Uzavřené a otevřené množiny

Funkce více proměnných. April 29, 2016

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A2. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

12 Trojný integrál - Transformace integrálů

Parciální derivace a diferenciál

Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A

Kristýna Kuncová. Matematika B3

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

Parciální derivace a diferenciál

Funkce jedné proměnné

Matematika vzorce. Ing. Petr Šídlo. verze

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

Substituce ve vícenásobném integrálu verze 1.1

Požadavky ke zkoušce

Transkript:

Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Necht jsou v okolí bodu [1, 2, 0] pomocí soustavy rovnic xy + xz + yz 2z = 2, y 2 + z 2 xy + e xz = 3 definovány funkce y(x) a z(x). Najděte jejich druhé derivace y (1) a z (1). Pomocí substituce u = xy 2 a v = y x najděte souřadnici y T Ω R 2, která je dána nerovnostmi těžiště homogenní oblasti jestliže víte, že její obsah je 9. 1 xy 2 8, x 27y 27x, Necht jsou i, j, resp. k jednotkové vektory ve směru osy x, y, resp. z. Najděte práci silového pole f = zi + xj + 2yk po křivce dané parametrickými rovnicemi x = ln t, y = t, z = 1 t, 1 t 2, která je orientovaná ve směru rostoucího parametru t. Najděte hmotnost plochy S, která je daná rovnicemi a jejíž hustota je ρ(x, y, z) = z. z 2 = x 2 y 2, y 2 + z 2 2y, x, z 0

Ukázka 2 Necht má funkce f(x, y) spojité parciální derivace n tého řádu. Napište Taylorův polynom stupně n této funkce se středem v bodě [ x 0, y 0 ]. Najděte lokální extrémy funkce f(x, y, z) = x + y2 4x + z2 y + 2, kde x, y, z > 0. z Necht je funkce z = z(x, y) definována v okolí bodu [1, 1, 1] jako řešení rovnice Najděte její parciální derivaci x 2 y 2 + z 2 + 2 x 2 + y 2 + z 2 + xz + yz = 3. 2 z (1, 1). x y Najděte souřadnici x T homogenního tělesa T R 3, které je dáno nerovnostmi 9x 2 + 4y 2 z 2, 0 z 3, x 0, jestliže víte, že jeho objem je V = 3 π. 4 Najděte křivkový integrál (x dx + z dy 2y dz), kde C je křivka daná rovnicemi C x 2 + y 2 + z 2 = 1, x 2 + y 2 = y, která leží v prvním oktantu, tj. x, y, z 0, a začíná v bodě [0, 0, 1]. Najděte obsah plochy S, která je dána parametrickými rovnicemi x = uv, y = 1 2 (u2 v 2 ), z = 1 2 (u2 + v 2 ), u 2 + v 2 2, u, v 0.

Ukázka 3 Jak najdete objem rovnoběžnostěnu, jehož strany jsou vektory u = (u 1, u 2, u 3 ), v = (v 1, v 2, v 3 ) a w = (w 1, w 2, w 3 )? Necht je funkce f(x, y) definována vztahem f(x, y) = F ( u(x, y), v(x, y) ), kde funkce F (u, v) má spojité druhé parciální derivace a Vyjádřete 2 f x y u(x, y) = ln ( x + 1 + x 2), v(x, y) = x 2 + xy + y 2. pomocí parciálních derivací funkce F (u, v). Necht je funkce y(x) definována v okolí bodu [1, 0] rovnicí ln x 2 + y 2 = arctg y x. Najděte její Taylorův polynom druhého řádu se středem v bodě x = 1. Necht je I = 0 e x2 dx. Pak platí rovnost I 2 = 0 e x2 dx 0 e y2 dy = kde Ω R 2 je dána nerovnostmi x, y > 0. Pomocí substituce do polárních souřadnic najděte integrál I. Ω e x2 y 2 dx dy, Najděte délku křivky C, která je dána parametrickými rovnicemi x = t 1 + t, y = 1 2 1 + t, t R. 2 Necht jsou i, j, resp. k jednotkové vektory ve směru souřadných os x, y, resp. z. Najděte tok vektoru v = xi + yj + zk plochou S, která je dána vztahy z = 1 x 2 + y 2, 0 z 1 a je orientována tak, že třetí složka vektoru její normály je kladná.

Ukázka 4 Necht má vektorová funkce f(x, y, z) spojité parciální derivace. Co je div f(x, y, z)? V bodě A = [1, 1, 2] najděte parametrické rovnice tečny ke křivce C, která v okolí bodu A je dána jako řešení soustavy rovnic z 2 xy + yz + x sin(x + y) = 3, xy + xz + yz + 1 = 0. Najděte lokální extrémy funkce f(x, y) = 2x 2 3xy 2y 2 za podmínky x 2 + y 2 = 40. Pomocí substituce x = r cos 2 ϕ, y = r sin 2 ϕ, kde r > 0 a 0 < ϕ < 1 π, najděte obsah 2 oblasti Ω R 2, která je určena nerovnostmi ( ) 4 x + y 4xy, x, y 0. Najděte hmotnost křivky C, která je dána parametrickými rovnicemi x = e t cos t, y = e t sin t, z = e t, 0 < t <, jestliže je její lineární hustota ρ(x, y, z) = x 2 + y 2 + z 2. Najděte plošný integrál ( ) (x 2 + yz) dy dz + (y 2 + xz) dz dx + (z 2 + xy) dx dy, S kde S je kladně orientovaná hranice polokoule x 2 + y 2 + z 2 1, z 0.

Ukázka 5 Necht má vektorová funkce f(x, y, z) spojité parciální derivace. Co je rot f(x, y, z)? Napište rovnici tečné roviny v bodě A = [2, 1, 1] k ploše S, která je v okolí bodu A definována rovnicí xy ln(x z 2 ) + ze x(y+z) = 1. Jaké rozměry má otevřená vana, která má průřez půlkruh a daný povrch stěn S = 27π m 2 a která má největší objem? Najděte objem tělesa T R 3, které je dáno nerovnostmi x 2 + y 2 2z, z 4 x 2 + y 2. Najděte potenciál vektorového pole ( ) x f(x, y, z) = (x 2 + y 2 + z 2 ), y 3/2 (x 2 + y 2 + z 2 ), z 3/2 (x 2 + y 2 + z 2 ) 3/2 a pomocí toho spočítejte práci pole f po křivce C, která začíná v bodě A = [2, 1, 2], končí v bodě B = [4, 0, 3] a neprochází počátkem souřadnic. Najděte obsah plochy S, která je dána parametrickými rovnicemi x = 2r cos 2 ϕ, y = r sin 2 ϕ, z = r, 0 ϕ 1 2 π, 0 < r < 1.

Ukázka 6 Jak spočítáte množství kapaliny, které proteče za jednotku času rovnoběžníkem se stranami a = (a 1, a 2, a 3 ) a b = (b 1, b 2, b 3 ), jestliže je rychlost proudění kapaliny v = (v 1, v 2, v 3 ). Najděte derivaci funkce f(x, y) = x 2 y + ln ke grafu funkce y = 3 x v bodě A. x + y v bodě A = [1, 1] ve směru normály x2 + y2 Necht je funkce z = z(x, y) definována v okolí bodu [1, 1, 1] jako řešení rovnice yz 3 + x 2 z + xy 2 y 2 = 0. Najděte její Taylorův polynom druhého řádu se středem v bodě [1, 1]. Na plochu S R 2, která je dána nerovnostmi 3x 2 + 2y 2 6, x 2 + 2 2y 2, x, y > 0, působí tlak p(x, y) = 2y. Najděte celkovou sílu F, která působí na plochu S, tj. integrál F = p(x, y) dx dy. S Najděte souřadnici y T těžiště homogenní křivky C, která je dána parametrickými rovnicemi x = cos t, y = sin t, z = 1 ln cos t, 0 t 1 3 π, jestliže víte, že její délka je ln ( 2 + 3 ). Necht jsou i, j, resp. k jednotkové vektory ve směru souřadných os x, y, resp. z. Najděte tok vektoru v = yi xj + z 2 k plochou S, která je popsána parametrickými rovnicemi x = r cos t i + r sin t j + r 2 k, 0 < t < π, 0 < r < 1, a je orientována tak, že třetí složka vektoru její normály je kladná.