Lineární funkce, rovnice a nerovnice

Podobné dokumenty
Funkce a lineární funkce pro studijní obory

Funkce pro studijní obory

Funkce - pro třídu 1EB

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Univerzita Karlova v Praze Pedagogická fakulta

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Variace. Kvadratická funkce

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

KVADRATICKÉ FUNKCE. + bx + c, největší hodnotu pro x = a platí,

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE

Konvexnost, konkávnost

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.

M - Kvadratická funkce

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Funkce pro učební obory

c ÚM FSI VUT v Brně 20. srpna 2007

Zlín, 23. října 2011

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

Aplikace derivace ( )

5.2. Funkce, definiční obor funkce a množina hodnot funkce

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU

Funkce, funkční závislosti Lineární funkce

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

KFC/SEM, KFC/SEMA Elementární funkce

Nerovnice v součinovém tvaru, kvadratické nerovnice

----- Studijní obory. z matematiky. z matematiky. * Aplikovaná matematika * Matematické metody v ekonomice

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme

Určete a graficky znázorněte definiční obor funkce

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

Grafy elementárních funkcí v posunutém tvaru

Mocninná funkce: Příklad 1

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.

Sbírka úloh z matematiky

ANALYTICKÁ GEOMETRIE PARABOLY

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE

Pavlína Matysová. 5. listopadu 2018

4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

( ) ( )( ) ( x )( ) ( )( ) Nerovnice v součinovém tvaru II. Předpoklady: Př.

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj.

10. cvičení - LS 2017

7.5.3 Hledání kružnic II

Univerzita Karlova v Praze Pedagogická fakulta

INTERNETOVÉ ZKOUŠKY NANEČISTO - VŠE: UKÁZKOVÁ PRÁCE

GRAF FUNKCE NEPŘÍMÁ ÚMĚRNOST

Parametrická rovnice přímky v rovině

Funkce. Definiční obor a obor hodnot

[ 0,2 ] b = 2 y = ax + 2, [ 1;0 ] dosadíme do předpisu Soustavy lineárních nerovnic. Předpoklady: 2206

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován:

) je definovaná pro libovolné kladné reálné číslo x a nabývá všech hodnot ( H f

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Jak pracovat s absolutními hodnotami

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU

4EK213 LINEÁRNÍ MODELY

Digitální učební materiál

Bakalářská matematika I

4.3.2 Goniometrické nerovnice

7.1 Extrémy a monotonie

Nerovnice, grafy, monotonie a spojitost

Obsah. Metodický list Metodický list Metodický list Metodický list

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0

Derivace a monotónnost funkce

M - Kvadratické rovnice a kvadratické nerovnice

Průběh funkce 1. Průběh funkce. Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:

Exponenciální a logaritmická funkce

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: = = + c) = f) +6 +8=4 g) h)

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru

Exponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr.

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Lineární funkce IV

Kapitola 4: Průběh funkce 1/11

1. Definiční obor funkce dvou proměnných

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).

Nerovnice. Vypracovala: Ing. Stanislava Kaděrková

VZÁJEMNÁ POLOHA DVOU PŘÍMEK

x 0; x = x (s kladným číslem nic nedělá)

Šablona 10 VY_32_INOVACE_0106_0110 Rovnice s absolutní hodnotou

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Funkce. Úkol: Uveďte příklady závislosti dvou veličin.

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21

( ) ( ) Lineární nerovnice II. Předpoklady: Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < 3 :

Transkript:

Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je dána předpisem f(x): y = ax + b Příklad lineární funkce f(x): y = 3x-6 Lineární proto, že se zde x vyskytuje v první mocnině Definiční obor lineární funkce Definiční obor jsou všechny hodnoty, kterých může x nabývat Značí se D(f) U lineárních rovnic je definičním oborem většinou množina reálných čísel, popř. její část (interval) V grafu jej najdeme na x-ové ose Obor hodnot lineární funkce Obor hodnot funkce je množina všech přípustných hodnot y Značí se H(f) V grafu jej najdeme na y-ové ose Graf funkce Funkce se znázorňují grafem Grafem lineární funkce je přímka Abychom narýsovali graf lineární funkce, musíme znát souřadnice minimálně dvou bodů, kterými tato přímka prochází, vždy si jednu souřadnici zvolíme, druhou vypočítáme 1.2 Lineární funkce Postup při rýsování grafu lineární funkce Je zadána funkce předpisem y = 2x+2 Musíme nalézt dva body, kterými daná přímka prochází, např. průsečíky s osami jestliže bod leží na ose x, je jeho y-ová souřadnice rovna nule, tedy za y v předpise dosadíme 0 a dopočítáme souřadnici x : y = 0 0 = 2x+2 od obou stran rovnice odečteme číslo 2 : -2 =2x obě strany rovnice vydělíme číslem 2: -1 = x souřadnice průsečíku s osou x jsou tedy x = -1, y = 0, píšeme P x =[-1;0] pozn.: souřadnice bodů se píší do hranatých závorek, nejdříve x, pak y stejně vypočítáme druhý bod, kterým přímka prochází, průsečík s osou y

jestliže bod leží na ose y, pak je x-ová souřadnice rovna nule, tedy za x v předpise dosadíme 0 a dopočítáme souřadnici y: x=0 y = 0 x+2, tedy y = 2 souřadnice průsečíku s osou y jsou x = 0, y = 2, píšeme P y =[0;2] Body naneseme do kartézského souřadnicového systému (dvě kolmé osy x, y) Narýsujeme přímku, která prochází oběma body dva libovolné body, kterými přímka prochází můžeme získat jednodušeji, jestliže si zvolíme za x např. 1, snadno dopočítáme z rovnice y = 2x+2 y: x = 1 y = 2 1+2 y = 4 jeden bod, kterým přímka prochází má souřadnice A = [1;4] Za x si dále zvolíme např. 2: x = 2 y = 2 2+2 y = 6 druhý bod, kterým přímka prochází má souřadnice B = [2;6] vidíme, že graf funkce je stejný výhodou je, že si můžeme zvolit libovolné číslo

Vlastnosti u lineárních funkcí kromě definičního oboru a oboru hodnot určujeme monotónnost funkce (zda je funkce rostoucí nebo klesající) rostoucí funkce je např. y = 5x+3 a klesající funkce je např. y = -8x+6 Z grafu je patrné, že funkce je rostoucí, jestliže a > 0 (v tomto případě a = 5, což je větší než 0), klesající, jestliže a < 0 (v tomto případě a = - 8, což je menší než 0), funkce roste nebo klesá v celém definičním oboru

Řešené úlohy 1. Je zadána funkce y = 12x+8, x = -1, dopočítejte y Jednoduše místo x napíšete -1 a vypočítáte : y = 12 (-1)+8, tedy y = - 4 Co jste tím vlastně získali? Souřadnici jednoho bodu, kterým přímka prochází A = [-1;- 4] 2. Je zadána funkce y = -5x-6, y = -1, dopočítejte x Jednoduše místo y napíšete -1 a vypočítáte x: -1 = -5x-6 /+6-1+6 = -5x 5 = -5x /: (-5) -1 = x x = - 1 Získali jste souřadnice jednoho bodu, kterým přímka prochází B = [-1;-1]

3. Narýsujte graf funkce y = 3x-5, určete D(f), H(f), zda je rostoucí nebo klesající. Určení bodů, kterými graf prochází: x = 0 y =0 3-5 y = -5 P y = [0;-5] x = 1 y = 3 1-5 y = - 2 A = [1;-2] Body naneseme do kartézského souřadnicového systému Narýsujeme přímku, která prochází oběma body Protože není zadáno žádné omezení funkce (interval), pak je definičním oborem a oborem hodnot množina všech reálných čísel D(f) = R, H(f) = R Funkce je rostoucí (určíme buď z grafu, nebo z předpisu y = 3x-5, a = 3, tedy a>0) v celém definičním oboru (pořád roste, nikde neklesá)

4. Narýsujte graf funkce y = - 3x - 8 Určení bodů, kterými přímka prochází: x = 0 y =- 3 0-8 y = -8 P y = [0;- 8] x = -1 y = - 3 (-1) 8 y = -5 A = [-1;-5] Body naneseme do kartézského souřadnicového systému Narýsujeme přímku, která prochází oběma body Protože není zadáno žádné omezení funkce (interval), pak je definičním oborem a oborem hodnot množina všech reálných čísel D(f) = R, H(f) = R Funkce je klesající v celém definičním oboru (určíme buď z grafu, nebo z předpisu y = -3x-8, a = -3, a < 0)

Úlohy k procvičování 1) Určete průsečíky s osami a) y = 15x-12 b) y = -9x+3 c) y = 8x+4 d) y= -9x-6 2) Z funkčního předpisu určete monotónnost funkce (rostoucí, klesající) a) y = 15x-12 b) y = -9x+3 c) y = 8x+4 d) y= -9x-6 3) Dopočítejte souřadnici y a) y = 15x-12, x = 1 b) y = -9x+3, x = - 2 4) Dopočítejte souřadnici x a) y = 8x+4, y = 4 b) y= -9x-6, y = 12 5) Narýsujte graf funkce, určete definiční obor funkce, monotónnost funkce (nezapomeňte, že čísla za x si libovolně volíte) a) y = 15x-12 b) y = -9x+3 c) y = 8x+4 d) y= -9x-6

Výsledky 1) Určete průsečíky s osami a) P y = [0;-12], P x = [12/15;0] b) P y = [0;3], P x = [1/3;0] c) P y = [0;4], P x = [-1/2;0] d) P y = [0;-6], P x = [2/3;0] 2) Z funkčního předpisu určete monotónnost funkce (rostoucí, klesající) a) y = 15x 12, a = 15, a >0 funkce je rostoucí b) y = - 9x+3, a = -9, a <0, funkce je klesající c) y = 8x+4, a = 8,, a >0 funkce je rostoucí d) y = -9x+6, a = -9, a <0, funkce je klesající 3) Dopočítejte souřadnici y a) x = 1, y = 3, A = [1;3] b) x = -2, y = 21, A = [-2;21] 4) Dopočítejte souřadnici x a) y = 4, x = 0, A = [0;4] b) y = -12, x = -2, A = [-2; 12] 5) Narýsujte graf funkce, určete definiční obor funkce, monotónnost a) y = 15x 12 b) y = - 9x+3 D(f) = R, H(f) = R, funkce je rostoucí v celém definičním oboru D(f) = R, H(f) = R, funkce je klesající v celém definičním oboru

c) y = 8x+4 d) y =- 9x - 6 D(f) = R, H(f) = R, funkce je rostoucí v celém definičním oboru D(f) = R, H(f) = R, funkce je klesající v celém definičním oboru

1.3 Lineární funkce s absolutní hodnotou Lineární funkce s absolutní hodnotou Lineární funkce, která má ve funkčním předpise x v absolutní hodnotě Příklady lineárních funkcí s absolutní hodnotou: y = 2 x +3, y = 2x-8 Definiční obor je opět množina reálných čísel D(f) = R Oborem hodnot je interval (levým krajním bodem intervalu je y-ová souřadnice minima funkce, pravým krajním bodem intervalu je nekonečno) Absolutní hodnota čísla Absolutní hodnota kladného čísla je kladné číslo: a 0, pak a = a Absolutní hodnota záporného čísla je záporné číslo: a < 0, pak a = - a Vlastnosti lineární funkce s absolutní hodnotou Minimum funkce je bod, ve kterém funkce nabývá nejmenší hodnoty (nejmenší y-ová souřadnice) Funkce je klesající v určitém intervalu (levým krajním bodem je mínus nekonečno, pravým krajním bodem intervalu je x-ová souřadnice minima funkce, Funkce je rostoucí v určitém intervalu (levým krajním bodem intervalu je x-ová souřadnice minima funkce, pravým nekonečno) Např. funkce y = x+3 +2 má minimum v bodě [-3;2], klesající je v intervalu (- ;-3), rostoucí je v intervalu -3; ), D(f) = R, H(f) = 2; ) Pozn.: interval, ve kterém je funkce rostoucí, je uzavřený (vyplývá z definice absolutní hodnoty čísla)

Postup při rýsování grafu lineární funkce s absolutní hodnotou Je zadána funkce y = 2 x +2 Nejdříve musíme určit nulové body (výraz v absolutní hodnotě se rovná nule): x = 0, Nulový bod rozdělí definiční obor (osu x) na dva intervaly, vlevo od nulového bodu I 1 = (- ;0), vpravo od nulového bodu I 2 = 0; ) - + Dále musíme řešit zvlášť v prvním a zvlášť v druhém intervalu I 1 = (- ;0): jestliže leží x v tomto intervalu, pak nabývá záporných hodnot (zjistíme tak, že dosadíme libovolný bod z tohoto intervalu za x a sledujeme znaménko výrazu v absolutní hodnotě), chceme-li odstranit absolutní hodnotu, musí být celý výraz v absolutní hodnotě záporný (viz absolutní hodnota čísla): y = 2 (- x)+2 y = -2x+2 tuto lineární přímku narýsujeme do grafu I 2 = 0; ):jestliže leží x v tomto intervalu, pak nabývá kladných hodnot (zjistíme tak, že dosadíme libovolný bod z tohoto intervalu za x a sledujeme znaménko výrazu v absolutní hodnotě), chceme-li odstranit absolutní hodnotu, musí být celý výraz v absolutní hodnotě kladný y = 2x+2 tuto lineární přímku narýsujeme do stejného grafu Zvýrazníme horní části obou přímek a graf lineární funkce s absolutní hodnotou je hotov Definičním oborem je množina reálných čísel D(f) = R Oborem hodnot je interval H(f) = 2; ) Funkce je klesající v intervalu (- ;0) Funkce je rostoucí v intervalu 0; ) x-ová souřadnice minima je rovna nulovému bodu, y-ovou souřadnici dopočítáme tak, že za x dosadíme do zadání nulový bod: y = 2 0+2 y = 2 souřadnice minima funkce jsou [0;2]

Řešené úlohy 1. Narýsujte graf funkce y = 3 x -6, určete souřadnice minima funkce, definiční obor, obor hodnot, intervaly, ve kterých je funkce rostoucí a klesající. 1) Zjistíme nulový bod (výraz v absolutní hodnotě je roven nule) : x = 0 2) Zjistíme intervaly: I 1 = (- ;0), I 2 = 0; ) 3) Zjistíme znaménko výrazu v absolutní hodnotě pro jednotlivé intervaly I 1 = (- ;0): za x v absolutní hodnotě dosadíme např. - 2 (musí patřit do daného intervalu) - 2 < 0, proto je první přímka grafu dána rovnicí y = 3 (-x)-6 y = -3x-6 tuto přímku narýsujeme do grafu I 2 = 0; ): za x v absolutní hodnotě dosadíme např. 2 (musí patřit do daného intervalu) 2 > 0, proto je druhá přímka grafu dána rovnicí y = 3 x-6 tuto přímku narýsujeme do grafu 4) Zjistíme souřadnice minima x-ová souřadnice je rovna nulovému bodu x = 0 y-ovou souřadnici dopočítáme: x = 0 y = 3 0-6 y = - 6 souřadnice minima jsou [0;-6] 5) Definiční obor: D (f) = R 6) Obor hodnot: H (f) = -6; ) 7) Funkce je klesající v intervalu (- ;0) a rostoucí v intervalu 0; )

2. Narýsujte graf funkce y = x+2, určete souřadnice minima funkce, definiční obor, obor hodnot, intervaly, ve kterých je funkce rostoucí a klesající. 1) Zjistíme nulový bod (výraz v absolutní hodnotě je roven nule) : x+2 = 0 x = - 2 2) Zjistíme intervaly: I 1 = (- ;- 2), I 2 = -2; ) 3) Zjistíme znaménko výrazu v absolutní hodnotě pro jednotlivé intervaly I 1 = (- ;- 2): za x v absolutní hodnotě dosadíme např. -5 (musí patřit do daného intervalu) - 5+2 = -3, -3 < 0, proto je první přímka grafu dána rovnicí y = - (x+2) y = - x-2 tuto přímku narýsujeme do grafu I 2 = -2; ): za x v absolutní hodnotě dosadíme např. -1 (musí patřit do daného intervalu) -1+2 = 1, 1 > 0, proto je druhá přímka grafu dána rovnicí y = +(x+2) y = x+2 tuto přímku narýsujeme do grafu 4) Zjistíme souřadnice minima x-ová souřadnice je rovna nulovému bodu: x = - 2 y-ovou souřadnici dopočítáme: x = - 2 y = - 2+2 y = 0 souřadnice minima jsou [-2;0] 5) Definiční obor: D (f) = R 6) Obor hodnot: H (f) = 0; ) 7) Funkce je klesající v intervalu (- ;-2) a rostoucí v intervalu -2; )

3. Narýsujte graf funkce y = 2x-4 +5, určete souřadnice minima funkce, definiční obor, obor hodnot, intervaly, ve kterých je funkce rostoucí a klesající. 1) Zjistíme nulový bod (výraz v absolutní hodnotě je roven nule) : 2x-4 = 0 /+4 2x = 4 /:2 x = 2 2) Zjistíme intervaly: I 1 = (- ;2), I 2 = 2; ) 3) Zjistíme znaménko výrazu v absolutní hodnotě pro jednotlivé intervaly I 1 = (- ;2): za x v absolutní hodnotě dosadíme např. 1 (musí patřit do daného intervalu) 2 1-4 = - 2, -2 < 0, proto je první přímka grafu dána rovnicí y = - (2x - 4)+5 y = - 2x+4+5 y = - 2x+9 tuto přímku narýsujeme do grafu I 2 = 2; ): za x v absolutní hodnotě dosadíme např. 3 (musí patřit do daného intervalu) 2 3-4 = 2, 2 > 0, proto je druhá přímka grafu dána rovnicí y = +(2x-4)+5 y = 2x - 4+5 y = 2x+1 tuto přímku narýsujeme do grafu 4) Zjistíme souřadnice minima x-ová souřadnice je rovna nulovému bodu: x = 2 y-ovou souřadnici dopočítáme: x = 2 y = (2 2-4)+5 y = 5 souřadnice minima jsou [2;5] 5) Definiční obor: D (f) = R 6) Obor hodnot: H (f) = 5; ) 7) Funkce je klesající v intervalu (- ;2) a rostoucí v intervalu 2; )

4. Pozorně si prohlédněte grafy funkcí a zkuste vysvětlit, na čem závisí posunutí minima funkce Úlohy k procvičování 1) Narýsujte graf funkce y = x - 5, určete souřadnice minima funkce, definiční obor, obor hodnot, intervaly, ve kterých je funkce rostoucí a klesající. 2) Narýsujte graf funkce y = 5 x +2, určete souřadnice minima funkce, definiční obor, obor hodnot, intervaly, ve kterých je funkce rostoucí a klesající. 3) Narýsujte graf funkce y = x+3 +2, určete souřadnice minima funkce, definiční obor, obor hodnot, intervaly, ve kterých je funkce rostoucí a klesající.

Výsledky úloh 1) Souřadnice minima [5;0] D(f) = R H(f) = 0; ) Klesající v intervalu (- ;5) Rostoucí v intervalu 5; ) 2) Souřadnice minima [0;2] D(f) = R H(f) = 2; ) Klesající v intervalu (- ;0) Rostoucí v intervalu 0; ) 3) Souřadnice minima [- 3;2] D(f) = R H(f) = 2; ) Klesající v intervalu (- ;-3) Rostoucí v intervalu -3; )