Základní pojmy teorie množin Vektorové prostory

Podobné dokumenty
1 Báze a dimenze vektorového prostoru 1

DEFINICE Z LINEÁRNÍ ALGEBRY

Matematika 2 pro PEF PaE

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

1 Vektorové prostory.

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Matematika B101MA1, B101MA2

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Soustavy lineárních rovnic

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Báze a dimenze vektorových prostorů

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer

VĚTY Z LINEÁRNÍ ALGEBRY

Úvod do lineární algebry

6.1 Vektorový prostor

0.1 Úvod do lineární algebry

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

0.1 Úvod do lineární algebry

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

Báze a dimense. Odpřednesenou látku naleznete v kapitolách a 3.6 skript Abstraktní a konkrétní lineární algebra.

7. Lineární vektorové prostory

7. Důležité pojmy ve vektorových prostorech

Matematika. Kamila Hasilová. Matematika 1/34

10. Vektorové podprostory

Základy matematiky pro FEK

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

(ne)závislost. α 1 x 1 + α 2 x α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

Lineární algebra Operace s vektory a maticemi

Co je to univerzální algebra?

Lineární algebra : Lineární prostor

Lineární prostory. - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem

Kapitola 11: Vektory a matice:

ALGEBRA. Téma 5: Vektorové prostory

Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

METRICKÉ A NORMOVANÉ PROSTORY

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.

1 Řešení soustav lineárních rovnic

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

Matematika pro studenty ekonomie

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

Lineární algebra : Báze a dimenze

Lineární algebra - I. část (vektory, matice a jejich využití)

Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT

1 Připomenutí vybraných pojmů

Matematická analýza 1

Lineární algebra : Lineární (ne)závislost

Ukázka knihy z internetového knihkupectví

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

Množiny, základní číselné množiny, množinové operace

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

1 Soustavy lineárních rovnic

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy

Základy matematiky pro FEK

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

6. Vektorový počet Studijní text. 6. Vektorový počet

Kapitola 11: Vektory a matice 1/19

Matematika B101MA1, B101MA2

Množiny, relace, zobrazení

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.

Vektorový prostor. d) Ke každému prvku u V n existuje tzv. opačný prvek u, pro který platí, že u + u = o (vektor u nazýváme opačný vektor k vektoru u)

2. kapitola: Euklidovské prostory

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

Základy matematiky pro FEK

Lineární zobrazení. V prvním z následujících tvrzení navíc uvidíme, že odtud plynou a jsou tedy pak rovněž splněny podmínky:

0. ÚVOD - matematické symboly, značení,

9. Vektorové prostory

ftp://math.feld.cvut.cz/pub/olsak/linal/

z textu Lineární algebra

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Bakalářská matematika I

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Číselné vektory, matice, determinanty

VEKTOROVÝ PROSTOR. Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru.

9 Kolmost vektorových podprostorů

Odpřednesenou látku naleznete v kapitole 3.1 skript Abstraktní a konkrétní lineární algebra.

IB112 Základy matematiky

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).

Matematická analýza pro informatiky I.

1 Lineární prostory a podprostory

Základy teorie matic

Matematika I 12a Euklidovská geometrie

EUKLIDOVSKÉ PROSTORY

Vektory a matice. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Transkript:

Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin

Základní pojmy teorie množin Množinou rozumíme souhrn určitých objektů chápaných jako samostatný celek. Tyto objekty nazýváme prvky množiny. Zápis x M, resp. x M čteme: x je, resp. x není prvkem množiny M. Pro každý objekt x a množinu M platí právě jedna z možností x M, nebo x M. A = B A B A B A B A B rovnost množin množina A je podmnožinou množiny B sjednocení množin průnik množin rozdíl množin Základní pojmy teorie množin

Základní pojmy teorie množin Nechť A a B jsou dvě množiny. Množina všech uspořádaných dvojic (x, y), kde x A, y B se nazývá kartézský součin množin A a B, značí se A B. Libovolnou podmnožinu kartézského součinu nazýváme binární relace. Zobrazením f z množiny A do množiny B nazýváme každou binární relaci takovou, že každému prvku x A je přiřazen nejvýše jeden prvek y B. N Z R C množina přirozených čísel množina celých čísel množina reálných čísel množina komplexních čísel Základní pojmy teorie množin

Základní pojmy teorie množin Množina V libovolných prvků (značíme je a, b,..., y, z říkáme jim vektory) se nazývá vektorový prostor, jestliže: a) Je dáno zobrazení V V V, které každé uspořádané dvojici vektorů ( a, b) V přiřazuje vektor a + b V tak, že pro každé vektory a, b, c V platí axiomy: (A1) a + b = b + a, (A2) a + ( b + c) = ( a + b) + c, (A3) ke každému vektoru a V existuje vektor o V tak, že platí a + o = a, (A4) ke každému vektoru a V existuje vektor a V tak, že platí a + ( a) = o. Toto zobrazení se nazývá sčítání na množině V a vektor a + b je součet vektorů a, b. Základní pojmy teorie množin

Základní pojmy teorie množin Množina V libovolných prvků (značíme je a, b,..., y, z říkáme jim vektory) se nazývá vektorový prostor, jestliže: b) Je dáno zobrazení R V V, které každé uspořádané dvojici (r, b) V přiřazuje vektor r b V tak, že pro každá reálná čísla r, s R a pro každé vektory a, b V platí axiomy: (A5) 1 a = a, (A6) r(s a) = (rs) a, (A7) (r + s) a = r a + s a (A8) r( a + b) = r a + r b. Toto zobrazení se nazývá násobení vektoru reálným číslem a vektor r a se nazývá reálný násobek vektoru a. Základní pojmy teorie množin

Uspořádanou n-tici reálných čísel a = (a 1, a 2,..., a n ), n N nazýváme n-rozměrným aritmetickým vektorem. Reálná čísla a 1, a 2,..., a n nazýváme souřadnicemi aritmetického vektoru a. Aritmetický vektor o, jehož všechny souřadnice jsou rovny nule, tj. o = (0, 0,..., 0), nazýváme nulovým aritmetickým vektorem. Základní pojmy teorie množin

Uspořádanou n-tici reálných čísel a = (a 1, a 2,..., a n ), n N nazýváme n-rozměrným aritmetickým vektorem. Reálná čísla a 1, a 2,..., a n nazýváme souřadnicemi aritmetického vektoru a. Aritmetický vektor o, jehož všechny souřadnice jsou rovny nule, tj. o = (0, 0,..., 0), nazýváme nulovým aritmetickým vektorem. Základní pojmy teorie množin

Řekneme, že aritmetický vektor a = (a 1,..., a n ) je roven aritmetickému vektoru b = (b 1,..., b n ), jestliže platí a i = b i pro každé i = 1... n. Píšeme a = b. Součtem aritmetických vektorů a = (a 1,..., a n ) a b = (b 1,..., b n ) nazýváme aritmetický vektor a + b = (a 1 + b 1,..., a n + b n ). Nechť r R. Reálným násobkem aritmetického vektoru a = (a 1,..., a n ) je aritmetický vektor r a = (ra 1,..., ra n ). Opačným aritmetickým vektorem k aritmetickému vektoru a = (a 1,..., a n ) nazýváme aritmetický vektor a = ( a 1,..., a n ). Rozdílem aritmetických vektorů a = (a 1,..., a n ) a b = (b 1,..., b n ) rozumíme součet aritmetický vektor a a aritmetického vektoru opačného k aritmetickému vektoru b, a b = (a 1 b 1,..., a n b n ). Základní pojmy teorie množin

Nechť V je vektorový prostor, W neprázdná podmnožina množiny V. Řekneme, že množina W je podprostor vektorového prostoru V, a píšeme W V, jestliže platí: (1) Pro každou dvojici vektorů a W, b W je a + b W. (2) Pro každé reálné číslo r R a každý vektor a W je r a W. Základní pojmy teorie množin

Nechť a, a 1,..., a k jsou prvky vektorového prostoru V. Řekneme, že vektor a je lineární kombinací vektorů a 1,..., a k, jestliže existují reálná čísla c 1,..., c k taková, že platí a = k c i a i = c 1 a 1 + + c k a k. i=1 Čísla c 1,..., c k se nazývají koeficienty lineární kombinace. Základní pojmy teorie množin

Nechť a 1,..., a k jsou prvky vektorového prostoru V. Množina [ a 1,..., a k ] všech lineárních kombinací vektorů a 1,..., a k se nazývá lineární obal vektorů a 1,..., a k. Jsou-li a 1,..., a k vektory z vektorového prostoru V, pak jejich lineární obal [ a 1,..., a k ] je podprostorem vektorového prostoru V. Nechť a 1,..., a k jsou vektory z vektorového prostoru V. Jestliže každý vektor a V je lineární kombinaci vektorů a 1,..., a k, říkáme, že vektorový prostor V je generován vektory a 1,..., a k a těmto vektorům říkáme množina generátorů vektorového prostoru V. Základní pojmy teorie množin

Nechť a 1,..., a k jsou prvky vektorového prostoru V. Množina [ a 1,..., a k ] všech lineárních kombinací vektorů a 1,..., a k se nazývá lineární obal vektorů a 1,..., a k. Jsou-li a 1,..., a k vektory z vektorového prostoru V, pak jejich lineární obal [ a 1,..., a k ] je podprostorem vektorového prostoru V. Nechť a 1,..., a k jsou vektory z vektorového prostoru V. Jestliže každý vektor a V je lineární kombinaci vektorů a 1,..., a k, říkáme, že vektorový prostor V je generován vektory a 1,..., a k a těmto vektorům říkáme množina generátorů vektorového prostoru V. Základní pojmy teorie množin

Nechť a 1,..., a k jsou prvky vektorového prostoru V. Množina [ a 1,..., a k ] všech lineárních kombinací vektorů a 1,..., a k se nazývá lineární obal vektorů a 1,..., a k. Jsou-li a 1,..., a k vektory z vektorového prostoru V, pak jejich lineární obal [ a 1,..., a k ] je podprostorem vektorového prostoru V. Nechť a 1,..., a k jsou vektory z vektorového prostoru V. Jestliže každý vektor a V je lineární kombinaci vektorů a 1,..., a k, říkáme, že vektorový prostor V je generován vektory a 1,..., a k a těmto vektorům říkáme množina generátorů vektorového prostoru V. Základní pojmy teorie množin

Nechť a 1,..., a k je množina vektorů z vektorového prostoru V a b1,..., b q jsou vektory, které vznikly z vektorů a 1,..., a k jedním z následujících způsobů: a) změna pořadí vektorů, b) násobením libovolného vektoru nenulovým reálným číslem, c) přičtením k libovolnému vektoru lineární kombinace ostatních vektorů, d) vynecháním vektoru, který je lineární kombinací ostatních, e) přidáním vektoru, který je lineární kombinací ostatních vektorů. Jestliže vektory a 1,..., a k tvoří množinu generátorů vektorového prostoru V, pak také vektory b 1,..., b q tvoří množinu generátorů vektorového prostor V. Základní pojmy teorie množin

Nechť a 1,..., a k jsou vektory z vektorového prostoru V. Řekneme, že vektory a 1,..., a k jsou lineárně závislé, jestliže existují reálná čísla c 1,..., c k, z nichž alespoň jedno je různé od nuly, taková, že platí c 1 a 1 + + c k a k = o V opačném případě se vektory nazývají lineárně nezávislé. Základní pojmy teorie množin

Nechť a 1,..., a k jsou vektory z vektorového prostoru V, k 2. Vektory jsou lineárně závislé právě tehdy, když alespoň jeden z nich je lineární kombinaci ostatních. Nechť a 1,..., a k jsou lineárně nezávislé vektory z vektorového prostoru V, k 2. Pak také vektory a 1,..., a k 1 jsou lineárně nezávislé. Základní pojmy teorie množin

Nechť a 1,..., a k jsou vektory z vektorového prostoru V, k 2. Vektory jsou lineárně závislé právě tehdy, když alespoň jeden z nich je lineární kombinaci ostatních. Nechť a 1,..., a k jsou lineárně nezávislé vektory z vektorového prostoru V, k 2. Pak také vektory a 1,..., a k 1 jsou lineárně nezávislé. Základní pojmy teorie množin

Množina generátorů vektorového prostoru V, jejíž vektory jsou lineárně nezávislé, se nazývá báze vektorového prostoru. Nechť V je vektorový prostor s bázi a 1,..., a k. Pak každá skupina k lineárně nezávislých vektorů b 1,..., b k V tvoří také bázi vektorového prostoru V. Existuje-li ve vektorovém prostoru V báze o k vektorech, pak každá skupina obsahující více než k vektorů je lineárně závislá. Základní pojmy teorie množin

Množina generátorů vektorového prostoru V, jejíž vektory jsou lineárně nezávislé, se nazývá báze vektorového prostoru. Nechť V je vektorový prostor s bázi a 1,..., a k. Pak každá skupina k lineárně nezávislých vektorů b 1,..., b k V tvoří také bázi vektorového prostoru V. Existuje-li ve vektorovém prostoru V báze o k vektorech, pak každá skupina obsahující více než k vektorů je lineárně závislá. Základní pojmy teorie množin

Množina generátorů vektorového prostoru V, jejíž vektory jsou lineárně nezávislé, se nazývá báze vektorového prostoru. Nechť V je vektorový prostor s bázi a 1,..., a k. Pak každá skupina k lineárně nezávislých vektorů b 1,..., b k V tvoří také bázi vektorového prostoru V. Existuje-li ve vektorovém prostoru V báze o k vektorech, pak každá skupina obsahující více než k vektorů je lineárně závislá. Základní pojmy teorie množin

Počet vektorů v libovolné bázi vektorového prostoru V se nazývá dimenze vektorového prostoru V a značí se dim V. Jestliže W je podprostor vektorového prostoru V, pak platí dim W dim V. Rovnost dim W = dim V platí právě tehdy, když W = V. Nechť a 1,..., a k jsou vektory z vektorového prostoru V. Platí dim[ a 1,..., a k ] min{dim V, k}. Základní pojmy teorie množin

Počet vektorů v libovolné bázi vektorového prostoru V se nazývá dimenze vektorového prostoru V a značí se dim V. Jestliže W je podprostor vektorového prostoru V, pak platí dim W dim V. Rovnost dim W = dim V platí právě tehdy, když W = V. Nechť a 1,..., a k jsou vektory z vektorového prostoru V. Platí dim[ a 1,..., a k ] min{dim V, k}. Základní pojmy teorie množin

Počet vektorů v libovolné bázi vektorového prostoru V se nazývá dimenze vektorového prostoru V a značí se dim V. Jestliže W je podprostor vektorového prostoru V, pak platí dim W dim V. Rovnost dim W = dim V platí právě tehdy, když W = V. Nechť a 1,..., a k jsou vektory z vektorového prostoru V. Platí dim[ a 1,..., a k ] min{dim V, k}. Základní pojmy teorie množin