5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že ltí: 1. hodné obrzce mjí sobě roné obshy.. kládá-li se obrzec z několik obrzců, které se nzájem neřerýjí, roná se jeho obsh součtu jejich obshů.. Obsh čterce, jehož strn má délku 1 (mm, cm, m ) je 1 ( mm, cm, m, ). Př. 1: Vytoř nlogickou definici objemu těles. Objem V těles je kldné číslo, řiřzené tělesu tk, že ltí: 1. hodná těles mjí sobě roné objemy.. kládá-li se těleso z několik těles, která se nzájem neronikjí, roná se jeho objem součtu jejich objemů.. Objem krychle, jejíž strn má délku 1 (mm, cm, m ) je 1 ( mm, Objem kádru o hrnách cm x cm x cm je krychliček o strně 1 cm ( objemu 1cm ). Vzorec ro objem kádru: V = bc. cm, m, ). cm, rotože ho můžeme rozložit n lieriho rinci (umožňuje odození dlších zorců): Jestliže ro dě těles existuje tkoá roin, že kždá roin s ní ronoběžná rotíná obě těles roinných útrech se stejnými obshy, mjí těles stejný objem. Význm: Pokud máme d stejné slouce mincí (mince ředstují stejné roinné útry ředchozí ětě), nezáleží n tom, jk jsou slouce oskládné. Ob slouečky mjí stejný objem. Pedgogická oznámk: Filosofie následujících hodin je jiná než klsických učebnicích ro gymnázi. Vzorce ro objemy obshy se neodozují, žáci mohou yužít tbulky cílem hodin je, by se s nimi nučili rcot (není to smozřejmé sráné oužití zorce už yžduje určitou míru orientce). Pedgogická oznámk: U ětšiny říkldů jsou udáány záorkách i hodnoty meziýsledků kůli snzší kontrole u studentů, kteří obecné odozoání nezládjí. 1
Všechny následující říkldy řeš s omocí tbulek. Pokud se setkáš s noým (neznámým) zorcem, ziš si jej nkresli si obrázek dného těles. Př. : Urči objem krychle, která má orch 15cm. Objem krychle: V =, délku hrny musím určit z orchu. Porch krychle: = = = ( = 1,58cm ) 15 osdíme: V = = = cm =,95cm. Krychle s orchem 15cm má objem,95cm. Př. : Kádr má rozměry oměru 1:1,5:. Urči jeho strny okud se jeho objem roná cm. Všechny strny yjádříme omocí elikosti té nejkrtší: x b 1,5 x c x Objem V = bc = x 1,5 x x = x V V x = = = oočítáme délky strn: x 1 cm b 1,5 x 15 cm c x cm Kádr má strny 1, 15 cm. x = cm 1cm Pedgogická oznámk: Pokud studenti neznjí trik s yjdřoáním strn omocí x (nebo tomto řídě klidně i ) nemohou n něj řijít, je leší jim ordit než je dlouho nínt. Př. : Hrn krychle se zětší dkrát. Kolikrát se zětší její objem? Kolikrát se zětší její orch? V = ( ) V1 = = 8 V V 1 8 = = 8 objem se zětší 8x P = ( ) P1 = = =
P1 P = = orch se zětší x Pedgogická oznámk: Většin studentů dojde k ýsledkům římočřeji. Myslím, že to je ořádku. Př. 5: N zákldě ředchozího říkldu zkus ysětlit některé z následujících jeů: ) Vítr zedá ísek (mlé kmínky), le nezedá ětší blny ze stejného mteriálu. b) Mrenec se nezbije ni ři ádu ze čtrtého tr (čloěk ětšinou no). c) Velikost telokrených žiočichů ětšinou zrůstá se zeměisnou šířkou jejich ýskytu. ) Vítr zedá ísek (mlé kmínky), le nezedá ětší blny ze stejného mteriálu. Vítr zedá kmínky odorem zduchu, který je záislý n loše kmínku. Zednutí kmínku brání gritční síl, která odoídá hmotnosti tím i objemu kmínku. Pokud se kámen zmenší 1 x, jeho loch se zmenší 1 x, le hmotnost 1 x s rozměry klesá hmotnost rychleji než loch tk u dosttečně mlých kmenů řeáží odor zduchu nd gritcí ítr kmínek zedne. b) Mrenec se nezbije ni ři ádu ze čtrtého tr (čloěk ětšinou no). Podobné jko ředchozím bodu. Pád zrychluje gritce (záislá n objemu), brzdí ho odor zduchu (záislý n loše). Čím je ředmět lehčí, tím je oměr loch/objem ětší ád omlejší. c) Velikost telokrených žiočichů ětšinou zrůstá se zeměisnou šířkou jejich ýskytu. Telokrení žiočichoé se e studenějších oblstech musejí yronát se ztrátou tel, která záisí n jejich orchu tedy druhé mocnině rozměru. Velikost nitřního rostředí, e kterém musí žiočich telotu udržot je šk roná objemu těl, tedy třetí mocnině rozměru ro žiočichy je ýhodnější ětší rozměr, rotože ětší tělo má zhledem k objemu menší orch tedy i teelné ztráty. Kádr (i krychle) jsou seciálním říkldem hrnolů. Jk určíme objem jiných hrnolů? Hrnol můžeme rozložit n d shodné kolmé roúhlé hrnoly (růhledný) (zelený) objem kždého z nich se musí bc b ront V = = c = c = kde je obsh odsty je ýšk hrnolu.
Podobně můžeme kždý kolmý trojboký hrnol rozložit n d roúhlé zjistit jeho objem V = + = + = - stejný jko součet objemů dou roúhlých hrnolů: 1 ( 1 ) zorec ro kolmý hrnol jehož odstou je obecný trojúhelník jko ro kolmý hrnol s odstou roúhlou. Kždý dlší liboolný kolmý hrnol můžeme rozdělit n hrnoly s trojúhelníkoými odstmi zorec V = ltí ro liboolný kolmý hrnol. lieriho rinci: zorec V = ltí i ro nekolmé hrnoly. Př. : Urči objem orch kolmého ridelného šestibokého hrnolu EF E F se strnou = = cm tělesoou úhloříčkou u = = 1cm. F u E F F E E Obsh odsty: skládá se z šesti shodných ronostrnných trojúhelníků obsh kždého z nich: =. Pro ltí (z Pythgoroy ěty): = Obsh jednoho z trojúhelníků odstě: = + = + = ( =, cm ) = = =. Obsh odsty: = = =. ( = 1,cm ) Určení ýšky hrnolu z roúhlého trojúhelníku : ( ) u = + = u u = ( cm = ) Objem hrnolu: V = = u = 1 cm = 9 cm Porch hrnolu: P = + l Obsh láště: u l = o = ( l = 1cm )
P = + l = + u = + u P = + u = + 1 cm = 7 cm Př. 7: Urči objem ronoběžnostěnu, je-li dáno: = cm, b = cm, c = 5cm, úhel α = 5, úhel ε = 75 (úhel, který sírá strn s roinou odsty. V = b Obsh odsty: c = = b sinα Určení ýšky: sin ε = = c sinε c V = = b sinα c sin ε = bc sinα sin ε V = bc sinα sinε = 5 sin 5 sin 75 cm = 8,cm Př. 8: Petákoá: strn 9, cičení 8 strn 9, cičení 51 strn 9, cičení 5 hrnutí: 5