zdálenost bodu od přímky zdálenost bodu od roiny zdálenost roin zdálenost bodu od přímky zdálenost bodu od roiny zdálenost roin
5..8 zdálenost bodu od přímky ředpokldy: 507 edgogická poznámk: Tříd počítá smosttně. tnáct minut před koncem se sejdeme n příkld 4 ), který pk řešíme společně. zdálenost bodů, je ron délce úsečky, znčíme. zdálenost bodu od přímky p: od přímk p určují roinu, ní postupujeme stejně jko plnimetrii určíme zdálenost bodu pty kolmice n přímku p jdoucí bodem. íšeme p nebo KL. Je dán přímk p bod. zdáleností bodu od přímky p rozumíme zdálenost bodu od bodu, který je ptou kolmice edené roině p k přímce p z bodu. ř. 1: oronej definici zdálenosti bodu od přímky p s definicí odchylky přímky p od roiny ρ njdi shodné rysy. obou definicích se použíáme kolmosti. estrojíme kolmici s její pomocí ptu. estrojíme kolmý průmět přímky do roiny. obou definicích získáme nejmenší hodnotu. t kolmice je pro bod nejbližším bodem přímky p. Úhel mezi přímkou p jejím kolmým průmětem do roiny ρ je nejmenší z úhlů mezi přímkou p liboolnou přímkou roiny ρ. ř. : Je dán stndrdní krychle H, 4cm. Urči: ) zdálenost bodu od přímky, b) zdálenost bodu od přímky, c) zdálenost bodu od přímky. ) zdálenost bodu od přímky H 1
Z obrázku idíme, že pltí 4cm. b) zdálenost bodu od přímky H u u Hledná zdálenost je poloinou úhlopříčky podsty. u + u u cm,83cm c) zdálenost bodu od přímky H u Hledná zdálenost je strnou obdélníku tké stěnoou úhlopříčkou krychle. ltí tedy: u 4 cm 5,66cm. edgogická poznámk: oměrně překpié procento studentů má problémy s bodem b), kde si nenkreslí smosttný obrázek podsty z průmětu krychle nepoznjí, že hledná zdálenost je poloinou úhlopříčky.
ř. 3: Je dán pridelný čtyřboký hrnol, 4cm, 6cm. Urči zdálenost bodu od přímky. Z obrázku je idět, že zdálenost určíme pomocí ronormenného trojúhelníku. bychom spočítli délku strny, musíme určit zbýjící strny. trnu ze čterce. trnu z trojúhelník. c + c oplníme ýsledky do obrázku. c + c + 3
+ + Z proúhlého trojúhelníku. ( ) ' ' + 1 1 + + 1 + oszení: 4 + + 6 cm 6,63cm ř. 4: Je dán pridelný čtyřboký hrnol, 4cm, 6cm. Urči: ) zdálenost bodu od přímky, b) zdálenost bodu od přímky. ) zdálenost bodu od přímky říkld řešíme obdélníku. 4
+ + Známe délky strn:, ' + (stěnoá úhlopříčk). yjdeme z podobnosti trojúhelníků :. Úhlopříčk obdélníku : ( ) + + + + + osdíme délky strn: + +. + 4 4 + 6 cm 3,50cm + 4 + 6 b) zdálenost bodu od přímky říkld řešíme obdélníku : Známe délky strn: ' + (stěnoá úhlopříčk). yjdeme z podobnosti trojúhelníků : Ještě musíme dopočítt strnu 5
+ + trojúhelníku (přepon): ( ) + + + 5 + 4 + + 4 4 5 + 4 5 + 4 4 osdíme o zthu: oszení: + + 5 + 4 5 + 4 + 4 4 + 6 cm 3,85cm 5 + 4 5 4 + 4 6 oznámk: ody b) c) je smozřejmě možné řešit místo obdélnících pouze trojúhelnících (přípdně ). ř. 5: Je dán pridelný čtyřboký jehln, 4cm, 5cm. Urči zdálenost rcholu od přímky. zdálenost určíme z ronormenného trojúhelníku. Nejdříe ypočteme délky strn trojúhelníku. trnu ze čterce : trnu z proúhlého trojúhelník : 6
c + c + + + + 4 + + Trojúhelníky jsou si podobné. osdíme ypočtené délky strn: + + + oszení: 4 5 + 4 + 5 cm 4,9 cm 7
odtek: ředchozí příkld můžeme spočítt tké pomocí zorce pro obsh trojúhelníku: b b ltí: b b nšem trojúhelníku konkrétně: - stejný zth, jký jsme získli použitím podobnosti. ř. 6: etákoá: strn 9/cičení 17 f) h) strn 9/cičení 19 b) d) hrnutí: zdálenost bodu od přímky určujeme roině určené přímkou bodem stejným způsobem jko plnimetrii. 8
5..9 zdálenost bodu od roiny ředpokldy: 508 Opkoání z minulé hodiny (definice zdálenosti bodu od přímky): Je dán přímk p bod. zdáleností bodu od přímky p rozumíme zdálenost bodu od bodu, který je ptou kolmice edené roině p k přímce p z bodu. Máme bod roinu ρ, zdálenost bodu od roiny ρ opět potřebujeme přeést n zdálenost dou bodů. Jký bod máme roině ρ njít? odobně jko u zdálenosti bodu od přímky půjde o kolmý průmět bodu do roiny ρ. ř. 1: Zformuluj definici zdálenosti bodu od roiny nlogickou definici zdálenosti bodu od přímky. Je dán roin ρ bod. zdáleností bodu od roiny ρ rozumíme zdálenost bodu od bodu, který je ptou kolmice edené z bodu k roině ρ. Tkto definoná zdálenost bodu od roiny je nejkrtší zdáleností mezi bodem liboolným bodem roiny ρ. ř. : Je dán pridelný čtyřboký jehln, 4cm, 5cm. Urči: ) zdálenost bodu od roiny, b) zdálenost bodu od roiny, c) zdálenost bodu od roiny. ) zdálenost bodu od roiny Z obrázku je idět, že kolmým průmětem bodu do roiny je střed podsty zdálenost bodu od roiny je tedy ron 5cm. b) zdálenost bodu od roiny 1
římk je kolmá k roině, kolmým průmětem bodu do roiny je tedy bod zdálenost bodu od roiny je ron cm. c) zdálenost bodu od roiny Kolmý průmět bodu (oznčíme si ho ) do roiny bude určitě ležet roině (je kolmá n roinu prochází bodem ). Nkreslíme si trojúhelník. ypočteme délku strny z proúhlého trojúhelníku. + 4 + + 4 + 4 4 + 4 oplníme do obrázku trojúhelníku.
+4 osdíme: + 4 Možností jk určit úsečku je íce, nejjednodušší ychází ze zorce pro obsh trojúhelník: bb cc. Jednu dojici strn-ýšk toří úsečky (obě známe), druhou úsečky (druhou chceme určit) + 4 + 4 4 5 cm 3, 71cm. + 4 4 + 4 5 ř. 3: Je dán stndrdní krychle H 4cm. Urči zdálenost bodu od roiny H. H Hledáme kolmý průmět bodu do roiny H. íme z předchozích příkldů, že přímk je kolmá k roině H hledným průmětem bude její průsečík s roinou H. ředchozí informci pro yřešení příkldu nepotřebujeme, stčí si uědomit, že krychle je souměrná podle roiny kolmice n i kolmý průmět musí ležet této roině (jink by průměty byly d to není možné). Nkreslíme si obdélník. opočteme délku úsečky : + + 3 + 4 3. oplníme obrázek: 3
yužijeme podobnost trojúhelníků. 3 3 3 3 3 3 osdíme: 3 3 4 cm,31cm 3 3 ř. 4: Zformuluj kritérium pro ronoběžnost přímky s roinou pomocí zdálenosti bodu od roiny. římk p je ronoběžná s roinou ρ, jestliže lze n přímce p njít d různé body ležící témže poloprostoru ohrničeném roinou ρ, které mjí od roiny ρ stejnou zdálenost. ř. 5: Zformuluj kritérium pro ronoběžnost dou roin pomocí zdálenosti bodu od roiny. ě roiny ρ σ jsou ronoběžné, jestliže lze roině σ njít tři různé body, které neleží přímce, le leží e stejném poloprostoru s hrniční roinou ρ které mjí od roiny ρ stejnou zdálenost. ř. 6: Je dán pridelný šestiboký jehln, 4cm, 6cm. Urči zdálenost bodu od roiny. Nkreslíme si trojúhelník. otřebujeme njít kolmý průmět bodu do roiny problém pt kolmice z bodu leží mimo jehln hledáme jiný bod se stejnou zdáleností, jehož pt leží n hrnici jehlnu. římk je ronoběžná s přímkou je ronoběžná s roinou zdálenost šech bodu této přímky od roiny je stejná jko zdálenost bodu. Kolmice z bodu n roinu leží roině zdálenost bodu od roiny určíme pomocí trojúhelníku. 4
élku úsečky určíme z obrázku podsty: x zdálenost je tké ýškou ronostrnném trojúhelníku se strnou. 4 3 3 x. 4 4 zdálenost je přeponou proúhlého trojúhelníku : 3 4 + 3 4 + 3 + x +. 4 oplníme obrázek: yužijeme podobnost trojúhelníků. 4 +3 osdíme: d 3 3 6 4 3 cm 3cm. 4 + 3 4 6 + 3 4 3 3 4 + 3 4 + 3 ř. 7: etákoá: strn 93/cičení 4 c) f) strn 93/cičení 5 b) strn 93/cičení 6 c) strn 93/cičení 7 c) hrnutí: zdálenost bodu od roiny určujeme opět pomocí kolmého průmětu. 5
5..10 zdálenost roin ředpokldy: 509 Kdy má cenu užot o zdálenosti dou roin? ouze, když jsou ronoběžné, jink se protínjí. ř. 1: Nrhni definici zdálenosti dou ronoběžných roin. Z zdálenost dou ronoběžných roin požujeme zdálenost liboolného bodu jedné roiny od druhé roiny. ř. : Je dán stndrdní krychle H, 4cm. Urči zdálenost roin: ) b) c) d) H ) zdálenost roin H roiny jsou nzájem ronoběžné, obě jsou odoroné sislý směr je kolmý n obě. Zolíme npříkld bod jeho kolmým průmětem do roiny je bod, pro délku úsečky pltí: 4cm. b) zdálenost roin H roiny nejsou ronoběžné nemá smysl užot o jejich zdálenosti H c) zdálenost roin 1
H Obě roiny jsou ronoběžné kolmé n přední stěnu. zdálenost můžeme ypočítt npříkld pomocí bodu. H Jeho kolmý průmět leží tké přední stěně, nkreslíme si přední stěnu (čterec ) z něj příkld ypočteme: otřebujeme zjistit délku úsečky, npříkld z trojúhelníku. + + 5 + 4 4 5 oplníme zdálenost do obrázku. Můžeme yužít podobnosti trojúhelníků 5. 5 5 5 5 5 5 5 5 osdíme: 4 cm 1,79cm 5 5 d) zdálenost roin H
H říkld nejsnáze yřešíme roině, která je kolmá k oběm roinám tk bude ždy obshot bod z jedné roiny i jeho kolmý průmět do roiny druhé. 3 otřebujeme určit délku úsečky (npříkld z proúhlého trojúhelníku ): + + 3 + 4 3. yužijeme podobnost trojúhelníků. 3 3 3 3 3 osdíme: 3 3 4 cm,31cm 3 3 edgogická poznámk: bodě b) studenti čsto píší, že zdálenost roin je nuloá. nžím se jim ysětlit, že není rozumné u neronoběžných roin trdit, že mjí nuloou zdálenost, když zdálenosti různých bodů jedné z roin od druhé roiny jsou zcel různé. bodě c) studenti čsto zpomenou n to, že zdálenost musí zjišťot pomocí kolmice určí jko zdálenost roin délku úsečky. roto píšu n tbuli, že cm nejsou spráný ýsledek. 3
okud studentům ukážete prostoroý obrázek prní části řešení bodu d), nkreslí někteří spráně obdélník i s průsečnicemi obou roin, le bod, s jehož pomocí zjišťují zdálenost obou roin nkreslí doprostřed (přípdně n úhlopříčku) nedokáží pk obrázku njít žádné použitelné trojúhelníky. Je potřeb jim zdůrznit, že mohou ybrt liboolný bod jedné z roin musí si proto zolit tk, by řešení bylo co nejjednodušší (pk jsou body n strnách obdélníku jsnou olbou). edgogická poznámk: Následující příkld obshuje trochu neobyklý (i když čsto elice účinný) krok použití pohledu z jiné strny. okud studenti nestíhjí přerušuji práci n předchozích příkldech, bychom si lespoň zčátek příkldu s nkreslením obou obrázků stihli studenti zjistili, že není nutné kreslit pokždé šechny obrázky ze stejného pohledu. ř. 3: Je dán pridelný čtyřboký jehln, 4cm, 5cm. Urči zdálenost roin. ituce je z tohoto pohledu nečitelná Z obrázku idíme, že obě roiny jsou nkreslíme si obrázek tk, bychom místo ronoběžné (mjí ronoběžné průsečnice hrny iděli přímo hrnu. s roinmi podsty s roinou ) má smysl hoořit o jejich zdálenosti, kterou určíme pomocí průsečnic s roinou (je kolmá k oběm roinám). Nkreslíme si trojúhelník něm průsečnice obou roin: 4
Y roin se s roinou protíná přímce roin se s roinou protíná přímce Y zdálenost obou roin můžeme určit npříkld pomocí bodů z podobnosti trojúhelníků. élku strny určíme z trojúhelník pomocí ythgoroy ěty: + + 4 + + 4 4 4 + opíšeme zjištěnou délku do obrázku: +4 osdíme: + 4 Y Z podobnosti trojúhelníků. 45 + 4 4 + 4 5 cm 1,86 cm + 4 + 4 + 4 edgogická poznámk: Následující příkld je poměrně obtížný e sé početní fázi, kdy je nutné poměrně zdlouhě počítt délky úseček. 5
ř. 4: Je dán pridelný čtyřstěn, 6cm. Urči zdálenost roin. Z obrázku idíme, že obě roiny jsou ronoběžné (mjí ronoběžné průsečnice s roinmi podsty s roinou ) má smysl hoořit o jejich zdálenosti, kterou určíme pomocí průsečnic s roinou (je kolmá k oběm roinám). Nkreslíme si trojúhelník něm průsečnice obou roin: roin se s roinou protíná přímce roin se s roinou protíná přímce zdálenost obou roin můžeme určit npříkld pomocí bodů z podobnosti trojúhelníků 0. 0 opíšeme zjištěnou délku do obrázku: élku ýšky určíme z proúhlého trojúhelník : 4 3 4 4 3 6
3 3 ltí:, protože trojúhelník je 4 ronormenný. okud chceme použít podobnost trojúhelníků 0 musíme určit ýšku 0. oužijeme zorec pro obsh trojúhelník: bb b b musíme určit ýšku trojúhelníku n strnu 3 0 4 élku ýšky určíme z proúhlého trojúhelník : 3 3 ypočteme ýšku: 3 3 3 4 4 4 bb b b b b osdíme: b b 3 3 0 3 oplníme ýšku do půodního obrázku dopočteme zdálenost roin: 7
3 3 0 4 osdíme: 3 6 6 6 cm, 45cm 6 6 Z podobnosti trojúhelníků 0. 0 0 0 3 3 4 3 3 6 43 6 ř. 5: etákoá: strn 93/cičení 8 b) hrnutí: 8