STUDIUM DIFUZE V TERNÁRNÍCH SYSTÉMECH. PŘÍPAD DIFUZNÍHO SPOJE Ni/Ni 3 Al- Fe

Rozměr: px
Začít zobrazení ze stránky:

Download "STUDIUM DIFUZE V TERNÁRNÍCH SYSTÉMECH. PŘÍPAD DIFUZNÍHO SPOJE Ni/Ni 3 Al- Fe"

Transkript

1 STUDIUM DIFUZE V TERNÁRNÍCH SYSTÉMECH. PŘÍPAD DIFUZNÍHO SPOJE / 3 - STUDY OF DIFFUSION IN TERNARY SYSTEMS. A CASE OF THE / 3 - DIFFUSION JOINT Jaromír Drápala a, Jana Sudrová a, Jří Vrbcký a Bořvoj Mllon b a VŠB Techncká unverzta Ostrava, tř. 17. lstopadu 15, Ostrava Poruba, ČR, E-mal: b Ústav fyzky materálů AV ČR, Žžkova 22, Brno, ČR, E-mal: Abstrakt Koncentrační profly, které se vytvoří v ternární dfuzní dvojc během zotermckého žíhání, mohou být přímo analyzovány pro určení středních hodnot ternárních nterdfuzních koefcentů. Je prezentována metoda pro stanovení průměrných hodnot hlavních a křížových nterdfuzních koefcentů přes vybrané oblast v dfuzní zóně. Pomocí ntegrace nterdfuzních toků jsou příslušné parametry vypočteny přímo z expermentálních koncentračních proflů. Výhoda takové analýzy je v tom, že př stanovení dfuzních toků není nutno určovat polohu Matano rovny. Metoda poskytuje dále vztahy pro kontrolu různých komponent ve vícesložkovém systému. Analýza byla aplkována na vybrané dfuzní spoje sltn / 3 - podrobené vakuovému žíhání př teplotě 1050 C po dobu 100 hodn a 1100 C/72 hodn. Abstract Concentraton profles that develop n a ternary dffuson couple durng an sothermal annealng can be analyzed drectly for average ternary nterdffuson coeffcents. An analyss s presented for the determnaton of average values for the man and cross-nterdffuson coeffcents over selected regons n the dffuson zone from an ntegraton of nterdffuson fluxes, whch are calculated drectly from expermental concentraton profles. Such analyss crcumvents the need for the locaton of the Matano plane and provdes addtonal relatons for checkng of the varous components n a mult-component assembly. The analyss was appled to selected sothermal dffuson couples nvestgated wth / 3 - alloys at the temperature 1050 C and tme 100 hours and 1100 C/72 hours. 1. ÚVOD K materálům, které jsou vystaveny dlouhodobým účnkům vysokých teplot, patří supersltny na báz nklu, používané v letectví jako konstrukční materál v strojírenském a energetckém průmyslu (lopatky plynových turbín). Tyto sltny jsou tvořeny dvoufázovou strukturou tuhého roztoku (γ) s precptáty 3 (γ'). Pomocí klasckého dfuzního spoje dvou kovových materálů / 3 bylo prokázáno, že př vysokých teplotách probíhají přes hranc obou fází dfuzní procesy. Poznatky získané př studu chování svarových spojů / 3 za vysokých teplot lze do jsté míry využít pro posouzení chování matrce supersltn nklu, v nchž jsou uloženy částce ntermetalckých fází. Intermetalcké sloučenny na báz alumndů, jako např. 3, legované dalším prvky (, Cr, Nb, T, Zr, B) jsou rovněž určeny k technckému využtí pro prác za zvýšených teplot, v některých případech př teplotách 1100 C. Techncké využtí těchto materálů v prax často vyžaduje, aby byly svařtelné, takže svarové spoje musí rovněž odolávat zvýšeným teplotám. 1

2 Mez materály, které jsou př exploatac vystaveny procesům dfuze, patří také funkčně gradentní materály (FGM) jako skupna heterogenních vícefázových systémů s gradentem chemckého složení, struktury, fyzkálních a mechanckých vlastností. Vzhledem k plynulé změně vlastností napříč objemem materálu nacházejí FGM potencální využtí v mnoha specálních odvětvích průmyslu, ať už jako součást leteckých proudových motorů, elektrotechncké kontakty, materály pro ochranu termočlánků, materály pro fltry, bomaterály pro mplantáty, apod. Sledování chování složených systémů kov polovodč, kov ntermetalcká sloučenna za vyšších teplot může značně přspět k poznání strukturních a chemckých změn v materálu. Vytvořením dfuzního spoje a dlouhodobou exploatací spojeného materálu v teplotním pol lze posoudt většnu dějů, které v materálu probíhají. Základním charakterstkam, určujícím přerozdělování prvků v gradentním materálu jsou nterakční a nterdfuzní koefcenty přítomných prvků včetně jejch koncentračních závslostí a rychlost pohybu mezfázového rozhraní. Způsob zjštění těchto parametrů závsí na vytvoření vhodného dfuzního spoje, na možnost přesného stanovení koncentračních křvek. Expermentální sledování dfuze, dfuzvt v jednotlvých fázích, nterakčních koefcentů a aktvt prvků je značně komplkovaná v případě, kdy dochází k pohybu mezfázových hranc. 2. METODY STANOVENÍ DIFUZIVIT V TERNÁRNÍCH SYSTÉMECH V odborné lteratuře je uvedena řada případů dfuze a určování dfuzních koefcentů v multfázových systémech př známých rovnovážných koncentracích na mezfázových hrancích. Jedná se např. o dfuz prvku z fáze α do β, o dfuz v heterogenní směs dvou fází vyvolanou povrchovým jevy (např. vypařováním), o dfuz v systému tvořeném na jedné straně směsí fází α + β a na druhé straně fází α nebo čstým kovem. V těchto případech se mohou pohybovat dvě mezfázová rozhraní různou rychlostí stejným směrem nebo opačným směrem, případně jedno mezfázové rozhraní je pevné a druhé pohyblvé. Př reaktvní dfuz nebo př kontaktu pevné fáze s tavennou dochází vždy k pohybu mezfázové hrance. Pohyb mezfázové hrance s časem je podřízen parabolckému zákonu. Pro výpočet dfuzních charakterstk a rychlost pohybu mezfázového rozhraní z expermentálních dat (koncentračních křvek) se v bnárních systémech praktcky dosud používá metoda Matano - Boltzmannova, která je matematcky exaktní, ale je velm ctlvá na expermentální chyby a nepřesnost analytckých měření. Je to způsobeno tím, že dfuzvta se určuje z poměru plochy, dané koncentračním proflem a koncentračního gradentu v konkrétním bodě. A právě tento koncentrační gradent bývá obvykle zatížen největší expermentální chybou. Rozptyly ve stanovených hodnotách dfuzvt mohou dosahovat řádové rozdíly a určení koncentrační závslost D(c) je pak málo spolehlvé. Wagner odvodl pozděj vztah vycházející ze zákona zachování dfundující hmoty na pohyblvé mezfázové hranc. V současné době se v podstatě používají dvě rovnce pro výpočet dfuzvt v bnárních systémech: Matano-Boltzmannova a Wagnerova na oborech s pohyblvým hrancem. Teor dfuze v ternárních systémech vytvořl Dayananda v r [1] a postupně j zpřesňoval až do dnešní podoby [2-8]. Interdfuzní tok J ~ prvku v ternárním systému může být na základě Onsagerova tvaru Fckova zákona, vyjádřen pomocí dvou nezávslých koncentračních gradentů δ / δ x C j ~ ~ 3 δ C1 ~ 3 δ C2 J = D 1 D 2 ( = 1, 2) (1) δ x δ x ~ 3 kde D a ~ 3 1 D představují hlavní a křížové nterdfuzní koefcenty. Expermentální stanovení 2 čtyř koncentračně závslých nterdfuzních koefcentů vyžaduje použtí Matano- Boltzmannovy analýzy s dvěma nezávslým dfuzním dvojcem, u kterých mohou být nterdfuzní koefcenty vyhodnoceny v dfuzní zóně se společným složením. Interdfuzní toky 2

3 všech prvků lze stanovt přímo z koncentračních proflů, anž by bylo nutné anebo byly použty nterdfuzní koefcenty. c ( x) 1 J ~ = ( x xo) dc ( = 1, 2,, n) (2) 2t + _ o c resp. c kde t je čas, c a + c jsou mezní koncentrace a x o je poloha Matano rovny. Z přímého stanovení nterdfuzních toků může být vyhodnoceno dfuzní chování prvků a zjštěny tzv. rovny nulového toku (angl. zero-flux planes). Nejnovější model výpočtů jednotlvých dfuzních parametrů (stanovení nterdfuzních toků, koncentrace všech komponent a nterdfuzních koefcentů) vypracoval Ram-Mohan a Dayananda [5] pomocí metody transformace matc. Dfuzí v ternárních systémech se základním komponentam hlníku a nklu př přídavku dalšího prvku se zabýval např. Čermák [9-10] a další autoř [11-14]. 3. EXPERIMENT Jednou z metod přípravy funkčně gradentních materálů je dfuzní spojování materálů. Pro studum dfuzních procesů a vznkající mkrostruktury na rozhraní mez dvěma spojeným materály byl vybrán systém -. V prvé etapě byly přpraveny dfuzní spoje: -, - 3 a -. Pro studum mkrostrukturních a mechanckých vlastností ternárních (vícekomponentních) systémů byly zhotoveny dfuzní spoje: - 3 (,T), -(,) 3, - 3 (,Zr) a další. K realzac dfuzních spojů - byl použt elektrolytcky přetavený nkl o čstotě 3N5 (tj. 99,95 hm.% ) a hlník o čstotě 4N (tj. 99,99 hm.% ). Intermetalcké sloučenny 3 s přídavkem třetího prvku byly staveny v plazmové pec a následně přetaveny ve vakuové pec s odltím do kokly s třem válcovým dutnam o průměru 10 mm a hloubce cca 100 mm. Válečky kruhového průřezu byly následně metalografcky upraveny na čelní ploše a spojeny odporovým svařováním na tupo (ÚFM AV ČR Brno) nebo pomocí elektronového svazku ve vakuu na VŠB-TU Ostrava. Následovalo dlouhodobé vysokoteplotní žíhání dfuzních dvojc v evakuovaných ampulích př režmech 1050 C/100 h, 1100 C/72 h apod. Dále byla provedena rtg. lnová chemcká mkroanalýza ve společnost Vítkovce - výzkum a vývoj, spol. s r.o. Ostrava a metalografe. Získané mkrostrukturní snímky a koncentrační profly sloužly jako vstup pro studum dfuzních procesů. V dalším textu se budeme zabývat pouze studem dfuzních spojů / ZPRACOVÁNÍ VÝSLEDKŮ MĚŘENÍ DIFUZE 4.1 Vzorek 100 % / 26.6 % 2.4 % 71 % (1100 C/72 h) V prvé etapě byly výsledky měření dfuze v dfuzním páru 100 /26.6 A zpracovány v ÚFM AV ČR v Brně [15]. Data (koncentrační profly, a po dfuzním žíhání) byla upravena opravou artefaktu pro x = 10 µm nterpolací ze sousedních hodnot. K jejch analýze byla použta metodka vypracovaná v článku Dayanandy z r [1]. Pro další zpracování je výhodné transformovat koncentrace z atomových procent c na relatvní koncentrace Y podle vztahu Y = (c c + ) / (c c + ), (3) kde c, resp. c + jsou dfuzí neovlvněné koncentrace v levé (x < 0), resp. pravé (x > 0) polovně dfuzního vzorku. Výhoda spočívá v tom, že př použtí Y není třeba př stanovení toků určovat polohu Boltzmann-Matanovy rovny a není překážkou přítomnost extrémů na křvkách Y = f(x). V daném případě bylo získané měření neúplné (obr. 1), neboť scházela měření pro větší vzdálenost od dfuzního rozhraní, Dfuzní měření se v řadě případů dají prokládat funkcí erfc(x). Proto byl učněn pokus proložt expermentálním měřením metodou nejmenších čtverců dvě funkce erfc(x) - jednu pro x < x f, druhou pro x > x f : 3

4 pro x < x f Y = Y p (l Y p ) erfc{( x x p ) / A 1 }, (4) pro x > x f Y = Y f2 erfc{( x x f ) /A 2 } (5) 3 - / 1100 C / 72 h obsah, (At.%) () obsah (At.%) x (µm) 50 Obr. 1. Koncentrační profly,, v dfuzním spoj / 3 - po dfuzním žíhání 1100 C/72 h Fg. 1. Concentraton profles of,, n the / 3 - jont after annealng 1100 C/72 h Obr. 2. Relatvní koncentrace Y versus vzdálenost x Fg. 2. Relatve concentraton Y versus dstance x Význam symbolů je patrný ze schématu na obr. 2. Pro první error funkc je osou symetre x p, pro druhou pak x f. Orentační proložení expermentálních bodů pomocí rovnc (4) a (5) ukázalo dobrý soulad expermentálních a ftovaných hodnot a prokázalo tedy použtelnost tohoto postupu, ovšem s jednou úpravou. Daynandova metoda umožňuje jednoduše stanovt polohu Boltzmann-Matanovy rovny (BM) pomocí rovnce xo L + L ( Y ) dx Y dx = xo xbm 1 (6) xo kde x o může být zvoleno lbovolně. V ternárním systému je poloha BM rovny z defnce pro všechny složky totožná. Orentační výpočet to neprokázal. Jsté možnost poskytuje využtí nejstoty ve stanovení polohy x f (v daném případě leží v ntervalu 35 až 40 µm). Jak se odrazí změna polohy x f v poloze BM rovny ukazuje tab. 1. Tab. 1. Poloha Boltzmann-Matano rovny v závslost na volbě x f. Table 1. Poston of the Boltzmann-Matano plane n dependence on choce of x f. * ) Údaje po korekc koncentrací. x f [µm] x A1 BM [µm] x BM [µm] * ) Problém tedy nelze takto uspokojvě vyřešt. Př analýze vznklého problému se ukázalo, že řešením je malá modfkace chemckého složení dfuzí neovlvněné zóny100/ Přepočtená expermentální data jsou uvedena na obr. 3 včetně výsledku stanovení polohy BM rovny s takto upraveným koncentracem a př optmalzac x f. Ve FORTRANu byl napsán program pro prokládání dat metodou nejmenších čtverců s využtím programového systému OPTIPACK [16]. Pro prokládání byly použty rovnce (4) a (5) pro a pro x < x f Y = Y P (l Y P ) erfc{( x x p ) / A 1 } (7) Y = Y P (l Y P ) erfc{( x x p ) / A 1 } (8) a pro x > x f Y = Y f2 erfc{( x x f ) / A 2 } (9) Y = Y f2 erfc{( x x f ) / A 2 } (10) Hodnoty Y byly dopočítávány ze vztahu 4

5 Y = [ Y (c c + ) Y (c c + ) / (c c + ) (11) Obr. 3. Relatvní koncentrace Y versus vzdálenost x Obr. 4. Vypočtené koncentrace,, v dfuzním (X BM Matano rovna, X f fázové rozhraní) spoj / 3 - Fg. 3. Relatve concentraton Y versus dstance x Fg. 4. Calculated concentraton of,, n (X BM Matano plane, X f phase nterface) the / 3 - dffuson jont Pomocí rovnc (7-11) byly současně ftovány naměřené koncentrace, a. Systém OPTIPACK umožňuje prác s chybam, proto bylo pro jednoduchost předpokládáno, že koncentrace byly naměřeny se stejnou absolutní chybou c ± 0,05 at.%. Z toho pak byly vypočteny chyby a váhy Y. Program stanovuje kromě hledaných parametrů rovněž jejch střední chyby. Výsledky prokládání jsou uvedeny na obr. 4. Pokud je parametr zadán, resp. vypočten s nulovou chybou, znamená to, že se jedná buďto o pevný parametr (např. x f ) nebo o parametr, který se dopočítává z ostatních (např. x BM ). Obr. 3 a 4 potvrzují, že použté error funkce umožňují velm dobrou aproxmac expermentálních dat a tedy další zpracování. Přímo z proložení lze získat nformac o koncentracích složek na mezfázové hranc γ(){15.85-l.72-82,43}[at.%]; γ'( 3 ) (23.24A ) [at.%]. Podle Daynandy [1] lze dfuzní toky složek v ternárním systému vyjádřt rovncí * + x L J = (c c + * * ) Y ( 1 Y ) dx + ( 1 Y ) Y dx / 2 t (12) * L x Pro dervace platí c = (c c + ) Y (13) Z defnce pak platí n 1 j = 1 n J = D c (14) j j Pomocí parametrů proložených error funkcí můžeme spočítat hodnoty dervací a ntegrálů v rovncích (12-13) a ty pak vynést do obr. 5 (pro výpočet J použto t = 192 hod). Exaktně vyhodnott koefcenty dfuze podle původní Dayanandovy metody [1] je u ternárních systémů možné jen pří měření na vhodně sestavených dvou dfuzních párech, u nchž se dfuzní cesty protínají, a to pouze pro koncentrac, odpovídající tomuto průsečíku. Podle obecně zavedené symbolky lze pro náš konkrétní případ ternárního systému -- psát J = D c D c (15) 5

6 J = D c D c (16) Obr. 5. Výpočet koncentračních gradentů a nterdfuzních toků pro a v dfuzním spoj / 3 - Fg. 5. The calculaton of concentraton gradents and nterdffuson fluxes for and n the / 3 - Zajímavý je průběh dfuzních cest uvedený na obr. 6 a 7. Zatímco pro Y = f(y ) a Y = f(y ) získáváme typcký průběh pro ternární systém se dvěm fázem (obr. 6), pro Y = f(y ) je průběh dfuzní cesty velm blízký bnárnímu systému (obr. 7). Př blžším pohledu na pravou stranu rovnce (15) se dá usuzovat, že druhý člen lze zanedbat oprot prvnímu D c >> D c (17) Obr. 6. Funkce Y = f(y, Y ) Obr. 7. Funkce Y = f(y ) Obr. 8. Závslost D (x) Fg. 6. Functon Y = f(y, Y ) Fg. 7. Functon Y = f(y ) Fg. 8. Dependence D (x) Protože pro známe hodnoty dfuzních toků a dervací, můžeme hodnoty D = D stanovt (vz obr. 8). Nabízelo by se takto vypočítané koefcenty srovnat s naměřeným koefcenty vzájemné dfuze v bnárním systému -, což však přesahuje rámec provedené stude. Ve spoluprác s katedrou matematky a deskrptvní geometre (Mgr. J. Vrbcký, Ph.D.) se v současnost odlaďuje výpočetní program v MATLAB využívající modelu transformace matc dle [5] pro určení dfuzních toků, stanovení hlavních a křížových nterdfuzních koefcentů, včetně zpětné kontroly správnost postupu výpočtů zobrazením koncentračních proflů v ternárních systémech. Na základě materálové blance pro všechny tř přítomné prvky,, byla nejprve určena poloha Matano rovny x o = E 3 cm od mezfázového rozhraní. Celá oblast dfuzí ovlvněné zóny byla rozdělena na vhodné úseky a pro každou oblast byly stanoveny jednotlvé hlavní D 11, D 22 a křížové D 12, D 21 nterdfuzní koefcenty, tedy pro náš systém se jedná o D, D, D a D [m 2.s 1 ]: 6

7 Úsek: (do 50 µm) ( 50µm x o ) (x o 0) vpravo do koncentračního skoku D E E E E E -14 [m 2.s 1 ] D E E E E E -14 [m 2.s 1 ] D E E E E E -14 [m 2.s 1 ] D E E E E E -14 [m 2.s 1 ] Dále uvádíme první dílčí výsledky výpočtů na stejném vzorku dle obr. 1 ve formě závslost nterdfuzního toku jednotlvých komponent J (x x o ) vztaženého k poloze Matano rovny x o na vzdálenost x vz obr. 9. Na obr. 10 je zakreslen expermentálně zjštěný a vypočtený koncentrační profl ndvduálních prvků na základě stanovených hlavních a křížových nterdfuzních koefcentů v ternárním systému / -. 6 x J.(x-xo) concentraton x o dstance [cm] x 10-5 Obr. 9. Vypočtené nterdfuzní toky J (x x o ) vztažené k poloze Matano rovně x o Fg. 9. Calculated nterdffuson fluxes J (x x o ) for a dffuson couple / dstance [cm] x 10-5 Obr. 10. Expermentální a vypočtené koncentrační profly pro dfuzní pár /-- Fg. 10. Expermental and calculated concentraton profles for a dffuson couple /-- Vzorky 100 % / 7 10 at. % (1050 C/100 h) Další sére vzorků dfuzních dvojc o složení 100 at. % / at. % A at. % zbytek byla tepelně zpracována žíháním př teplotě 1050 C po dobu 100 h v evakuovaných ampulích s následným prudkým zchlazením ve vodě. Výsledky koncentračního proflu jednoho ze vzorků prezentuje obr. 11. Závslost dfuzních koefcentů a na vzdálenost od mezfázového rozhraní v oblast tuhého roztoku zjštěných klasckou metodou Matano-Boltzmannovou je uvedena na obr. 12. mol. zlomek, v v 3A- v / Brno v 3A C, 100 hod., WDX: y = E+03x E+02x E+01x E+00x E-01 R 2 = E-01 y = E+10x E+09x E+07x E+05x E+02x E-01x E-01 R 2 = E-01 y = E+05x E+04x E+02x E+00x E-02 R 2 = E-01 y = E+06x Obr. 12. Funkční závslost D(x) E+04x E+02x E+00x E-02 R 2 = E-01 0 v oblast () pro vzorek dle obr Fg. 12. Functonal dependence D(x) n vzdálenost x [cm] the regon of () for sample n Fg. 11 Obr. 11. Koncentrační profly a v dfuzním spoj 100 / po žíhání 1050 C /100 h Fg. 11. Concentraton profles of and n dffuson couple 100 / after annealng at the temperature1050 C /100 h D [cm.s -1 ] 2.0E E E E E+00 / % - Brno vzdálenost x [cm] 1050 C, 100 hod. 7

8 5. DISKUSE V rámc tohoto příspěvku byly dskutovány používané metody stanovení nterdfuzních charakterstk ve vybraném ternárním systému. Ze zjštěných koncentračních proflů po dfuzním žíhání byl zjštěn na mezfázovém rozhraní koncentrační skok u všech tří přítomných prvků, přčemž došlo v případě železa k jeho vdtelnému poklesu těsně u rozhraní v oblast fáze γ vz tab. 2. Vzorek číslo Tabulka 2 Koncentrační poměry zjštěné na fázovém rozhraní [údaje v at. %] Table 2 Composton of elements at the nterphase boundary [concentraton n At. %] Podmínky žíhání vých. vých. vých. v () v () v () C / 72 h C / 100 h C / 100 h C / 100 h C / 100 h Z koncentračního proflu na obr. 11 vyplývají zajímavé skutečnost: Koncentrační skok na fázovém rozhraní γ() / γ ( 3 -) je v rozmezí 3 až 6 at. %, přčemž byly praktcky ve všech případech pozorovány téměř konstantní koncentrace ve vzdálenost 10 až 40 µm v oblast tuhého roztoku nklu od fázového rozhraní vz obr. 11. Prozatím jsme nenašl vysvětlení pro tento jev. Další zvláštností byl pokles koncentrace železa u všech vzorků v oblast γ ( 3 -) přlehlé fázovému rozhraní oprot koncentrac na straně tuhého roztoku () vz obr. 1 a 11. V oblast mez Matano rovnou a fázovým rozhraním byl u všech vzorků pozorován výskyt Krkendallových pórů. Jejch rozbor je předmětem dalšího studa. Další zajímavostí byla skutečnost, že poloha Matano rovny u většny vzorků žíhaných př podmínkách 1050 C / 100 h byla pro téměř shodná a odpovídala 40 µm od fázového rozhraní, zatímco v případě byla Matano rovna vzdálena od rozhraní 54 µm (vzorek 4). Př porovnání dosažených kvazrovnovážných koncentrací s publkovaným ternárním dagramy bylo zjštěno, že všechny výchozí vzorky svým složením ležely právě na hranc dvoufázové oblast γ / γ + γ, koncentrace všech prvků zjštěná na fázovém rozhraní ze strany tuhého roztoku nklu leží přesně na hranc dvoufázové oblast γ / γ + γ ve shodě s Výchozí sltna Fázové rozhraní fázovým dagramem. cméně složení prvků odpovídající oblast γ na fázovém rozhraní se dle fázového dagramu nacházejí jednoznačně v oblast dvoufázové vz obr. 13. Bude to dáno tím, že chemcké složení výchozích vzorků odpovídalo mnmální koncentrac výskytu fáze γ v ntermetalcké sloučenně pro teplotu 1050 C. Obr. 13. Izotermcký řez v ternárním dagramu př 1050 C v oblast γ /γ + γ s vyznačením expermentálně zjštěných bodů na fázovém rozhraní u dfuzních dvojc γ()/γ ( 3 -) [17] Fg. 13. Isothermal secton at 1050 C n ternary system n area of γ /γ + γ [17] and expermental ponts at the phase boundary for dffuson couples γ()/γ ( 3 -) 8

9 7. ZÁVĚR Sére vzorků dfuzních párů byla spojena lokálním svařením přímým průchodem elektrckého proudu nebo elektronovým svazkem ve vakuu. Jednalo se o spoje typu γ() / γ ( 3 -), které byly následně podrobeny vysokoteplotnímu žíhání za účelem zjštění koncentračních proflů jednotlvých komponent. Pro stanovení dfuzních charakterstk byla použta klascká Matano Boltzmannova metoda. Koncentrační profly byly účelně vyhlazeny za použtí vhodných typů polynomů. Z nch byla určena poloha Matano rovny a odtud dále závslost D(c) pro jednotlvé prvky v dfuzí ovlvněných oblastech výskytu fází γ a γ. Pro určení nterdfuzních toků jednotlvých komponent byla využta v prvém kroku Dayanadova metoda z r [1] a vylepšená metoda Ram-Mohana a Dayanandy z r [5]. Za tímto účelem byl vytvořen program v MATLAB, který je v současnost ve stádu testování a odlaďování. První výsledky jsou pro řadu systémů slbné. PODĚKOVÁNÍ Tato práce vznkla v rámc řešení projektu Grantové agentury ČR, reg. č. 106/06/1190 Studum procesů krystalzace vícekomponentních sltn s cílem stanovení zákontostí nterakce prvků a tvorby struktury a v rámc výzkumného záměru fakulty Metalurge a materálového nženýrství VŠB TU Ostrava, reg. č. MSM Procesy přípravy a vlastnost vysoce čstých a strukturně defnovaných specálních materálů. LITERATURA [1] DAYNANDA, M.A. An analyss of concentraton profles for fluxes, dffuson depths, and zero-flux planes n multcomponent dffuson. Metallurgcal Transactons A. 1983, 14A, p [2] DAYNANDA, M.A., SOHN, Y.H. Average effectve nterdffuson coeffcents and ther applcatons for sothermal multcomponent dffuson couples. Scrpta Materala, 1996, Vol. 35, 6, p [3] DAYNANDA, M.A., SOHN, Y.H. A new analyss for the determnaton of ternary nterdffuson coeffcents from a sngle dffuson couple. Metallurgcal and Materals Transactons A. 1999, 30A, p [4] SOHN, Y.H., DAYNANDA, M.A. A double-serpentne dffuson path for a ternary dffuson couple. Acta Materala, 2000, 48, p [5] RAM-MOHAN, L.R., DAYNANDA, M.A. A transfer matrx method for the calculaton of concentratons and fluxes n multcomponent dffuson couples. Acta Materala, 2006, 54, p [6] DANIELEWSKI, M., BACHORCZYK, R., MILEWSKA, A., UGASTE, Y. Dffuson paths n ternary systems comparson of Onsager and Darken models. Defect and Dffuson Forum, 2001, Vols , p [7] GLICKSMAN, M.E., LUPULESCU, A.O. Dynamcs of multcomponent dffuson wth zero flux planes. Acta Materala, 2003, 51, p [8] BOUCHET, R., MEVREL, R. A numercal nverse method for calculatng the nterdffuson coeffcents along a dffuson path n ternary systems. Acta Materala, 2002, 50, p [9] ČERMÁK, J., ROTHOVÁ, V. Concentraton dependence of ternary nterdffuson coeffcents n 3 / 3 -X couples wth X = Cr,, Nb and T. Acta Materala, 2003, 51, p [10] ČERMÁK, J., GAZDA, A., ROTHOVÁ, V. Interdffuson n ternary 3 / 3 -X dffuson couples wth X = Cr,, Nb and T. Intermetallcs, 2003, 11, p [11] MOYER, T.D., DAYNANDA, M.A. Dffuson n β 2 -- alloys. Metallurgcal Transactons A, 1976, 7A, p [12] KARUNARATNE, M.S.A., CARTER, P., REED, R.C. On the dffuson of alumnum and ttanum n the -rch --T system between 900 and 1200 C. Acta Materala, 2001, 49, p [13] ENGSTRÖM, A., MORRAL, J.E., ÅGREN, J. Computer smulaton of -Cr- multphase dffuson couples. Acta Materala, 1997, 45, 3, p [14] FUJIWARA, K., HORITA, Z. Intrnsc dffuson n 3. Defect and Dffuson Forum, 2001, Vols , p [15] MILLION, B. Zpracování výsledků měření dfuze v dfuzním páru 100/ Interní zpráva pro VŠB-TU Ostrava, ÚFM AV ČR Brno, duben [16] KUČERA, J., HŘEBÍČEK, J., LUKŠAN, L., KOPEČEK, I. OPTIPACK - užvatelský pops modfkace 2.2. Výzkumná zpráva 609/730, ÚFM Brno, [17] BRAMFITT, B.L., MICHAEL, J.R. AEM mcroanalyss of phase equlbra n 3 ntermetallc alloys contanng ron. Mater. Res. Soc. Symp. Proc., 1986, p

INTERAKCE KŘEMÍKU A NIKLU ZA VYSOKÝCH TEPLOT

INTERAKCE KŘEMÍKU A NIKLU ZA VYSOKÝCH TEPLOT METAL 4. 6. 5., Hradec nad Moravcí INTERAKCE KŘEMÍKU A NIKLU ZA VYSOKÝCH TEPLOT Jaromír Drápala a, Monka Losertová a, Jtka Malcharczková a, Karla Barabaszová a, Petr Kubíček b a VŠB - TU Ostrava,7.lstopadu,

Více

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT J. Tuma Summary: The paper deals wth dfferentaton and ntegraton of sampled tme sgnals n the frequency doman usng the FFT and

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

MOŽNOSTI STUDIA POVRCHOVÉHO NAPĚTÍ OXIDICKÝCH TAVENIN. Rostislav Dudek Ľudovít Dobrovský Jana Dobrovská

MOŽNOSTI STUDIA POVRCHOVÉHO NAPĚTÍ OXIDICKÝCH TAVENIN. Rostislav Dudek Ľudovít Dobrovský Jana Dobrovská MOŽNOSTI STUDIA POVRCHOVÉHO NAPĚTÍ OXIDICKÝCH TAVENIN Rostslav Dudek Ľudovít Dobrovský Jana Dobrovská VŠB TU, FMMI, Katedra fyzkální cheme a teore technologckých pochodů, 17.lstopadu 15, 708 33 Ostrava

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Určení tvaru vnějšího podhledu objektu C" v areálu VŠB-TU Ostrava

Určení tvaru vnějšího podhledu objektu C v areálu VŠB-TU Ostrava Acta Montanstca lovaca Ročník 0 (005), číslo, 3-7 Určení tvaru vnějšího podhledu objektu C" v areálu VŠB-TU Ostrava J. chenk, V. Mkulenka, J. Mučková 3, D. Böhmová 4 a R. Vala 5 The determnaton of the

Více

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI - 13 - í Průchod a rozptyl záření gama ve vrstvách materálu Prof. ng. J. Šeda, DrSc. KDAZ - PJP Na našem pracovšt byl vypracován program umožňující modelovat průchod záření gama metodou Monte Carlo, homogenním

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ VYSOKÉ UČEÍ TECHICKÉ V BRĚ BRO UIVERSITY OF TECHOLOGY FKULT STROJÍHO IŽEÝRSTVÍ ÚSTV MTERIÁLOVÝCH VĚD IŽEÝRSTVÍ FCULTY OF MECHICL EGIEERIG ISTITUTE OF MTERILS SCIECE D EGIEERIG TERMODYMIK ROZTOKŮ THERMODYMICS

Více

Modelování rizikových stavů v rodinných domech

Modelování rizikových stavů v rodinných domech 26. 28. června 2012, Mkulov Modelování rzkových stavů v rodnných domech Mlada Kozubková 1, Marán Bojko 2, Jaroslav Krutl 3 1 2 3 Vysoká škola báňská techncká unverzta Ostrava, Fakulta strojní, Katedra

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

Bořka Leitla Bolometrie na tokamaku GOLEM

Bořka Leitla Bolometrie na tokamaku GOLEM Posudek vedoucího bakalářské práce Bořka Letla Bolometre na tokamaku GOLEM Vedoucí práce: Ing. Vojtěch Svoboda, CSc Bořek Letl vpracoval svoj bakalářskou prác na tokamaku GOLEM, jehož rozvoj je závslý

Více

TEORIE PROCESŮ PŘI VÝROBĚ ŽELEZA A OCELI Část II Teorie ocelářských pochodů studijní opora

TEORIE PROCESŮ PŘI VÝROBĚ ŽELEZA A OCELI Část II Teorie ocelářských pochodů studijní opora Vysoká škola báňská Techncká unverzta Ostrava Fakulta metalurge a materálového nženýrství TEORIE PROCESŮ PŘI VÝROBĚ ŽELEZA A OCELI Část II Teore ocelářských pochodů studjní opora Zdeněk Adolf Ostrava 2013

Více

USE OF FUGACITY FOR HEADSPACE METHODS VYUŽITÍ FUGACITNÍ TEORIE PRO METODY HEADSPACE

USE OF FUGACITY FOR HEADSPACE METHODS VYUŽITÍ FUGACITNÍ TEORIE PRO METODY HEADSPACE USE OF FUGITY FOR HEDSPE METHODS VYUŽITÍ FUGITNÍ TEORIE PRO METODY HEDSPE Veronka Rppelová, Elška Pevná, Josef Janků Ústav cheme ochrany prostředí, Vysoká škola chemcko-technologcká v Praze, Techncká 5,

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav stavební mechanky Doc. Ing. Zdeněk Kala, Ph.D. MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES TEZE

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

Staré mapy TEMAP - elearning

Staré mapy TEMAP - elearning Staré mapy TEMAP - elearnng Modul 4 Kartometrcké analýzy Ing. Markéta Potůčková, Ph.D., 2013 Přírodovědecká fakulta UK v Praze Katedra aplkované geonformatky a kartografe Kartometre a kartometrcké vlastnost

Více

Hodnocení využití parku vozidel

Hodnocení využití parku vozidel Hodnocení využtí parku vozdel Všechna kolejová vozdla přdělená jednotlvým DKV (provozním jednotkám) tvoří bez ohledu na jejch okamžté použtí jejch nventární stav. Evdenční stav se skládá z vozdel vlastního

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Transport hmoty a tepla v mikrofluidních systémech

Transport hmoty a tepla v mikrofluidních systémech Transport hmoty a tepla v mkrofludních systémech Konvektvní transport v zařízeních s malým charakterstckým rozměrem Konvektvní tok vznká působením plošných, objemových, nercálních a třecích sl v objemu

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1 VÝVOJ SOFWARU NA PLÁNOVÁNÍ PŘESNOSI PROSOROVÝCH SÍÍ PRECISPLANNER 3D DEVELOPMEN OF HE MEASUREMEN ACCURACY PLANNING OF HE 3D GEODEIC NES PRECISPLANNER 3D Martn Štroner 1 Abstract A software for modellng

Více

Numerické metody optimalizace

Numerické metody optimalizace Numercké metody optmalzace Numercal optmzaton methods Bc. Mloš Jurek Dplomová práce 2007 Abstrakt Abstrakt česky Optmalzační metody představují vyhledávání etrémů reálných funkcí jedné nebo více reálných

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra matematky Bakalářská práce Zpracování výsledků vstupních testů z matematky Plzeň, 13 Tereza Pazderníková Prohlášení Prohlašuj, že jsem bakalářskou

Více

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů Optmalzační přístup př plánování rekonstrukcí vodovodních řadů Ladslav Tuhovčák*, Pavel Dvořák**, Jaroslav Raclavský*, Pavel Vščor*, Pavel Valkovč* * Ústav vodního hospodářství obcí, Fakulta stavební VUT

Více

DETERMINATION OF THE NUMBER OF PERIODIC AND UNDPLANNED REPAIRS CAUSED BY VIOLENT DAMAGE ON RAILWAY TRACTION VEHICLES FOR NEWLY PROPOSED REPAIR SHOP

DETERMINATION OF THE NUMBER OF PERIODIC AND UNDPLANNED REPAIRS CAUSED BY VIOLENT DAMAGE ON RAILWAY TRACTION VEHICLES FOR NEWLY PROPOSED REPAIR SHOP STAOVEÍ POČTU PERIODICKÝCH OPRAV A EPÁOVAÝCH OPRAV VZIKÝCH VIVEM ÁSIÉHO POŠKOZEÍ A HACÍCH KOEJOVÝCH VOZIDECH PRO OVĚ AVRHOVAOU OPRAVU DETERMIATIO OF THE UMBER OF PERIODIC AD UDPAED REPAIRS CAUSED BY VIOET

Více

6 LINEÁRNÍ REGRESNÍ MODELY

6 LINEÁRNÍ REGRESNÍ MODELY 1 6 LINEÁRNÍ REGRESNÍ MODELY Př budování regresních modelů se běžně užívá metody nejmenších čtverců. Metoda nejmenších čtverců poskytuje postačující odhady parametrů jenom př současném splnění všech předpokladů

Více

Matematika IV, Numerické metody

Matematika IV, Numerické metody Interaktvní sbírka příkladů pro předmět Matematka IV, Numercké metody Josef Dalík, Veronka Chrastnová, Oto Přbyl, Hana Šafářová, Pavel Špaček Vysoké učení techncké v Brně, Fakulta stavební Ústav matematky

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Aplikace simulačních metod ve spolehlivosti

Aplikace simulačních metod ve spolehlivosti XXVI. ASR '2001 Semnar, Instruments and Control, Ostrava, Aprl 26-27, 2001 Paper 40 Aplkace smulačních metod ve spolehlvost MARTINEK, Vlastml Ing., Ústav automatzace a nformatky, FSI VUT v Brně, Techncká

Více

Určování parametrů elektrického obvodu v MS Excelu

Určování parametrů elektrického obvodu v MS Excelu XX. AS 003 Semnar nstrments and ontrol Ostrava May 6 003 47 rčování parametrů elektrckého obvod v MS Ecel OSÁG etr 1 SAÍK etr 1 ng. h.. Katedra teoretcké elektrotechnky-449 ŠB-T Ostrava 17. lstopad Ostrava

Více

FORANA. 1. Úvod. 2 Vznik akustického signálu řeči v mluvidlech. Pavel GRILL 1, Jana TUČKOVÁ 2

FORANA. 1. Úvod. 2 Vznik akustického signálu řeči v mluvidlech. Pavel GRILL 1, Jana TUČKOVÁ 2 FORANA Pavel GRILL 1, Jana TUČKOVÁ 2 České vysoké učení techncké v Praze, Fakulta elektrotechncká, Katedra teore obvodů Abstrakt Jedním z příznaků vývojové dysfáze je částečná porucha tvorby a porozumění

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i.

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i. Odborná skupna Mechanka kompoztních materálů a konstrukcí České společnost pro mechanku s podporou frmy Letov letecká výroba, s. r. o. a Ústavu teoretcké a aplkované mechanky AV ČR v. v.. Semnář KOMPOZITY

Více

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ

TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ Gunnar Kűnzel, Mlosla Lnda Abstract V příspěku jsou uedeny analoge elčn a parametrů př transportu lhkost zorkem materálu e formě desky a elektrckém obodu.

Více

Bezpečnost chemických výrob N111001

Bezpečnost chemických výrob N111001 Bezpečnost chemckých výrob N00 Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostn@vscht.cz Rzka spojená s hořlavým látkam 2 Povaha procesů hoření a výbuchu Požární charakterstk látek Prostředk

Více

Měření základních materiálových charakteristik propustnosti řetězového filtru Mgr. Radek Melich. 2. Použité metody

Měření základních materiálových charakteristik propustnosti řetězového filtru Mgr. Radek Melich. 2. Použité metody Měření základních materálových charakterstk propustnost řetězového fltru Mgr Radek Melch Př pozorování Slunce pomocí dvojlomných fltrů se většnou používá fltrů pevně naladěných na určtou zajímavou spektrální

Více

INŽ ENÝ RSKÁ MECHANIKA 2002

INŽ ENÝ RSKÁ MECHANIKA 2002 Ná dní konference s mezná dní účastí INŽ ENÝ RSÁ MECHANIA 00 1. 16. 5. 00, Svratka, Č eská republka PODRITICÝ RŮ ST TRHLINY VE SVAROVÉ M SPOJI OMORY PŘ EHŘÍVÁ U Jan ouš, Ondřej Belak 1 Abstrakt: V důsledku

Více

MĚŘENÍ INDUKČNOSTI A KAPACITY

MĚŘENÍ INDUKČNOSTI A KAPACITY Úloha č. MĚŘENÍ NDKČNOST A KAPATY ÚKO MĚŘENÍ:. Změřte ndkčnost cívky bez jádra z její mpedance a stanovte nejstot měření.. Změřte na Maxwellově můstk ndkčnost cívky a rčete nejstot měření. Porovnejte výsledky

Více

Laboratorní cvičení L4 : Stanovení modulu pružnosti

Laboratorní cvičení L4 : Stanovení modulu pružnosti Laboratorní cvčení L4 Laboratorní cvčení L4 : Stanovení modulu pružnost 1. Příprava Modul pružnost statcký a dynamcký (kap. 3.4.2., str. 72, str.36, 4) Měření statckého modulu pružnost (kap. 5.11.1, str.97-915,

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

SORPCE NASYCENÝCH PAR PERCHLORETHYLENU NA ZEMINY A POROVNÁNÍ VÝTĚŽKŮ EXTRAKČNÍCH TECHNIK. BORISLAV ZDRAVKOV, JIŘÍ JORDAN ČERMÁK a JOSEF JANKŮ.

SORPCE NASYCENÝCH PAR PERCHLORETHYLENU NA ZEMINY A POROVNÁNÍ VÝTĚŽKŮ EXTRAKČNÍCH TECHNIK. BORISLAV ZDRAVKOV, JIŘÍ JORDAN ČERMÁK a JOSEF JANKŮ. Chem. Lsty 103, 10471053 (2009) SORPCE NASYCENÝCH PAR PERCHLORETHYLENU NA ZEMINY A POROVNÁNÍ VÝTĚŽKŮ EXTRAKČNÍCH TECHNIK BORISLAV ZDRAVKOV, JIŘÍ JORDAN ČERMÁK a JOSEF JANKŮ Ústav cheme ochrany prostředí,

Více

MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN. The End Stage Renal Disease Treatment Model

MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN. The End Stage Renal Disease Treatment Model ROČNÍK LXXII, 2003, č. 1 VOJENSKÉ ZDRAVOTNICKÉ LISTY 5 MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN 1 Karel ANTOŠ, 2 Hana SKALSKÁ, 1 Bruno JEŽEK, 1 Mroslav PROCHÁZKA, 1 Roman PRYMULA 1 Vojenská lékařská akademe

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits Techncká 4, 66 07 Praha 6 MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electrc Parameter Measurement n PWM Powered Crcuts Martn Novák, Marek Čambál, Jaroslav Novák Abstrakt: V

Více

VÝPOČET VELIKOSTNÍCH PARAMETRŮ KOMPOSTÁREN NA ZPEVNĚNÝCH PLOCHÁCH THE SIZE PARAMETER CALCULATION OF COMPOST PLANTS LOCALIZED ON COMPACTED AREAS

VÝPOČET VELIKOSTNÍCH PARAMETRŮ KOMPOSTÁREN NA ZPEVNĚNÝCH PLOCHÁCH THE SIZE PARAMETER CALCULATION OF COMPOST PLANTS LOCALIZED ON COMPACTED AREAS VÝPOČET VELIKOSTNÍCH PARAMETRŮ KOMPOSTÁREN NA ZPEVNĚNÝCH PLOCHÁCH THE SIZE PARAMETER CALCULATION OF COMPOST PLANTS LOCALIZED ON COMPACTED AREAS ALTMANN VLASTIMIL ), PLÍVA PETR 2) ) Česká zemědělská unverzta

Více

Měření příkonu míchadla při míchání suspenzí

Měření příkonu míchadla při míchání suspenzí U8 Ústav procesní a zpracovatelské technky FS ČVUT v Praze Měření příkonu rotačních íchadel př íchání suspenzí I. Úkol ěření V průyslu téěř 60% všech operacích, kdy je íchání používáno, představuje íchání

Více

Autokláv reaktor pro promíchávané vícefázové reakce

Autokláv reaktor pro promíchávané vícefázové reakce Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.

Více

Ing.fi.Václavík CSc. - VZUP.ÓJP Zbraslav,pracovi Stě MuíStk

Ing.fi.Václavík CSc. - VZUP.ÓJP Zbraslav,pracovi Stě MuíStk - 30 - TRANSFORMACE UBANU DO BETA FXZE FÍÍI JIHO TVLŘEHÍ V HORKÍ OBLASTI TEPLOT ALFA MODIFIKACE Ing.f.Václavík CSc. - VZUP.ÓJP Zbraslav,pracov Stě MuíStk Př výtlačném lsování uranu v horní oblezlí teplot

Více

DOBA DOZVUKU V MÍSTNOSTI

DOBA DOZVUKU V MÍSTNOSTI DOBA DOZVUKU V MÍSTNOSTI 1. Úvod Po zapnutí zdroje zvuku v místnost trvá jstou krátkou dobu (řádově vteřny až zlomky vteřn), než dojde k ustálení zvukového pole. Často je v takových případech možné skutečné

Více

Rizikového inženýrství stavebních systémů

Rizikového inženýrství stavebních systémů Rzkového nženýrství stavebních systémů Mlan Holcký, Kloknerův ústav ČVUT Šolínova 7, 166 08 Praha 6 Tel.: 24353842, Fax: 24355232 E-mal: Holcky@vc.cvut.cz Základní pojmy Management rzk Metody analýzy rzk

Více

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST Abstrakt ANALÝZA ZKA A CTLOST JAKO SOUČÁST STUDE POVEDTELNOST 1. ČÁST Jří Marek Úspěšnost nvestce závsí na tom, jaké nejstoty ovlvní její předpokládaný žvotní cyklus. Pomocí managementu rzka a analýzy

Více

Úloha 2: Měření modulu pružnosti v tahu a modulu pružnosti ve smyku

Úloha 2: Měření modulu pružnosti v tahu a modulu pružnosti ve smyku Úloha 2: Měření modulu pružnost v tahu a modulu pružnost ve smyku FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.10.2009 Jméno: Frantšek Batysta Pracovní skupna: 11 Ročník a kroužek: 2. ročník,

Více

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek 9.2.29 Bezpečnost chemckých výrob N Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostny@vscht.cz Analýza rzka Vymezení pojmu rzko Metody analýzy rzka Prncp analýzy rzka Struktura rzka spojeného

Více

Analýza chování servopohonů u systému CNC firmy Siemens

Analýza chování servopohonů u systému CNC firmy Siemens Analýza chování servopohonů u systému CNC frmy Semens Analyss and behavour of servo-drve system n CNC Semens Bc. Tomáš áčalík Dplomová práce 00 UTB ve Zlíně, Fakulta aplkované nformatky, 00 4 ABSTRAKT

Více

DUTÉ VLÁKNO S PORÉZNÍ STĚNOU: STUDIUM HYDRODYNAMICKÉHO CHOVÁNÍ A KOLÁČOVÉ FILTRACE

DUTÉ VLÁKNO S PORÉZNÍ STĚNOU: STUDIUM HYDRODYNAMICKÉHO CHOVÁNÍ A KOLÁČOVÉ FILTRACE UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA CHEMICKÉHO INŽENÝRSTVÍ DUTÉ VLÁKNO S PORÉZNÍ STĚNOU: STUDIUM HYDRODYNAMICKÉHO CHOVÁNÍ A KOLÁČOVÉ FILTRACE DIPLOMOVÁ PRÁCE AUTOR PRÁCE: Lenka

Více

URČOVÁNÍ TRENDŮ A JEJICH VÝZNAM PRO EKONOMIKU

URČOVÁNÍ TRENDŮ A JEJICH VÝZNAM PRO EKONOMIKU URČOVÁNÍ TRENDŮ A JEJICH VÝZNAM PRO EKONOMIKU Rudolf Kampf ÚVOD Pro marketng, management a vůbec pro člověka je jstě důležté vědět, jak se bude vyvíjet stuace v ekonomce, stuace v určtém státě z hledska

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...

Více

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace Tetlní zkušebnctv ebnctví II Jří Mltky Škály měření epřímá měření Teore měření Kalbrace Základní pojmy I PRAVDĚPODOBOST Jev A, byl sledován v m pokusech. astal celkem m a krát. Relatvní četnost výskytu

Více

MĚRENÍ V ELEKTROTECHNICE

MĚRENÍ V ELEKTROTECHNICE EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon

Více

MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY

MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY MECHANICAL PROPERTIES AND STRUCTURAL STABILITY OF CAST NICKEL ALLOYS AFTER LONG-TERM INFLUENCE OF TEMPERATURE

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM 7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM Průvodce studem Předchozí kaptoly byly věnovány pravděpodobnost a tomu, co s tímto pojmem souvsí. Nyní znalost z počtu pravděpodobnost aplkujeme ve statstce. Předpokládané

Více

HUDEBNÍ EFEKT DISTORTION VYUŽÍVAJÍCÍ ZPRACOVÁNÍ PŘÍRŮSTKŮ SIGNÁLŮ ČASOVĚ

HUDEBNÍ EFEKT DISTORTION VYUŽÍVAJÍCÍ ZPRACOVÁNÍ PŘÍRŮSTKŮ SIGNÁLŮ ČASOVĚ HUDEBÍ EFEKT DISTORTIO VYUŽÍVAJÍCÍ ZPRACOVÁÍ PŘÍRŮSTKŮ SIGÁLŮ ČASOVĚ VARIATÍM SYSTÉMEM Ing. Jaromír Mačák Ústav telekomunkací, FEKT VUT, Purkyňova 118, Brno Emal: xmacak04@stud.feec.vutbr.cz Hudební efekt

Více

GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU. Veronika Berková 1

GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU. Veronika Berková 1 GIS ANALÝZA VLIVU DÁLNIČNÍ SÍTĚ NA OKOLNÍ KRAJINU Veronika Berková 1 1 Katedra mapování a kartografie, Fakulta stavební, ČVUT, Thákurova 7, 166 29, Praha, ČR veronika.berkova@fsv.cvut.cz Abstrakt. Metody

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD XV. konference absolventů studa technckého znalectví s meznárodní účastí MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD Zdeněk Mrázek 1 1. Ř ešení stř etu u fngovaných

Více

ARITMETICKOLOGICKÁ JEDNOTKA

ARITMETICKOLOGICKÁ JEDNOTKA Vyšší odborná škola a Střední průmyslová škola elektrotechncká Božetěchova 3, Olomouc Třída : M4 Školní rok : 2000 / 2001 ARITMETICKOLOGICKÁ JEDNOTKA III. Praktcká úloha z předmětu elektroncké počítače

Více

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r.

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. L A B O R A T O Ř O B O R U CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. Ústav organcké technologe (111) Ing. J. Trejbal, Ph.D. budova A, místnost č. S25b Název práce : Vedoucí práce: Umístění práce: Rektfkace

Více

METALURGICKÉ CH1RAKTEHISTIĽC URANOVÉHO JÍDRA FMUBCOVÉHO ELEMBWTU

METALURGICKÉ CH1RAKTEHISTIĽC URANOVÉHO JÍDRA FMUBCOVÉHO ELEMBWTU METALURGICKÉ CH1RAKTEHISTIĽC URANOVÉHO JÍDRA FMUBCOVÉHO ELEMBWTU Jng.S.K«n, Xng.mDoaedl*'- VZÚP-ÚJV, Zbr*alav nad Vt. 1. Úvod Uvedená práce byla ředěnu v ranc výjskumaého úkolu "Trubkové palvové elementy",

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se

Více

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu - 1 - Tato Příloha 307 j součástí článku: ŠKORPÍK, Jří. Enrgtcké blanc lopatkových strojů, Transformační tchnolog, 2009-10. Brno: Jří Škorpík, [onln] pokračující zdroj, ISSN 1804-8293. Dostupné z http://www.transformacn-tchnolog.cz/nrgtckblanc-lopatkovych-stroju.html.

Více

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum Zpracování fyzkálních měření Studjní text pro fyzkální praktkum Mlan Červenka, katedra fyzky FEL-ČVUT mlan.cervenka@fel.cvut.cz 3. ledna 03 ObrázeknattulnístraněpocházízknhyogeometraměřeníodJacobaKöbela(460

Více

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6)

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6) 1. Stavebn energetcké vlastnost budov Energetcké chování budov v zním období se v současné době hodnotí buď s pomocí průměrného součntele prostupu tepla nebo s pomocí měrné potřeby tepla na vytápění. 1.1.

Více

Společné zátěžové testy ČNB a vybraných pojišťoven

Společné zátěžové testy ČNB a vybraných pojišťoven Společné zátěžové testy ČNB a vybraných pojšťoven Zátěžových testů se účastní tuzemské pojšťovny které dohromady představují přblžně 90 % pojstného trhu. Výpočty provádějí samotné pojšťovny dle metodky

Více

radiační ochrana Státní úřad pro jadernou bezpečnost

radiační ochrana Státní úřad pro jadernou bezpečnost Státní úřad pro jadernou bezpečnost radační ochrana DOPORUČENÍ Měření a hodnocení obsahu přírodních radonukldů ve vodě dodávané k veřejnému zásobování ptnou vodou Rev. 1 SÚJB únor 2012 Předmluva Zákon

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

REAKTIVNÍ DIFUZE V SYSTÉMU Ni - Al. REACTIVE DIFFUSION IN Ni - Al SYSTEM. Karla Barabaszová a Monika Losertová a Jaromír Drápala a

REAKTIVNÍ DIFUZE V SYSTÉMU Ni - Al. REACTIVE DIFFUSION IN Ni - Al SYSTEM. Karla Barabaszová a Monika Losertová a Jaromír Drápala a REAKTIVNÍ DIFUZE V SYSTÉMU - REACTIVE DIFFUSION IN - SYSTEM Karla Barabaszová a Monika Losertová a Jaromír Drápala a a VŠB - TU Ostrava, 17.listopadu 15, 708 00 Ostrava - Poruba, ČR, E-mail.: Karla.Barabaszova@vsb.cz,

Více

4.4 Exploratorní analýza struktury objektů (EDA)

4.4 Exploratorní analýza struktury objektů (EDA) 4.4 Exploratorní analýza struktury objektů (EDA) Průzkumová analýza vícerozměrných dat je stejně jako u jednorozměrných dat založena na vyšetření grafckých dagnostk. K tomuto účelu se využívá různých technk

Více

1 Elektrotechnika 1. 9:00 hod. G 0, 25

1 Elektrotechnika 1. 9:00 hod. G 0, 25 A 9: hod. Elektrotechnka a) Napětí stejnosměrného zdroje naprázdno je = 5 V. Př proudu A je svorkové napětí V. Vytvořte napěťový a proudový model tohoto reálného zdroje. b) Pomocí přepočtu napěťových zdrojů

Více

Sorpce a desorpce uranu ve vybraných píscích za dynamických podmínek. Ustav jaderného výzkumu Řež a.s., 25068 Husinec-Řež 130 (e-mail: pas@ujv.

Sorpce a desorpce uranu ve vybraných píscích za dynamických podmínek. Ustav jaderného výzkumu Řež a.s., 25068 Husinec-Řež 130 (e-mail: pas@ujv. Sorpce a desorpce uranu ve vybraných píscích za dynamckých podmínek Palágy Stefan Ustav jaderného výzkumu Řež a.s., 25068 Husnec-Řež 130 (e-mal: pas@ujv.cz) Transport a mgrace radonukldů, zejména aktndů

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ TERMODYNAMIKA A STATISTICKÁ FYZIKA DALIBOR DVOŘÁK

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ TERMODYNAMIKA A STATISTICKÁ FYZIKA DALIBOR DVOŘÁK OSTRAVSKÁ UNIVERZITA V OSTRAVĚ TERMODYNAMIKA A STATISTICKÁ FYZIKA DALIBOR DVOŘÁK OSTRAVA 004 - Recenzent: Doc RNDr Ladslav Sklenák, CSc Prof RNDr Vlém Mádr, CSc Název: Termodynamka a statstcká fyzka Autor:

Více

Využití nástrojů GIS při analýze vztahů socio-ekonomických faktorů a úrovně sociální péče

Využití nástrojů GIS při analýze vztahů socio-ekonomických faktorů a úrovně sociální péče Využtí nástrojů GIS př analýze vztahů soco-ekonomckých faktorů a úrovně socální péče Renata Klufová Katedra aplkované matematky a nformatky, Ekonomcká fakulta JU, Studentská 13 370 05 České Budějovce,

Více

Highspeed Synchronous Motor Torque Control

Highspeed Synchronous Motor Torque Control . Regulace momentu vysokootáčkového synchronního motoru Jaroslav Novák, Martn Novák, ČVUT v Praze, Fakulta strojní, Zdeněk Čeřovský, ČVUT v Praze, Fakulta elektrotechncká Hghspeed Synchronous Motor Torque

Více

ZAHRADA FOTOELEKTRONOVÁ SPEKTROSKOPIE VE TŘETÍM TISÍCILETÍ ZDENĚK BASTL. Obsah. 2. Metody fotoelektronové spektroskopie

ZAHRADA FOTOELEKTRONOVÁ SPEKTROSKOPIE VE TŘETÍM TISÍCILETÍ ZDENĚK BASTL. Obsah. 2. Metody fotoelektronové spektroskopie ZAHRADA FOTOELEKTRONOVÁ SPEKTROSKOPIE VE TŘETÍM TISÍCILETÍ ZDENĚK BASTL Ústav fyzkální cheme J. Heyrovského, Akademe věd České republky, v.v.., Dolejškova 3, 182 23 Praha 8 Došlo 4.8.08, přjato 18.12.08.

Více

Grantový řád Vysoké školy ekonomické v Praze

Grantový řád Vysoké školy ekonomické v Praze Vysoké školy ekonomcké v Praze Strana / 6 Grantový řád Vysoké školy ekonomcké v Praze Anotace: Tato směrnce s celoškolskou působností stanoví zásady systému pro poskytování účelové podpory na specfcký

Více

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny 0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky LOGICKÉ OBVODY pro kombnované a dstanční studum Zdeněk Dvš Zdeňka Chmelíková Iva Petříková Ostrava ZDENĚK DIVIŠ, ZDEŇKA

Více

6.10.2009. Fakta o požárech a explozích. Hoření. Exploze. Hoření uhlovodíku. Hoření Exploze. Bezpečnost chemických výrob N111001

6.10.2009. Fakta o požárech a explozích. Hoření. Exploze. Hoření uhlovodíku. Hoření Exploze. Bezpečnost chemických výrob N111001 6..29 Bezpečnost chemckých výrob N Rzka spojená s hořlavým látkam Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostn@vscht.cz Povaha procesů hoření a výbuchu Požární charakterstk látek Prostředk

Více