Aplikace simulačních metod ve spolehlivosti

Rozměr: px
Začít zobrazení ze stránky:

Download "Aplikace simulačních metod ve spolehlivosti"

Transkript

1 XXVI. ASR '2001 Semnar, Instruments and Control, Ostrava, Aprl 26-27, 2001 Paper 40 Aplkace smulačních metod ve spolehlvost MARTINEK, Vlastml Ing., Ústav automatzace a nformatky, FSI VUT v Brně, Techncká 2, Brno, Abstrakt: Příspěvek se zabývá konstrukcí generátorů pseudonáhodných čísel, konkrétně typckým generátory rovnoměrného rozdělení, všímá s jejch vlastností a vhodnost použtí. Dále pojednává o statstckém posuzování kvalty generátorů a navrhuje obecný rámec pro jejch ucelené testování. V dalším jsou dskutovány metody transformace náhodných velčn a vhodnost jejch použtí př vývoj smulačních algortmů. V závěru je přblížen typcký příklad spolehlvostní úlohy převedené na smulační model. Klíčová slova: smulace, generátory, testování, transformace, spolehlvost 1 Úvod Řešení technckých úloh z oblast spolehlvost provází celá řada problémů a k jejch řešení lze přstupovat různým způsobem [Marek, P. et al, 1996], [Teplý, B. & Novák, D., 1999], [Bílý, M. & Sedláček, J., 1983]. Dá se říc, že současná teore metody řešení spolehlvost vycházejí ze dvou základních pohledů. První je jstou dealzací, stojící na pevných modelových představách aprorní povahy (sem patří tradční klascké výpočty), tj. jde o snahu dosáhnout jsté úrovně spolehlvost. Druhý pohled je pravým opakem předcházejícího, neboť se opírá o aposterorní nformac náhodného charakteru, která se pojí s konkrétním provozním režmy služby dané konstrukce. Tj. jde o skutečnou spolehlvost konstrukce v provozu, která je zpravdla výrazně nžší. Mnohdy je složtost úlohy tak velká, že je výhodné problém jejího řešení převést na řešení smulačního modelu. Se znalostm rozložení náhodné velčny vstupující do modelu a přechodové funkce, tedy transformace dávající do vztahu vstup a výstup, spočívá řešení v nalezení transformovaného rozdělení náhodné velčny, která nás zajímá. Pro řešení úloh spolehlvost byla vyvnuta řada výpočtových programů a jedním z nch je např. MSTAR [Marek, P. et al, 1996]. Ovšem př vzuálním zpracování a nterpretac výsledků starších verzí tohoto programu vyšlo najevo, že je nutno dbát zvýšené opatrnost př výběru kvaltního generátoru pseudonáhodných čísel. Kvalta výsledků smulace často závsí na kvaltě prvotních náhodných vstupů, neboť jakékolv případné chyby na vstupech se pak lavnovtě šíří a mohou znehodnott celý model. Navíc v mnoha programových systémech nejsou generátory v nch ntegrované njak popsány, chovají se jako černé skříňky o jejchž vlastnostech nc nevíme a jejch kvaltu je tedy nutné testovat. Další analýza výsledků programu vedla k dskus tzv. ježatost hstogramu [Popela, P., 1996]. Podrobnějším zkoumáním a s přspěním autorů programu bylo zjštěno, že náhodné vstupy jsou získávány transformací pseudonáhodné posloupnost čísel, generované programovým prostředky. Tímto byla vedle kvalty použtých generátorů posuzována také kvalta a vhodnost různých typů transformace náhodné velčny

2 2 Otázky generování náhodné velčny 2.1 Náhodnost v smulačním modelu Za smulační metody se považují metody, které modelují reálné jevy stochastcké povahy. Smulací se obvykle rozumí numercká technka provádění hromadných expermentů s modely pomocí počítače [Lews, P. A. W. & Oraw, E. J., 1989]. Typcký postup řešení smulační úlohy je následující: 1. Sestavt matematcký model popsující reálnou stuac. 2. Generovat náhodná čísla z rovnoměrného rozdělení a transformovat je na náhodná čísla z rozdělení požadovaného pro vstupní velčny. 3. Smulovat hodnoty velčn charakterzující model a tyto hodnoty vhodným způsobem regstrovat. 4. Zpracovat a nterpretovat výsledky. Rovnoměrné rozdělení se používá v stuac, kdy o četnostech výsledků přílš mnoho nevíme. Je zřejmé, že př použtí tohoto rozdělení žádné možné výsledky nezvýhodňujeme, a z důvodu nedostatku nformací je považujeme za rovnocenné. Rovnoměrné rozdělení lze dále použít př generování hodnot z jných rozdělení. 2.2 Typcké generátory rovnoměrného rozdělení Cílem používání generátoru je získat posloupnost hodnot, které reprezentují realzace náhodné velčny. Mnoho programovacích jazyků dnes obsahuje ve svých knhovnách procedury, poskytující pseudonáhodná čísla z předem zadaného ntervalu. V mnulost se pro získání čísel jako realzací náhodného výběru z rovnoměrného rozdělení používaly mechancké generátory (např. kostky a rychle se otáčející kotouče), fyzkální generátory (na prncpu zářč - detektor), tabulky náhodných čísel [Hurt, J., 1982]. Z důvodu mnohých technckých pravděpodobnostních problémů př jejch použtí, vznkaly generátory založené na artmetckých procedurách. Použtí rekurentních vzorců př generování náhodné posloupnost sebou přneslo množství výhod. U mechanckých a fyzkálních generátorů neexstovala možnost opakované kontroly výpočtů, neboť realzace takto generovaných náhodných čísel byla unkátní. Navíc bylo možno s rozvojem technky využívat stále se zvyšujícího výpočetního výkonu počítačů. V současnost jsou kromě hardwarových generátorů užívaných v oblast kryptografe a ochrany dat těm nejpoužívanějším právě generátory softwarové. 2.3 Obecné kongruenční generátory Tato skupna generátorů v prax nakonec zcela převládla díky dobrým vlastnostem řady z nch a šroké škále jejch modfkací. Posloupnost pseudonáhodných čísel z ntervalu [0;m) je generována na základě obecného rekurentního vzorce x a x + a n + 1 = ( 0 n + K k n k + x c) mod m Vhodnou volbou parametrů generátorů lze nalézt nepřeberné množství jejch modfkací, které budou mít požadované vlastnost. Mnohdy má PRNG (pseudo random number generator) vlastnost, která se může zdát na první pohled špatná, mohou však exstovat příklady, kdy se může dobře hodt. Obecně lze říc, že ke každému PRNG můžeme najít takový úhel pohledu, z něhož bude vypadat dobře

3 2.4 Vlastnost generátorů Požadavky na kvaltní generátor se mohou lšt. Zaleží především na představách a požadavcích dotyčného a také na druhu aplkace v níž je generátor použt. Unverzální PRNG vyhovující nárokům každého zájemce nebyl a zřejmě an nebude nkdy nalezen, neboť vzhledem k determnstckému charakteru PRNG lze ke každému z nch najít aplkac, pro nž generovaná posloupnost nebude dostatečně dobrá. Nezbývá tedy, než hledat alespoň pro daný případ vyhovující optmum. Škála generátorů dost dobrých splňujících dílčí požadavky, je naštěstí dost šroká a stále nabízí velké množství varací. Ke klíčovým vlastnostem a nečastějším požadavkům na PRNG patří: Rovnoměrné pokrytí celé množny hodnot Maxmální peroda generátoru Nízká korelace mez prvky posloupnost Úspěšný průchod některou baterí statstckých testů Kromě těchto nejdůležtějších vlastností může být také vyžadována realzovatelnost na 8-, 16-, 32- č 64btových procesorech, jednoduchost (nebo složtost) výpočtu, možnost jít s výpočtem čísel v posloupnost zpět dopředu bez počítání mezvýsledků, snadnost mplementace v konkrétním programovacím jazyku, možnost kdykol zopakovat generovanou posloupnost pro kontrolní účely a v neposlední řadě rychlost generování čísel. 2.5 Useknutá rozdělení Dále je vhodné poznamenat, že v smulačních algortmech je možno s výhodou využít useknutá rozdělení neboť řada náhodných velčn vstupujících do modelu nabývá svých hodnot v určtém rozpětí, jehož překročení často není přípustné. 3 Způsoby testování kvalty PRNG 3.1 Statstcké posuzování Teoretcké zkoumání vlastností generátorů je obtížné v jednoduchých případech. Proto se používají statstcké metody, které testují chování generátorů na vybraných vzorcích. Standardně se generovaná posloupnost x 1,,x n pseudonáhodných hodnot studovaného generátoru posuzuje pomocí statstckých testů. S výhodou lze použít testy užívané ve statstcké analýze časových řad [Anděl, J., 1976]. 3.2 Postup př testování Samotné testování generátorů lze provádět různým způsobem. Pokud známe tvar použtého generátoru, lze hodnocení provést teoretcky (např. posouzení perodcty a trendu), případně je možno vyjít z publkovaných výsledků [Rpley, B. D., 1987], [Popela, P., 1996] a [Klíma, V., 1998]. Stuace je však odlšná, jestlže používáme nezdokumentovaný generátor typu black-box. Pak je nutné generovanou posloupnost otestovat dle potřeby na celé sér statstckých procedur. Přtom je vhodné volt testy podle očekávaného použtí generátoru, např. př řešení smulačních úloh ve spolehlvost hrají významnou rol chvosty rozdělení je tedy vhodné zaměřt testování na ně. 3.3 Posuzované statstcké vlastnost Zajímá nás staconarta generované posloupnost, zejména zjšťujeme exstenc případného nenulového trendu. Není třeba zabývat se exstencí trendu přílš podrobně, neboť jeho přítomnost v testované posloupnost lze odhalt nejsnáze, a navíc je přítomnost trendu známkou jen skutečně nekvaltního generátoru. Dále se zabýváme perodctou, tedy exstencí významných cyklů v generované posloupnost. Je vhodné zobrazt zkoumanou posloupnost pomocí lomené čáry a pak analýzou grafu získat první odhad koefcentů nosné vlny

4 Otázka nezávslost generovaných hodnot se posuzuje pomocí nulovost autokorelací. Případně s všímáme bodů zvratu. Testy se dále ověřuje, zda daná posloupnost je realzací rozdělení základního souboru. Testy chí-kvadrát a Kolmogorov-Smrnov mohou být doplněny odhadem parametrů rozdělení. Základním úkolem je testovat rovnoměrnost rozložení generovaných hodnot. Z programátorského hledska je též nutné zhodnott každý generátor podle nároků na paměť a čas. Jak je obvyklé, nelze často dosáhnout uspokojvých výsledků u obou parametrů. Zřejmě použtí tabelace je náročnější na paměť, ale výpočty urychluje. 4 Návrh struktury testovacího systému V prax se jako nejschůdnější cesta ke zjštění statstckých vlastností daného generátoru jeví jeho podrobení bater testů. V návaznost na předchozí odstavce byla navržena struktura balíku testovacích procedur. Výsledkem návrhu může být základ budoucího expertního systému, lépe řečeno struktura navazujících a vzájemně propojených statstckých testů. STATIONARITY MAIN REPORT LOCAL REPORT PERIODICITY INDEPENDENCY nez.vzual <- functon(data){ #autokorelacn fce acf(data,m an='autocorrelaton functon') #lagged plot lag.plot(data[1:set1],lags=4,la yout=c(2,2)).. UNIFORMITY Obrázek 1: Schéma struktury balíku testovacích procedur (ukázka programového kódu vz. [Mathsoft, 1995]) - 4 -

5 Posloupnost náhodných čísel je v tomto systému podrobena čtyřem základním typům statstckých testů. Jednotlvé procedury jsou vzájemně provázané, tedy výsledek jednoho testu podmňuje jstým způsobem směr dalšího postupu. Podrobné výsledky každého použtého testu jsou zobrazovány a ukládány, celkový přehled o testování je zobrazen zvlášť. Testovaná data postupně protékají shora dolů, přčemž je umožněn jak opakovaný průchod lbovolným testem, tak celým systémem s možností resamplngu zkoumaných dat. 5 Transformace náhodné velčny 5.1 Transformace teoretckých rozdělení Dostatečně přesnou nformac o rozdělení transformované náhodné velčny by nám mohlo dát jeho analytcké vyjádření. Jak je ovšem vdět z následujícího odstavce, jeho získání je většnou spojeno se značným obtížem. 5.2 Obecná transformace Předpokládejme, že známe rozdělení náhodného vektoru X ~ F(t) (tj. se zadanou sdruženou dstrbuční funkcí F) a transformac h. Hledáme rozdělení náhodného vektoru Y. Uvažujme dále jednu jeho složku Y, přčemž hledáme její margnální dstrbuční funkc G (u ). Potom platí: G ( u ) = P( Y < u ) = df( t ). h ( t) < u Výpočet uvedeného vícerozměrného ntegrálu je většnou netrvální, a navíc pouze v případě nezávslost složek Y lze vyjádřt jeho sdruženou dstrbuční funkc G(u) poměrně jednoduše jako m = 1 G ( u ). Jako další možnost se nabízí použít explctní vztahy pro některá konkrétní rozdělení a transformace nebo s využtím centrální lmtní věty použít aproxmace rozdělení [Popela, P., 1996]. 5.3 Použtelnost teoretckých výsledků Použtelnost uvedených dále v lteratuře zobecňovaných teoretckých výsledků je však omezená. Je to dáno tím, že reálné smulační modely mají složtou nelneární strukturu, kterou obvykle nelze aproxmovat č reprezentovat uvedeným vztahy. Proto teoretcké odvození výsledného rozdělení nebývá snadné a rovněž vzhledem k nelneartám většnou nelze použít aproxmace pomocí centrální lmtní věty, případně vět obecnějších nebo souvsejících (vz např. seznam lteratury v [Karpíšek, Z. & Škulová, M., 1997]). Z výše uvedených důvodů často nezbývá nc jného, než získat nformac o výstupním rozdělení smulací. Potřebujeme se zamyslet nad exstencí obecnějších transformací, které by umožnly pro prvotní rovnoměrné rozdělení získat hodnoty jného, nám vybraného rozdělení. Nejobecnější a zároveň nejvhodnější transformací, která umožňuje získat hodnoty z nám vybraného rozdělení je metoda nverzní transformace pomocí kvantlové funkce [Karpíšek, Z. & Škulová, M., 1997]

6 6 Proces smulace SADA GENERÁTORŮ USEKNUTÉHO ROZDĚLENÍ VSTUP MATEMATICKÝ MODEL INICIALIZACE VLASTNÍ CYKLUS SIMULACE VÝSTUP TRANSFORMOVANÉ ROZDĚLENÍ, VÝPOČET KVANTILŮ Obrázek 2: Schéma smulačního algortmu Následuje lustrační příklad ve kterém je z pravděpodobnostního pohledu posouzena možnost únavového porušení kmtající ocelové mostní stojky. Příklad je zpracován v systému S-PLUS [MATHSOFT, 1995]. Z dlouhodobého měření rychlost větru v dané lokaltě a zjštěného rozkmtu stojky byly stanoveny střední hodnoty rozkmtů nomnálního napětí a odpovídající střední hodnoty počtu cyklů za týden. Pravděpodobnost porušení byla vyjádřena z dstrbuční funkce doby žvota. Z Wöhlerovy křvky a s předpokladem, že všechny rozkmty napětí jsou poškozující, byl př uvážení Palmgren-Mnerovy hypotézy kumulace poškození sestaven matematcký model smulace. Obrázek 3: Vstupní data smulace Výsledkem smulace je hstogram četností transformovaného rozdělení pravděpodobnost porušení a odhad základních charakterstk výstupního rozdělení. Spolehlvost mostní stojky je následně určena ze zvolených kvantlů. Po krocích Mn : Max : Mean : Medan: Var : StDev. : Po krocích Mn : Max : Mean : Medan: Varance: StDev. : Obrázek 4 : Výsledný hstogram četností Tabulka 1 : Charakterstky výstupního rozdělení - 6 -

7 7 Závěr V předloženém příspěvku byly dskutovány problémy př použtí smulačních metod v oblast spolehlvost. Prvním z nch byla otázka kvalty PRNG vstupujících do smulačního modelu. Byly popsány a analyzovány některé typcké generátory rovnoměrného rozdělení a jejch klíčové vlastnost. S ohledem na výhody statstckého posuzování byl navržen obecný rámec pro jejch ucelené testování. V další část byla dskutována otázka kvalty a vhodnost různých typů transformace náhodné velčny v návaznost na souvsející problémy pozorované u některých výpočtových systémů. Se znalostí kvaltních generátorů, vhodné transformace a s využtím vlastností useknutých rozdělení dostáváme všechny potřebné nástroje nutné k realzac výpočtu spolehlvostních úloh, jejchž řešení bylo převedeno na řešení smulačního modelu [Lews, P. A. W. & Oraw, E. J., 1989]. Problém byl řešen v rámc vědecko-výzkumného záměru CEZ: J22/98: Netradční metody studa komplexních a neurčtých systémů. 8 Lteratura KARPÍŠEK, Z. & ŠIKULOVÁ, M. Matematka IV, VUT Brno, 1997 HURT, J. Smulační metody, SPN Praha, 1982 RIPLEY, B. D. Stochastc smulaton, J. Wley & Sons, 1987 MATHSOFT, S-PLUS v3.3 Reference manual, Mathsoft, 1995 MATHSOFT, S-PLUS v3.3 User`s manual, Mathsoft, 1995 MATHSOFT, S-PLUS v3.3 Programmer s manual, Mathsoft, 1995 MATHSOFT, S-PLUS v3.3 Programmer s manual supplement, Mathsoft, 1995 MAREK, P. et al: Smulaton based relablty asssessment, CRC Press, 1996 POPELA, P. Generátory náhodných čísel a jejch testování VZ GAČR 103/94/0562, Brno, 1996 TEPLÝ, B. & NOVÁK, D. Spolehlvost stavebních konstrukcí, CERM Brno, 1999 BÍLÝ, M. & SEDLÁČEK, J. Spoľahlvosť mechanckých konštrukcí, VEDA, 1983 KLÍMA, V. Generátory náhodných čísel I-IV, CHIP č.3, 4, 5, 6, 1998 ANDĚL, J. Statstcká analýza časových řad, SNTL Praha 1976 LEWIS, P. A. W. & ORAW, E. J. Smulaton methodology, Wadsworth Inc

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny 0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se

Více

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace Tetlní zkušebnctv ebnctví II Jří Mltky Škály měření epřímá měření Teore měření Kalbrace Základní pojmy I PRAVDĚPODOBOST Jev A, byl sledován v m pokusech. astal celkem m a krát. Relatvní četnost výskytu

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů Optmalzační přístup př plánování rekonstrukcí vodovodních řadů Ladslav Tuhovčák*, Pavel Dvořák**, Jaroslav Raclavský*, Pavel Vščor*, Pavel Valkovč* * Ústav vodního hospodářství obcí, Fakulta stavební VUT

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav stavební mechanky Doc. Ing. Zdeněk Kala, Ph.D. MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES TEZE

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2007, ročník VII, řada stavební článek č.???

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2007, ročník VII, řada stavební článek č.??? Sborník vědeckých prací Vysoké školy báňské - Techncké unverzty Ostrava číslo, rok 007, ročník VII, řada stavební článek č.??? Petr Konečný SIMULACE KORELOVANÝCH NEPARAMETRICKÝCH ROZDĚLENÍ V RÁMCI METODY

Více

Numerické metody optimalizace

Numerické metody optimalizace Numercké metody optmalzace Numercal optmzaton methods Bc. Mloš Jurek Dplomová práce 2007 Abstrakt Abstrakt česky Optmalzační metody představují vyhledávání etrémů reálných funkcí jedné nebo více reálných

Více

Staré mapy TEMAP - elearning

Staré mapy TEMAP - elearning Staré mapy TEMAP - elearnng Modul 4 Kartometrcké analýzy Ing. Markéta Potůčková, Ph.D., 2013 Přírodovědecká fakulta UK v Praze Katedra aplkované geonformatky a kartografe Kartometre a kartometrcké vlastnost

Více

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD XV. konference absolventů studa technckého znalectví s meznárodní účastí MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD Zdeněk Mrázek 1 1. Ř ešení stř etu u fngovaných

Více

Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt

Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt ALGORITMUS DIFERENCIÁLNÍ EVOLUCE A JEHO UŽITÍ PRO IDENTIFIKACI NUL A PÓLŮ PŘE- NOSOVÉ FUNKCE FILTRU Přemysl Žška, Pravoslav Martnek Katedra teore obvodů, ČVUT Praha, Česká republka Abstrakt V příspěvku

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

Neřešené příklady k procvičení

Neřešené příklady k procvičení Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky Katedra aplkované matematky Neřešené příklady k procvčení Lenka Šmonová Ostrava, 2006 Následující sbírka neřešených příkladů

Více

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits

MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electric Parameter Measurement in PWM Powered Circuits Techncká 4, 66 07 Praha 6 MĚŘENÍ ELEKTRICKÝCH PARAMETRŮ V OBVODECH S PWM ŘÍZENÝMI ZDROJI NAPĚTÍ Electrc Parameter Measurement n PWM Powered Crcuts Martn Novák, Marek Čambál, Jaroslav Novák Abstrakt: V

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

HUDEBNÍ EFEKT DISTORTION VYUŽÍVAJÍCÍ ZPRACOVÁNÍ PŘÍRŮSTKŮ SIGNÁLŮ ČASOVĚ

HUDEBNÍ EFEKT DISTORTION VYUŽÍVAJÍCÍ ZPRACOVÁNÍ PŘÍRŮSTKŮ SIGNÁLŮ ČASOVĚ HUDEBÍ EFEKT DISTORTIO VYUŽÍVAJÍCÍ ZPRACOVÁÍ PŘÍRŮSTKŮ SIGÁLŮ ČASOVĚ VARIATÍM SYSTÉMEM Ing. Jaromír Mačák Ústav telekomunkací, FEKT VUT, Purkyňova 118, Brno Emal: xmacak04@stud.feec.vutbr.cz Hudební efekt

Více

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI - 13 - í Průchod a rozptyl záření gama ve vrstvách materálu Prof. ng. J. Šeda, DrSc. KDAZ - PJP Na našem pracovšt byl vypracován program umožňující modelovat průchod záření gama metodou Monte Carlo, homogenním

Více

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...)

Čísla přiřazená elementárním jevům tvoří obor hodnot M proměnné, kterou nazýváme náhodná veličina (označujeme X, Y, Z,...) . NÁHODNÁ VELIČINA Průvodce studem V předchozích kaptolách jste se seznáml s kombnatorkou a pravděpodobností jevů. Tyto znalost použjeme v této kaptole, zavedeme pojem náhodná velčna, funkce, které náhodnou

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

4.4 Exploratorní analýza struktury objektů (EDA)

4.4 Exploratorní analýza struktury objektů (EDA) 4.4 Exploratorní analýza struktury objektů (EDA) Průzkumová analýza vícerozměrných dat je stejně jako u jednorozměrných dat založena na vyšetření grafckých dagnostk. K tomuto účelu se využívá různých technk

Více

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM 7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM Průvodce studem Předchozí kaptoly byly věnovány pravděpodobnost a tomu, co s tímto pojmem souvsí. Nyní znalost z počtu pravděpodobnost aplkujeme ve statstce. Předpokládané

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ

PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ Ing. David KUDLÁČEK, Katedra stavební mechaniky, Fakulta stavební, VŠB TUO, Ludvíka Podéště 1875, 708 33 Ostrava Poruba, tel.: 59

Více

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST Abstrakt ANALÝZA ZKA A CTLOST JAKO SOUČÁST STUDE POVEDTELNOST 1. ČÁST Jří Marek Úspěšnost nvestce závsí na tom, jaké nejstoty ovlvní její předpokládaný žvotní cyklus. Pomocí managementu rzka a analýzy

Více

2 TESTOVÁNÍ HYPOTÉZ. RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevil jsem pravdu! ale raději: Objevil jsem jednu z pravd! Chalil Gibran

2 TESTOVÁNÍ HYPOTÉZ. RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevil jsem pravdu! ale raději: Objevil jsem jednu z pravd! Chalil Gibran Elena Melcová, Radmla Stoklasová a Jaroslav Ramík; Statstcké programy TESTOVÁNÍ HYPOTÉZ RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevl jsem pravdu! ale raděj: Objevl jsem jednu z pravd! Chall Gbran Testování hypotéz

Více

6 LINEÁRNÍ REGRESNÍ MODELY

6 LINEÁRNÍ REGRESNÍ MODELY 1 6 LINEÁRNÍ REGRESNÍ MODELY Př budování regresních modelů se běžně užívá metody nejmenších čtverců. Metoda nejmenších čtverců poskytuje postačující odhady parametrů jenom př současném splnění všech předpokladů

Více

ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE

ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE Jana Valečková 1 1 Vysoká škola báňská-techncká unverzta Ostrava, Ekonomcká fakulta, Sokolská

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

Directional Vehicle Stability Prototyping Using HIL Simulation Ověření systému řízením jízdy automobilu metodou HIL simulací

Directional Vehicle Stability Prototyping Using HIL Simulation Ověření systému řízením jízdy automobilu metodou HIL simulací XXXII. Semnar AS '2007 Instruments and ontrol, arana, Smutný, Kočí & Babuch (eds) 2007, VŠB-TUO, Ostrava, ISBN 978-80-248-1272-4 Drectonal Vehcle Stablty rototypng Usng HIL Smulaton Ověření systému řízením

Více

Hodnocení účinnosti údržby

Hodnocení účinnosti údržby Hodnocení účnnost ekonomka, pojmy, základní nástroje a hodnocení Náklady na údržbu jsou nutné k obnovení funkce výrobního zařízení Je potřeba se zabývat ekonomckou efektvností a hodnocením Je třeba řešt

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Optimalizace metod pro multimediální aplikace v geodézii v prostředí IP sítí

Optimalizace metod pro multimediální aplikace v geodézii v prostředí IP sítí Acta Montanstca Slovaca Ročník 12 (2007), mmoradne číslo 3, 311-317 Optmalzace metod pro multmedální aplkace v geodéz v prostředí IP sítí Mlan Berka 1 Optmzaton of Methods for Geodetc Data for Multcast

Více

Konverze kmitočtu Štěpán Matějka

Konverze kmitočtu Štěpán Matějka 1.Úvod teoretcký pops Konverze kmtočtu Štěpán Matějka Směšovač měnč kmtočtu je obvod, který přeměňuje vstupní sgnál s kmtočtem na výstupní sgnál o kmtočtu IF. Někdy bývá tento proces označován také jako

Více

XXX. ASR '2005 Seminar, Instruments and Control, Ostrava, April 29,

XXX. ASR '2005 Seminar, Instruments and Control, Ostrava, April 29, XXX. ASR '2005 Semnar, Instruments and Control, Ostrava, Aprl 29, 2005 449 Usng flockng Algorthm and Vorono Dagram for Moton Plannng of a Swarm of Robots Plánování pohybu skupny robotů pomocí flockng algortmu

Více

PŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ

PŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ PŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ JIŘÍ MILITKÝ, Katedra textlních materálů, Techncká unversta v Lberc, MILAN MELOUN, Katedra analytcké cheme, Unversta Pardubce, Pardubce. Úvod Je známo, že měření

Více

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy Posuzování dynamky pohybu drážních vozdel ze záznamu jejch jízdy Ing. Jaromír Šroký, Ph.D. ŠB-Techncká unverzta Ostrava, Fakulta strojní, Insttut dopravy, tel: +40 597 34 375, jaromr.sroky@vsb.cz Úvod

Více

Validation of the selected factors impact on the insured accident

Validation of the selected factors impact on the insured accident 6 th Internatonal Scentfc Conference Managng and Modellng of Fnancal Rsks Ostrava VŠB-TU Ostrava, Faculty of Economcs,Fnance Department 0 th th September 202 Valdaton of the selected factors mpact on the

Více

URČOVÁNÍ TRENDŮ A JEJICH VÝZNAM PRO EKONOMIKU

URČOVÁNÍ TRENDŮ A JEJICH VÝZNAM PRO EKONOMIKU URČOVÁNÍ TRENDŮ A JEJICH VÝZNAM PRO EKONOMIKU Rudolf Kampf ÚVOD Pro marketng, management a vůbec pro člověka je jstě důležté vědět, jak se bude vyvíjet stuace v ekonomce, stuace v určtém státě z hledska

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra matematky Bakalářská práce Zpracování výsledků vstupních testů z matematky Plzeň, 13 Tereza Pazderníková Prohlášení Prohlašuj, že jsem bakalářskou

Více

Posuzování výkonnosti projektů a projektového řízení

Posuzování výkonnosti projektů a projektového řízení Posuzování výkonnost projektů a projektového řízení Ing. Jarmla Ircngová Západočeská unverzta v Plzn, Fakulta ekonomcká, Katedra managementu, novací a projektů jrcngo@kp.zcu.cz Abstrakt V současnost je

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky LOGICKÉ OBVODY pro kombnované a dstanční studum Zdeněk Dvš Zdeňka Chmelíková Iva Petříková Ostrava ZDENĚK DIVIŠ, ZDEŇKA

Více

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU AALÝZA RIZIKA A JEHO CITLIVOSTI V IVESTIČÍM PROCESU Jří Marek ) ABSTRAKT Príspevek nformuje o uplatnene manažmentu rzka v nvestčnom procese. Uvádza príklad kalkulace rzka a analýzu jeho ctlvost. Kľúčové

Více

MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN. The End Stage Renal Disease Treatment Model

MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN. The End Stage Renal Disease Treatment Model ROČNÍK LXXII, 2003, č. 1 VOJENSKÉ ZDRAVOTNICKÉ LISTY 5 MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN 1 Karel ANTOŠ, 2 Hana SKALSKÁ, 1 Bruno JEŽEK, 1 Mroslav PROCHÁZKA, 1 Roman PRYMULA 1 Vojenská lékařská akademe

Více

Simulační modely. Kdy použít simulaci?

Simulační modely. Kdy použít simulaci? Simulační modely Simulace z lat. Simulare (napodobení). Princip simulace spočívá v sestavení modelu reálného systému a provádění opakovaných experimentů s tímto modelem. Simulaci je nutno považovat za

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

Aplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček

Aplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček Aplkace L-Ma metody na scntgrafcké vyšetření příštítných tělísek P. Karhan, P. Fala, J. Ptáček Vyšetření příštítných tělísek dagnostka hyperparatyreózy: lokalzace tkáně příštítných tělísek neexstence radofarmaka

Více

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum Zpracování fyzkálních měření Studjní text pro fyzkální praktkum Mlan Červenka, katedra fyzky FEL-ČVUT mlan.cervenka@fel.cvut.cz 3. ledna 03 ObrázeknattulnístraněpocházízknhyogeometraměřeníodJacobaKöbela(460

Více

Vícekriteriální rozhodování. Typy kritérií

Vícekriteriální rozhodování. Typy kritérií Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

7. Analýza rozptylu jednoduchého třídění

7. Analýza rozptylu jednoduchého třídění 7. nalýza rozptylu jednoduchého třídění - V této kaptole se budeme zabývat vztahem mez znaky kvanttatvním (kolk) a kvaltatvním (kategorálním, jaké jsou) Doposud jsme schopn u nch hodnott: - podmíněné charakterstky

Více

Základy finanční matematiky

Základy finanční matematiky Hodna 38 Strana 1/10 Gymnázum Budějovcká Voltelný předmět Ekonome - jednoletý BLOK ČÍSLO 6 Základy fnanční matematky ředpokládaný počet : 5 hodn oužtá lteratura : Frantšek Freberg Fnanční teore a fnancování

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

Specifikace, alokace a optimalizace požadavků na spolehlivost

Specifikace, alokace a optimalizace požadavků na spolehlivost ČESKÁ SPOLEČNOST PRO JAKOST Novotného lávka 5, 116 68 Praha 1 47. SEMINÁŘ ODBORNÉ SKUPINY PRO SPOLEHLIVOST pořádané výborem Odborné skupny pro spolehlvost k problematce Specfkace, alokace a optmalzace

Více

REAKCE POPTÁVKY DOMÁCNOSTÍ PO ENERGII NA ZVYŠOVÁNÍ ENERGETICKÉ ÚČINNOSTI: TEORIE A JEJÍ DŮSLEDKY PRO KONSTRUKCI EMPIRICKY OVĚŘITELNÝCH MODELŮ

REAKCE POPTÁVKY DOMÁCNOSTÍ PO ENERGII NA ZVYŠOVÁNÍ ENERGETICKÉ ÚČINNOSTI: TEORIE A JEJÍ DŮSLEDKY PRO KONSTRUKCI EMPIRICKY OVĚŘITELNÝCH MODELŮ RAKC POPTÁVKY DOMÁCNOTÍ PO NRGII NA ZVYŠOVÁNÍ NRGTICKÉ ÚČINNOTI: TORI A JJÍ DŮLDKY PRO KONTRUKCI MPIRICKY OVĚŘITLNÝCH MODLŮ tela Rubínová, Unverzta Karlova v Praze, Centrum pro otázky žvotního prostředí,

Více

Téma 2 Simulační metody typu Monte Carlo

Téma 2 Simulační metody typu Monte Carlo Spolehlivost a bezpečnost staveb, 4.ročník bakalářského studia Téma 2 Simulační metody typu Monte Carlo Princip simulačních metod typu Monte Carlo Metoda Simulation Based Reliability Assessment (SBRA)

Více

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek 9.2.29 Bezpečnost chemckých výrob N Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostny@vscht.cz Analýza rzka Vymezení pojmu rzko Metody analýzy rzka Prncp analýzy rzka Struktura rzka spojeného

Více

popsat činnost základních zapojení převodníků U-f a f-u samostatně změřit zadanou úlohu

popsat činnost základních zapojení převodníků U-f a f-u samostatně změřit zadanou úlohu 7. Převodníky - f, f - Čas ke studu: 5 mnut Cíl Po prostudování tohoto odstavce budete umět popsat čnnost základních zapojení převodníků -f a f- samostatně změřt zadanou úlohu Výklad 7.. Převodníky - f

Více

Hodnocení využití parku vozidel

Hodnocení využití parku vozidel Hodnocení využtí parku vozdel Všechna kolejová vozdla přdělená jednotlvým DKV (provozním jednotkám) tvoří bez ohledu na jejch okamžté použtí jejch nventární stav. Evdenční stav se skládá z vozdel vlastního

Více

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Spolehlivost letadlové techniky

Spolehlivost letadlové techniky VYSOKÉ UČ ENÍ TECHNICKÉ V BRNĚ Fakulta strojního nženýrství Prof Ing Rudolf Holub, CSc Doc Ing Zdeněk Vntr, CSc Spolehlvost letadlové technky (elektroncká učebnce) Brno 00 OBSAH PŘEDMLUVA 4 ÚVOD5 STANDARDIZACE

Více

Měření příkonu míchadla při míchání suspenzí

Měření příkonu míchadla při míchání suspenzí U8 Ústav procesní a zpracovatelské technky FS ČVUT v Praze Měření příkonu rotačních íchadel př íchání suspenzí I. Úkol ěření V průyslu téěř 60% všech operacích, kdy je íchání používáno, představuje íchání

Více

Univerzita Pardubice Fakulta ekonomicko-správní. Modelování predikce časových řad návštěvnosti web domény pomocí SVM Bc.

Univerzita Pardubice Fakulta ekonomicko-správní. Modelování predikce časových řad návštěvnosti web domény pomocí SVM Bc. Unverzta Pardubce Fakulta ekonomcko-správní Modelování predkce časových řad návštěvnost web domény pomocí SVM Bc. Vlastml Flegl Dplomová práce 2011 Prohlašuj: Tuto prác jsem vypracoval samostatně. Veškeré

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Teoretické modely diskrétních náhodných veličin

Teoretické modely diskrétních náhodných veličin Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze

Více

Ing. Marek Němec PREDIKCE POTŘEBY VODY POMOCÍ NEURONOVÝCH SÍTÍ PREDICTION OF WATER REQUIREMENTS USING NEURAL NETWORK

Ing. Marek Němec PREDIKCE POTŘEBY VODY POMOCÍ NEURONOVÝCH SÍTÍ PREDICTION OF WATER REQUIREMENTS USING NEURAL NETWORK ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ Program doktorského studa: STAVEBNÍ INŽENÝRSTVÍ Obor doktorského studa: ZDRAVOTNÍ A EKOLOGICKÉ INŽENÝRSTVÍ Ing. Marek Němec PREDIKCE POTŘEBY VODY POMOCÍ

Více

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu

Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu Metoda Monte Carlo a její aplikace v problematice oceňování technologií Manuál k programu This software was created under the state subsidy of the Czech Republic within the research and development project

Více

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT

NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT NUMERICAL INTEGRATION AND DIFFERENTIATION OF SAMPLED TIME SIGNALS BY USING FFT J. Tuma Summary: The paper deals wth dfferentaton and ntegraton of sampled tme sgnals n the frequency doman usng the FFT and

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2 ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav

Více

Bezporuchovost a pohotovost

Bezporuchovost a pohotovost Bezporuchovost a pohotovost Materály z 59. semnáře odborné skupny pro spolehlvost Konaného dne 24. 2. 205 Česká společnost pro jakost, ovotného lávka 5, 6 68 raha, www.csq.cz ČJ 205 Obsah: Ing. Jan Kamencký,

Více

Modelování rizikových stavů v rodinných domech

Modelování rizikových stavů v rodinných domech 26. 28. června 2012, Mkulov Modelování rzkových stavů v rodnných domech Mlada Kozubková 1, Marán Bojko 2, Jaroslav Krutl 3 1 2 3 Vysoká škola báňská techncká unverzta Ostrava, Fakulta strojní, Katedra

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

BAYESŮV PRINCIP ZDENĚK PŮLPÁN

BAYESŮV PRINCIP ZDENĚK PŮLPÁN ROBUST 000, 7 4 c JČMF 00 BAYESŮV PRINCIP ZDENĚK PŮLPÁN Abstrakt. Poukážeme na možnost rozhodování pomocí Bayesova prncpu. Ten vychází z odhadu podmíněné pravděpodobnosta z předpokladu dsjunktního rozkladu

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 8 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 7 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,

Více

Náhodným vektorem rozumíme sloupcový vektor složený z náhodných veličin X = (X 1, X 2,

Náhodným vektorem rozumíme sloupcový vektor složený z náhodných veličin X = (X 1, X 2, Statstka I cvčení - 54-5 NÁHODNÝ VEKTOR Náhodným vektorem rozumíme sloupcový vektor složený z náhodných velčn = n který je charakterzován sdruženou smultánní dstrbuční unkcí ; F náhodný vektor s dskrétním

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více