1 - Úvod. Michael Šebek Automatické řízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Rozměr: px
Začít zobrazení ze stránky:

Download "1 - Úvod. Michael Šebek Automatické řízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti"

Transkript

1 1 - Úvod Michael Šebek Auomaické řízení 2016 Evroský sociální fond Praha & EU: Invesujeme do vaší budoucnosi

2 Základní názvosloví Auomaické řízení - Kyberneika a roboika Objek: konkréní auo (amo) Sysém: určiá čás objeku, kerou se zabýváme, řídíme, Moor, sojka, řízení směru (ESC), rychlosi (emoma), brzdění (ABS,EBS), rakce (TCS), érování (RSC), emise, sořeba, HVAC, elemaika, infoainmen, řízení kolony (AHS), Model: nějaký vhodný ois (rovnice, diagram, graf, rogram ) Různé modely sejného sysému ro různé účely: simulace, návrh, 2

3 Základní názvosloví Auomaické řízení - Kyberneika a roboika Sysémy obecné a zvlášní sousava reguláor, komenzáor, zákon řízení, celkový sysém, uzavřená smyčka r u d y n Signály nějaká fyzikální veličina (ozor: šika není drá ) vsu, akční zásah, reference orucha, rušení: měřená, neměřená výsu: řízený, měřený vniřní veličiny (savy) šum měření regulační odchylka (míra kvaliy) vsu u vsu u vsu u sav d x výsu y řízený výsu měřený výsu orucha y y c y m výsu 3

4 Základní názvosloví Auomaické řízení - Kyberneika a roboika Přímá vazba (PV, FF) ZV s oruchou a šumem měření Zěná vazba (ZV, FB) sousava reguláor ZV + FF od měřené oruchy Dva suně volnosi (TDF) reguláor PV + FF od reference a oruchy Michael Šebek ARI

5 Základní názvosloví Auomaické řízení - Kyberneika a roboika sojiý (čas) - diskréní (čas) - vzorkovaný rk ( ) uk ( ) uk ( ) y () u () y () uk ( ) k yk ( ) k r () A/D k D/A k varo vač k A/D yk ( ) SISO - MIMO k u y sousředěné - rozložené aramery, doravní zoždění neroměnný - roměnný v čase lineární - nelineární u 1 u 2 u m y y 1 2 y l 5

6 Auomaické řízení - Kyberneika a roboika x () = fx ( (), u(),) y() = hx ( (), u(),) výsu, sav, vsu, čas - obecně vekory Nelineární savový model Savová rovnice - vekorová nelineární diferenciální rovnice rvního řádu Výsuní rovnice - není diferenciální řešení závisí na vsuu a očáečním savu (a na oč. čase) Zvlášní říady: model nezávisí na osunu v čase, je v čase neroměnný (TI) auonomní sysém, neřízený sysém yu saická nelinearia y 1 f1 x1 u1 y =,,, f = x= u= y f n x n u m x( ) = x 0 0 x ( ) = fx ( ( ), u( )), x(0 ) = x y() = hx ( (), u()) x = fx ( ), y= hx ( ) y= hu ( ) Zvlášní y řešení: eriodické, zv. liminí cyklus ekvilibrium, rovnovážný, u(), () () ( (), ()) usálený sav e = ue xe = xe 0= x e = fxe ue 6 0

7 Auomaické řízení - Kyberneika a roboika Linearia (homogennos + adiivnos): obecný lineární sysém y = S u je lineární vzhledem k vsuu a výsuu, rávě když (ři sejných.) y = S u, y = S u y= S cu + cu = cy + c y ( ) ( ) ( ) Lineární sysémy mají sousu říjemných vlasnosí, keré umožňují užíva mnoho užiečných násrojů (frekvenční charakerisika, ) Lineární savový model má var x () = A() x() + B() u() x( 0) = x0 LTV y() = C() x() + D() u() Je-li navíc časově neroměnný, ak x () = Ax() + Bu() y() = Cx() + Du() x( ) = x Lineární savový model LTI ( ) Co děla, když náš sysém akový není? 7

8 Modely vsu-výsu (vnější) Auomaické řízení - Kyberneika a roboika Poisuje vsu, výsu a jejich vyšší derivace, vniřní veličiny římo ne Předokládá se, že říslušné derivace exisují, alesoň ve smyslu disribucí Obecné nelineární IO modely jsou dos divoké, kurz ARI vysačí s ( n) ( m) Dy ( ( ),, y ( ), y( ), ) = Nu ( ( ),, u ( ), u( ), ) a jeho lineárním LTV říadem ( n) ( m) a () y () + + a () y + a () y() = b () u () + + b () u () + b () u() n 1 0 m 1 0 jehož řešení závisí na vsuu (včeně jeho říslušných derivací) ( n 1) a na očáečních odmínkách y ( ),, y ( ), y( ) 0 0 V LTI varianě je o ( n) ( m) a y () + + ay () + ay() = b u () + + bu () + bu() n 1 0 m 1 0 s očáečními odmínkami ( n 1) y (0 ),, y (0 ), y(0 ) 8

9 Auomaické řízení - Kyberneika a roboika Lineární aroximace zv. linearizace Vybereme nějaké nominální řešení (rajekorii), ve kerém chceme sysém rovozova. Naříklad referenční rajekorie roboa, liminí cyklus nebo, nejčasěji, ekvilibrium - omu říkáme racovní (oerační) bod V okolí nominálního řešení (racovního bodu) nahradíme nelineární model jeho lineární odchylkovou aroximací - ečnou dynamikou Časo omu neřesně říkáme linearizace, řesnější je lineární aroximace (neboť jsou ješě jiné linearizace, řeba zv. řesná linearizace) Funguje o okud 1) je sysém (v rovozovaných režimech) skoro lineární nebo 2) zůsává blízko racovního bodu: malé odchylky, malé signály V sysémech ZV auomaického řízení bývá 2) časo slněno Pozor: aroximace je vždy vzažena k určiému racovnímu bodu a laí jen ro malé odchylky od něj - nezaomeň! Když 1) ani 2) nelaí, řeíná se někdy více reguláorů založených na aroximacích v různých racovních bodech (zv. gain scheduling) V někerých říadech aroximace neexisuje nebo je k ničemu Někdy aroximaci nechceme/nemůžeme ouží (sabilizace kyvadla vs. vzyčení) 9

10 Lineární aroximace - linearizace Auomaické řízení - Kyberneika a roboika V okolí nominálního řešení (racovního bodu) laí x () = x () + x () = f( x () + x(), u () + u()) = fx ( (), u()) + x() + u() + = = y() = y () + y() = gx ( () + x(), u () + u()) = hx ( (), u()) + x() + u() + kde rozvíjíme nelineární funkce v Taylorovy řady v okolí nominálního řešení (okud arciální derivace exisují) Pro malé odchylky ak dosáváme lineární aroximaci x() = x () + x() u() = u () + u() y() = y () + y() členy vyšších řádů členy vyšších řádů x () = x() + u() y() = x() + u() Michael Šebek ARI

11 Auomaické řízení - Kyberneika a roboika Lineární aroximace - shrnuí Nelineární model v okolí nominálního řešení aroximujeme lineárním x () = fx ( (), u()) x(), u() x () = A x() + B u() y() = hx ( (), u()) y() = C x() + D u() kde jsou f, f, C h, D h A= B= = = ( x, u) ( x, u) ( x, u) ( x, u) Jacobiho maice funkcí fh, vyčíslené v nominálním bodě Nař A = = 2 2, (, ) x u 1 2 x= x u= u jde o i ro časově roměnné sysémy, sačí všude řisa a dosaneme A(), B(), C(), D() ( x(), u() ) 11, Pozor: laí ro odchylky, ale časo se íše bez!

12 Auomaické řízení - Kyberneika a roboika V okolní nominálního řešení či racovního bodu y(), u() můžeme IO model aroximova lineárním odobně jako savový ( n) ( m) Vyjádříme Dy ( ( ),, y ( ), y( ), ) = Nu ( ( ),, u ( ), u( ), ) ro ( n) ( n) ( n) y() = y() + y(),, y () = y () + y (), ( m) ( m) ( m) u() = u () + u(),, u () = u () + u () Použiím Taylorových řad dosáváme osuně D D D ( n) D + y+ y + + y + členy vyšších řádů ( n) y y y Lineární aroximace je N N N N u u u ( m) = ( m) Lineární aroximace IO modelu D D D N N N y+ y + + y u+ u + + u y y y ( n) ( m) ( n) ( m) Michael Šebek ARI členy vyšších řádů a y+ a y + + a y = b u+ b u + + b u ( n) ( m) 0 1 n 0 1 m

13 Diskréní savový model Auomaické řízení - Kyberneika a roboika Proměnný v čase Nelineární x( k+ 1) = fx ( ( k), u( k), k) y( k) = hx ( ( k), u( k), k) Lineární x( k+ 1) = A( k) x( k) + B( k) u( k) y( k) = C( k) x( k) + D( k) u( k) Neroměnný v čase x( k+ 1) = fx ( ( k), u( k)) y( k) = hx ( ( k), u( k)) x( k+ 1) = Ax( k) + Bu( k) y( k) = Cx( k) + Du( k) Počáeční sav x( k ) = x 0 0 Rovnovážný, usálený sav - ekvilibrium x(0) = u( k) = u, x( k) = x x = fx (, u) e e e e e e e x 0 Michael Šebek ARI

14 Auomaické řízení - Kyberneika a roboika Diskréní model vsu-výsu (vnější) Nelineární Dy ( ( k+ n),, y( k+ 1), y( k), k) = Nu ( ( k+ m),, u( k+ 1), u( k), k) Lineární v čase roměnný (LTV) a ( k) y( k+ n) + + a ( k) y( k+ 1) + a ( k) y( k) n 1 0 = b ( k) u( k+ m) + + b ( k) u( k+ 1) + b ( k) u( k) m 1 0 s očáečními odmínkami y( k+ n 1),, y( k+ 1), y( k) Lineární v čase neroměnný (LTI) ay( k+ n) + + ay( k+ 1) + ay( k) n 1 0 = b u( k+ m) + + bu( k+ 1) + bu( k) m 1 0 s očáečními odmínkami y( n 1),, y(1), y(0) Michael Šebek ARI

15 Auomaické řízení - Kyberneika a roboika x( k+ 1) = fx ( ( k), u( k)) y( k) = hx ( ( k), u( k)) Lineární aroximace diskréních modelů x( k) = x ( k) + x( k) u( k) = u ( k) + u( k) y( k) = y ( k) + y( k) x( k+ 1) = x( k+ 1) + x( k+ 1) = fx ( ( k) + x( k), u( k) + u( k)) fx ( ( k), u( k)) + x( k) + u( k) y( k) = y ( k) + y( k) = gx ( ( k) + x( k), u ( k) + u( k)) hx ( ( k), u( k)) + x( k) + u( k) Je o jako u sojiých modelů: čas je sice diskréní, ale hodnoy jsou sojié (koninuum) x( k+ 1) x( k) + u( k) y( k) x( k) + u( k) Michael Šebek ARI

1 - Úvod. Michael Šebek Automatické řízení

1 - Úvod. Michael Šebek Automatické řízení 1 - Úvod Michael Šebek Auomaické řízení 2018 9-6-18 Základní názvosloví Auomaické řízení - Kyberneika a roboika Objek: konkréní auo (amo) Sysém: určiá čás objeku, kerou se zabýváme, řídíme, Moor, sojka,

Více

Přibližná linearizace modelu kyvadla

Přibližná linearizace modelu kyvadla Přibližná linearizace model kyvadla 4..08 9:47 - verze 4.0 08 Obsah Oakování kalkl - Taylorův rozvoj fnkce... Nelineární savový model a jeho řibližná linearizace... 4 Nelineární model vs-výs a jeho řibližná

Více

1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů.

1. Vysvětlete pojmy systém a orientované informační vazby (uveďte příklady a protipříklady). 2. Uveďte formy vnějšího a vnitřního popisu systémů. Soubor říkladů k individuálnímu rocvičení roblemaiky robírané v ředměech KKY/TŘ a KKY/AŘ Uozornění: Následující říklady však neokrývají veškerou roblemaiku robíranou v uvedených ředměech. Doazy, náměy,

Více

14. Soustava lineárních rovnic s parametrem

14. Soustava lineárních rovnic s parametrem @66 4. Sousava lineárních rovnic s aramerem Hned úvodem uozorňuji, že je velký rozdíl mezi sousavou rovnic řešenou aramerizováním, roože má nekonečně mnoho řešení zadaná sousava rovnic obsahuje jen číselné

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Otázky ke Státním závěrečným zkouškám

Otázky ke Státním závěrečným zkouškám Oázky ke Sáním závěrečným zkouškám jsou rozděleny do ří oblasí a sudenům bude oložena z každé oblasi vždy jedna oázka. Oblasi jsou rozděleny následovně :.Teorie řízení a umělá ineligence Sem aří okruhy

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNCKÁ UNVERZTA V LBERC Fakula mecharoniky, informaiky a mezioborových sudií Cvičení č3 k ředměu ELMO Přírava ke cvičení ng Jiří Primas, ng Michal Malík Liberec Maeriál vznikl v rámci rojeku ESF (CZ7//747)

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07 Měřicí a řídicí echnika přednášky LS 26/7 SIMULACE numerické řešení diferenciálních rovnic simulační program idenifikace modelu Numerické řešení obyčejných diferenciálních rovnic krokové meody pro řešení

Více

Numerická integrace. b a. sin 100 t dt

Numerická integrace. b a. sin 100 t dt Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu

Více

Nakloněná rovina II

Nakloněná rovina II 3 Nakloněná rovina II Předoklady: Pedagogická oznáka: Obsah hodiny se za norálních okolnosí saozřejě nedá sihnou, záleží na Vás, co si vyberee Pedagogická oznáka: Na začáku hodiny zadá sudenů říklad Nečeká

Více

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované. finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární

Více

Příklady k přednášce 1. Úvod. Michael Šebek Automatické řízení 2019

Příklady k přednášce 1. Úvod. Michael Šebek Automatické řízení 2019 Příklady k řednášce. Úvod Michael Šebek Atomatické řízení 09 08.0.09 Kyvadlo řízené momentem Pohybová rovnice (. Newtonův zákon ro rotaci) J ϕ = M ro moment setrvačnosti J = ml = M Flsinϕ c = M mgl sinϕ

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

Testování a spolehlivost. 5. Laboratoř Spolehlivostní modely 2

Testování a spolehlivost. 5. Laboratoř Spolehlivostní modely 2 Tesování a solehlvos ZS 0/0 5. Laboraoř Solehlvosní modely Marn Daňhel Kaedra číslcového návrhu Fakula nformačních echnologí ČVUT v Praze Přírava sudjního rogramu Informaka je odorována rojekem fnancovaným

Více

ELEKTRONICKÉ OBVODY I

ELEKTRONICKÉ OBVODY I NIVEZITA OBANY Fakula vojenských echnologií Kaedra elekroechniky -99 ELEKTONIKÉ OBVODY I čebnice Auoři: rof. Ing. Dalibor Biolek, Sc. rof. Ing. Karel Hájek, Sc. doc. Ing. Anonín Krička, Sc. doc. Ing. Karel

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 4. přednáška: Vekorové prosory Dalibor Lukáš Kaedra aplikované maemaiky FEI VŠB Technická univerzia Osrava email: dalibor.lukas@vsb.cz hp://www.am.vsb.cz/lukas/la Tex byl vyvořen v rámci

Více

Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu

Stýskala, L e k c e z e l e k t r o t e c h n i k y. Vítězslav Stýskala TÉMA 6. Oddíl 1-2. Sylabus k tématu Sýskala, 22 L e k c e z e l e k r o e c h n i k y Víězslav Sýskala TÉA 6 Oddíl 1-2 Sylabus k émau 1. Definice elekrického pohonu 2. Terminologie 3. Výkonové dohody 4. Vyjádření pohybové rovnice 5. Pracovní

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR. Bc. David Mucha

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR. Bc. David Mucha UNIVERZITA PARDUBICE Fakula elekroechniky a informaiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR Bc. David Mucha Diplomová práce 2017 Prohlášení Prohlašuji: Tuo práci jsem vypracoval samosaně. Veškeré

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní

Více

Modelování a simulace

Modelování a simulace Modelování a simulace Doc Ing Pavel Václavek, PhD Modelování a simulace Úvod - str /48 Obsah a organizace Obsah a org Cíl předmětu Náplň přednášek Vyučující Hodnocení Literatura Modelování a simulace Úvod

Více

Příklady k přednášce 1. Úvod

Příklady k přednášce 1. Úvod Příklady k řednášce. Úvod Michael Šebek Atomatické řízení 08 9-6-8 Kyvadlo řízené momentem Atomatické řízení - Kybernetika a robotika Pohybová rovnice (. Newtonův zákon ro rotaci) J ϕ M ro moment setrvačnosti

Více

Simulační schemata, stavový popis. Petr Hušek

Simulační schemata, stavový popis. Petr Hušek Simulační schemaa, savový popis Per Hušek Simulační schemaa, savový popis Per Hušek husek@fel.cvu.cz kaedra řídicí echniky Fakula elekroechnická ČVUT v Praze MAS 007/08 ČVUT v Praze 6,7 - Simulační schemaa,

Více

TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií STAVOVÝ POPIS DYNAMICKÉHO SYSTÉMU Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakla mecharoniky, informaiky a mezioborových sdií Teno maeriál vznikl v rámci projek ESF CZ.1.07/2.2.00/07.0247, kerý je

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ Úvod Záporná zpěná vazba Úloha reguláoru Druhy reguláorů Seřízení reguláoru Snímaní informací o echnologickém procesu ELES11-1 Úvod Ovládání je řízení, při kerém

Více

Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10. měřicí člen. porovnávací. člen. REGULÁTOR ruční řízení

Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10. měřicí člen. porovnávací. člen. REGULÁTOR ruční řízení Měřicí a řídicí echnia magisersé sudium FTOP - přednášy ZS 29/1 REGULACE regulované sousavy sandardní signály ační členy reguláory Bloové schéma regulačního obvodu z u regulovaná sousava y ační člen měřicí

Více

Parciální funkce a parciální derivace

Parciální funkce a parciální derivace Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZIT V LIBERCI Savová regulace Liberec Ing. irolav Vavroušek . Savová regulace V práci e budu zabýva analýzou yému popaného diferenciální rovnicí: Řešení bude probíha pomocí yému TLB...

Více

Laplaceova transformace.

Laplaceova transformace. Lalaceova transformace - studijní text ro cvičení v ředmětu Matematika -. Studijní materiál byl řiraven racovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za odory grantu IG ČVUT č. 300043 a v rámci

Více

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Základní ransformace časových řad Veškeré násroje základní korelační analýzy, kam paří i lineární regresní (ekonomerické) modely

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

KEV/RT 2. přednáška. EK

KEV/RT 2. přednáška. EK KEV/T. řednáša Marin Janda maa@ev.zcu.cz EK 05 377 63 4435 Oaování - lineární regulace P roorciální reguláor onsana malá odchyla malý výsu velé vhodné malé Záladní myšlena návrhu reguláoru chceme co nerychleší

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

Vliv funkce příslušnosti na průběh fuzzy regulace

Vliv funkce příslušnosti na průběh fuzzy regulace XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,

Více

LS Příklad 1.1 (Vrh tělesem svisle dolů). Těleso o hmotnosti m vrhneme svisle

LS Příklad 1.1 (Vrh tělesem svisle dolů). Těleso o hmotnosti m vrhneme svisle Obyčejné diferenciální rovnice Jiří Fišer LS 2014 1 Úvodní moivační příklad Po prosudování éo kapioly zjisíe, k čemu mohou bý diferenciální rovnice užiečné. Jak se pomocí nich dá modelova prakický problém,

Více

Přednáška kurzu MPOV. Klasifikátory, strojové učení, automatické třídění 1

Přednáška kurzu MPOV. Klasifikátory, strojové učení, automatické třídění 1 Přednáška kurzu MPOV Klasifikáory, srojové učení, auomaické řídění 1 P. Peyovský (email: peyovsky@feec.vubr.cz), kancelář E530, Inegrovaný objek - 1/25 - Přednáška kurzu MPOV... 1 Pojmy... 3 Klasifikáor...

Více

1.3.5 Dynamika pohybu po kružnici I

1.3.5 Dynamika pohybu po kružnici I 1.3.5 Dynamika pohybu po kružnici I Předpoklady: 1304 Při pohybu po kružnici je výhodnější popisova pohyb pomocí úhlových veličin, keré korespondují s normálními veličinami, keré jsme používali dříve.

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

Ě É ÝÚ Č š Ť Á ť Í ř ů ů ú ů Ú Ž ú ů ů ů ř ř ú ů ů ř ř ř ř ř ň ú Ě Ř Ú Í Í ň ř ň ř ř ř ř Ž ř Í Í ř Ž ů ř ř ú ů ř ř ř ř ř Í ř ř ň ř ř ň ř ň ř ň ř ř ř ř ř ř ř ř ú ř ú Í ř ř ů ř ú ú ř úč ů ř ů ř ř ů ř ř ř

Více

zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme.

zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, napájen do kotvy, indukčnost zanedbáme. Teorie řízení 004 str. / 30 PŘÍKLAD zadání: Je dán stejnosměrný motor s konstantním magnetickým tokem, naájen do kotvy, indukčnost zanedbáme. E ce ω a) Odvoďte řenosovou funkci F(): F( ) ω( )/ u( ) b)

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

Skupinová obnova. Postup při skupinové obnově

Skupinová obnova. Postup při skupinové obnově Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi

Více

SYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU

SYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU Křua Jiří, Víe Miloš (edioři). Sysémové onfliy. Vydání rvní, nálad, Vydavaelsví Univerziy Pardubice: Pardubice,, 56 s. ISBN 97887395443. SYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU Miroslav Barvíř Konec. a

Více

Geometrické modelování. Diferenciáln

Geometrické modelování. Diferenciáln Geomerické modelováí Difereciál lí geomerie křivekk Křivky v očía ačové grafice Geomerická ierreace Každý krok algorimu má svůj geomerický výzam Flexibilia korola ad růběhem křivky, možos iuiiví ediace

Více

Diferenciální rovnice 1. řádu

Diferenciální rovnice 1. řádu Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou

Více

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8 Biologické modely Rober Mařík 9. lisopadu 2008 Obsah 1 Diferenciální rovnice 3 2 Auonomní diferenciální rovnice 8 3 onkréní maemaické modely 11 Dynamická rovnováha poču druhů...................... 12 Logisická

Více

PLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N

PLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N PLL Fázový deekor Filr smyčky (analogový) Napěím řízený osciláor F g Dělič kmioču 1:N Číače s velkým modulem V současné době k návrhu samoného číače přisupujeme jen ve výjimečných případech. Daleko časěni

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Úsav fyziky a měřicí echniky Pohodlně se usaďe Přednáška co nevidě začne! Základy fyziky + opakovaná výuka Fyziky I Web úsavu: ufm.vsch.cz : @ufm444 Zimní semesr opakovaná výuka + Základy fyziky 2 hodiny

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

Dynamika hmotného bodu. Petr Šidlof

Dynamika hmotného bodu. Petr Šidlof Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

Systémové struktury - základní formy spojování systémů

Systémové struktury - základní formy spojování systémů Systémové struktury - základní formy sojování systémů Základní informace Při řešení ať již analytických nebo syntetických úloh se zravidla setkáváme s komlikovanými systémovými strukturami. Tato lekce

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

DRI. VARIZON Jednotka pro zaplavovací větrání s nastavitelným tvarem šíření

DRI. VARIZON Jednotka pro zaplavovací větrání s nastavitelným tvarem šíření VARIZON Jednoka ro zalavovací věrání s nasavielný vare šíření Sručná faka Nasavielný var šíření a ovlivněný rosor Vhodná ro všechny yy ísnosí Uožňuje čišění Míso ěření objeu vzduchu Veli jednoduše se insaluje

Více

EKONOMETRIE 4. přednáška Modely chování spotřebitele

EKONOMETRIE 4. přednáška Modely chování spotřebitele EKONOMETRIE 4. řednáška Modely chování sotřebitele Rozočtové omezení Sotřebitel ři svém rozhodování resektuje tzv. rozočtové omezení x + x y, kde x i množství i-té sotřební komodity, i cena i-té sotřební

Více

21. Úvod do teorie parciálních diferenciálních rovnic

21. Úvod do teorie parciálních diferenciálních rovnic 21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí

Více

Příklady k přednášce 1. Úvod

Příklady k přednášce 1. Úvod Příklady k řednáše. Úvod Mihael Šebek Automatiké řízení 05 Evroský soiální fond Praha & EU: Investujeme do vaší budounosti 6--5 Kyvadlo řízené momentem Automatiké řízení - Kybernetika a robotika Pohybová

Více

Prezentace diplomové práce: CNC hydraulický ohraňovací lis Student: Školitel: Konzultant: Zadavatel: Klíčová slova: CNC hydraulic press brake Keyword:

Prezentace diplomové práce: CNC hydraulický ohraňovací lis Student: Školitel: Konzultant: Zadavatel: Klíčová slova: CNC hydraulic press brake Keyword: Horská 3, 8 00 Praha Prezenace dilomové ráce: CNC hydraulický ohraňovací lis Suden: Školiel: Konzulan: Zadavael: Klíčová slova: Anoace: Cíle ráce: CNC hydraulic ress brake Keyword: Annoaion: Targe of work:

Více

I. Soustavy s jedním stupněm volnosti

I. Soustavy s jedním stupněm volnosti Jiří Máca - aedra mechaniy - B325 - el. 2 2435 45 maca@fsv.cvu.cz 1. Záladní úlohy dynamiy 2. Dynamicá zaížení 3. Pohybová rovnice 4. Volné nelumené miání 5. Vynucené nelumené miání 6. Přílady 7. Oáčivé

Více

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly.

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly. 6. cvičení z PSI 7. -. lisopadu 6 6. kvanil, sřední hodnoa, rozpyl - pokračování příkladu z minula) Náhodná veličina X má disribuční funkci e, < F X ),, ) + 3,,), a je směsí diskréní náhodné veličiny U

Více

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.

Více

Hlavní body. Úvod do nauky o kmitech Harmonické kmity

Hlavní body. Úvod do nauky o kmitech Harmonické kmity Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

Á řš ž ž ó ó ě É É É č č ž ó ě ů ě č ž š ž ž ú ň ú ě š č ř Ó ř č ž Ů Č ř č ě ó č ó č ě Ú ě ě č ž č ó ŮŽ ž č ó ŮŽ ů č Í č ě ů č ů č š ň č ř č č ř č č š Á ř ž č ř č č ř č ě č ě č č č č č č č č č Á š š ů

Více

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13 5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )

Více

Obsah. Gain scheduling. Obsah. Linearizace

Obsah. Gain scheduling. Obsah. Linearizace Regulace a řízení II Řízení nelineárních systémů Regulace a řízení II Řízení nelineárních systémů - str. 1/29 Obsah Obsah Gain scheduling Linearizace Regulace a řízení II Řízení nelineárních systémů -

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Diferenciál a Taylorův polynom

Diferenciál a Taylorův polynom Diferenciál a Taylorův polynom Základy vyšší matematiky lesnictví LDF MENDELU c Simona Fišnarová (MENDELU) Diferenciál a Taylorův polynom ZVMT lesnictví 1 / 11 Aproximace funkce v okoĺı bodu Danou funkci

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SUPENSTÍ LÁTE evné láky ání uhnuí kaalné láky desublimace sublimace vyařování kaalnění (kondenzace) lynné láky 1. Tání a uhnuí amorfní láky nemají bod ání ají osuně X krysalické láky ají ři určiém

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

č é č ř č

č é č ř č Á č ř č Á Á Ň Á č é č ř č Á Ů Ě Í Ý Ř Í Ě É Á Č Ň Í Í Š Á Í Á Ů Ž ČÁ Č ÉÚ Á Í Á Ů É Á Í Ž É Ř ý š ž ř é š ř é ř č é ř é Č é ě ý é ý ú ě š é ý ř é Á ý č ů ú č ř ě ó Á ú č ě ě ů ý ú ů š č é Á ř č ě ř ý č

Více

ěý í č Č Ě í í í č Č ě¾ í ú č á ř č í ú č Áí í í í í ú ří ř ¾ ó ř¹ í ¾ í é á áů á í ě á ú í ř í ú řě á í ú ě řýý Ě Ýč É Ř č č í

ěý í č Č Ě í í í č Č ě¾ í ú č á ř č í ú č Áí í í í í ú ří ř ¾ ó ř¹ í ¾ í é á áů á í ě á ú í ř í ú řě á í ú ě řýý Ě Ýč É Ř č č í ř Ň ť ť ř ť ó ú č í í á č í í í ó ó áí í í č í č á ú č Í ť ř á ý ¾ ěé ě ú č ¾ ý ú í ěý í č Č Ě í í í č Č ě¾ í ú č á ř č í ú č Áí í í í í ú ří ř ¾ ó ř¹ í ¾ í é á áů á í ě á ú í ř í ú řě á í ú ě řýý Ě Ýč

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

Laplaceova transformace Modelování systémů a procesů (11MSP)

Laplaceova transformace Modelování systémů a procesů (11MSP) aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála

Více

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV 3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová

Více

Robotika sbírka řešených příkladů

Robotika sbírka řešených příkladů FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Roboika sbírka řešených příkladů Auor exu: pro. Ing. Franišek Šolc, CSc 4 Komplexní inovace sudijních programů a zvyšování

Více

6.22 Vytápěcí zařízení a ohřev teplé vody Novelizováno: 2015-03-25

6.22 Vytápěcí zařízení a ohřev teplé vody Novelizováno: 2015-03-25 6.22 Vyáěcí zařízení a ohřev elé vody Vyracoval Gesor Schválil Lisů Příloh Jaček, VS/1 VS/1 VS 21 Ing. Neděle, ŠE-ES Plaí ro dodávku, monáž a uvádění do rovozu vyáěcích zařízení, oných sysémů a sysémů

Více

Kmitání tělesa s danou budicí frekvencí

Kmitání tělesa s danou budicí frekvencí EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů

Více

1.12.2009. Reaktor s exotermní reakcí. Reaktor s exotermní reakcí. Proč řídit provoz zařízení. Bezpečnost chemických výrob N111001

1.12.2009. Reaktor s exotermní reakcí. Reaktor s exotermní reakcí. Proč řídit provoz zařízení. Bezpečnost chemických výrob N111001 .2.29 Bezpečnos hemikýh výrob N Základní pojmy z regulae a řízení proesů Per Zámosný mísnos: A-72a el.: 4222 e-mail: per.zamosny@vsh.z Účel regulae Základní pojmy Dynamiké modely regulačníh obvodů Reakor

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

Příjmově typizovaný jedinec (PTJ)

Příjmově typizovaný jedinec (PTJ) Příjmově ypizovaný jeinec (PTJ) V éo čási jsou popsány charakerisiky zv. příjmově ypizovaného jeince (PTJ), j. jeince, kerý je určiým konkréním způsobem efinován. Slouží jako násroj k posouzení opaů ůchoových

Více

ROTORŮ TURBOSOUSTROJÍ

ROTORŮ TURBOSOUSTROJÍ ZJIŠŤOVÁNÍ PŘÍČIN ZVÝŠENÝCH VIBRACÍ ROTORŮ TURBOSOUSTROJÍ Prof Ing Miroslav Balda, DrSc Úsav ermomechaniky AVČR + Západočeská univerzia Veleslavínova 11, 301 14 Plzeň, el: 019-7236584, fax: 019-7220787,

Více

ř ř ůč ůč ů ř ý é č éč č Í ř š ř Ž ž ž éú š ř ň ž č ý š ý ý ž ů ř č ž ů ýů ř č ý é ý ú ř š ý ý ř ř č ů é ř ř ř é é ř ý ž ř Ž ř š Í é ž ř š č ý č é ů é č é ř ž ř č ž č ý ž ř ř ý ý ý č č ž č é ř ž ř ř ú

Více

Využití programového systému MATLAB pro řízení laboratorního modelu

Využití programového systému MATLAB pro řízení laboratorního modelu Využií programového sysému MATLAB pro řízení laboraorního modelu WAGNEROVÁ, Renaa 1, KLANER, Per 2 1 Ing., Kaedra ATŘ-352, VŠB-TU Osrava, 17. lisopadu, Osrava - Poruba, 78 33, renaa.wagnerova@vsb.cz, 2

Více

PROJEKT III. (IV.) - Vzduchotechnika. 2. Návrh klimatizačních systémů

PROJEKT III. (IV.) - Vzduchotechnika. 2. Návrh klimatizačních systémů ROJKT. (V.) - Vzduchoechnika. Návrh klimaizačních sysémů Auor: Organizace: -mail: Web: ng. Vladimír Zmrhal, h.d. České vysoké učení echnické v raze Fakula srojní Úsav echniky rosředí Vladimir.Zmrhal@fs.cvu.cz

Více

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control

Více

Č á í č ř é ř í ý č č á Ž ž á í í č Č á ý ř ž ř á Ž á í í čá ý ř č ý ú ý í á č á é ý í á í čí Č é á ý ř ů ň á í č á ň č í čí í á ů é Č č é í č íůč á ě í í í íž ě é ý í á í č ě é é é í á í ů ř č ý ý č é

Více

ůř Í ý Í Ť ý Á Ž Í Á ť Í ť ý ť Ť ě č ě Š ř ú ý š Č ř č ď ř Á Í Í ě ě ř ó ě č ř č ě ř š ě Á Í č ě Í Í Č É ě Š Í Č ě Í ě ů ů ů Č ý ú Ž ří Á Ý Í Á ÍČ ŽÍ Ý Ů ě č ě ě ě ř ě ě ó ž ž ě ýš ě ě ó ě ř ú ě ďý ě Ú

Více