Středoškolská technika 2015 ŘEŠENÍ DOKONALÉHO TVARU MOSTNÍHO NOSNÍKU Z HLEDISKA POTENCIÁLNÍ ENERGIE - ŘETĚZOVKA
|
|
- Jan Černý
- před 7 lety
- Počet zobrazení:
Transkript
1 Středoškolská techika 05 Setkáí a prezetace prací středoškolských studetů a ČVUT ŘEŠENÍ DOKONALÉHO TVARU MOSTNÍHO NOSNÍKU Z HLEDISKA POTENCIÁLNÍ ENERGIE - ŘETĚZOVKA Duša Köig Středí průmyslová škola strojická a Středí odborá škola profesora Švejcara, Plzeň Klatovská 09, Plzeň Abstrakt Tato práce je zaměřeá a aalytické řešeí ideálího tvaru hlavích osíků obloukového mostu z hlediska poteciálí eergie. K samotému řešeí je použit aalogický příklad: Ve dvou bodech zavěšeý provaz kostatího průřezu ve volém prostoru zaujme tvar, který je pro ěj z hlediska poteciálí eergie ejpřijatelější. Najdeme-li fukci popisující tvar takto zavěšeého provazu, můžeme a jejím základě defiovat ideálí tvar hlavích osíků obloukového mostu. Tato práce je začátkem většího projektu - ávrhu osé kostrukce obloukového mostu za použití kompozitích materiálů, a kterém je spolupracováo s ČVUT v Praze a ZČU v Plzi. Obecá rovice řetězovky Řetězovka je křivka, kterou zaujme ve dvou bodech zavěšeý provaz kostatího průřezu ve volém prostoru. Obr.: Náčrt daé situace
2 Každá fyzikálí soustava se saží dostat do stavu s co možá ejmeší poteciálí eergií. Každý bod provazu má tedy miimum poteciálí eergie. Vyjádřeí poteciálí eergie ifiitezimálího úseku provazu: Obr.: Schematické zakresleí ifiitezimálího úseku řetězovky dl = (dx) + (dy) y = dy dy = y dx. dx dl = (dx) + (y dx) = (dx) [ + (y ) ] = + (y ) dx. Hmotost ifiitezimálího úseku provazu: dm = ρ dv = ρ dl S = ρ l. dl = ρ l + (y ) dx ; substituce: ρ l = ρ. S, ρ hustota provazu, S obsah průřezu provazu, ρ l lieárí hustota provazu. Poteciálí eergie ifiitezimálího úseku provazu: de p = dm g y = ρ l + (y ) dx g y = ρ l g y + (y ) dx. Nyí je zapotřebí staovit omezeí řetězovky. Pro lepší představu prvího omezeí použijeme aalogický příklad. Uvažujme kuličku vhozeou do kulové ádoby. Kulička se může acházet v kterémkoliv místě ádoby, po chvilce kmitáí se však ustálí a dě, protože právě v této poloze má miimálí poteciálí eergii. Nechť je E p okamžitá eergie 3 kuličky a E p miimálí poteciálí eergie kuličky. Jestliže se kulička již achází v místě s miimem poteciálí eergie, platí tedy E p = E p, můžeme psát: δe p = E p E p = E p E p = 0. δe p je variací 4 fukce E p. Ifiitezimálí - ekoečě malý. Obecě hustota materiálu osíku. 3 Eergie v daém časovém okamžiku.
3 Daý provaz se bude chovat podobě jako kulička v předcházejícím případě. Provaz zaujme polohu s miimem poteciálí eergie, stejě jako kulička. Pro. omezeí řetězovky: δe p = 0. Předpokládejme, že provaz bude dokoale tuhý, ebude se tedy měit jeho délka l. Pro. omezeí řetězovky: δl = 0. Jsou zformulováa dvě omezeí. Pro získáí jedé závislosti, která v sobě bude obsahovat obě omezeí, použijeme metodu Lagrageových multiplikátorů 5. Obecý zápis metody Lagrageových multiplikátorů: δ δx λ Lagrageův multiplikátor; λ R. Pro řetězovku: [f(x) λ. g(x)] = 0 = δf(x) λ δg(x), 0 = δe p λ δl = de p λ. dl = ρ l g y + (y ) dx λ + (y ) dx = = (ρ l g y λ) + (y ) dx = F dx F = (ρ l g y λ) + (y ). F Fukcioál 6 řetězovky. F: F(x, y(x), y (x)) Fukcioál je řešitelý pomocí Eulerovy-Lagrageovy rovice: ( F y j d dx F j ) = 0. j= Teto vztah je zapotřebí upravit do vhodějšího tvaru z hlediska itegrováí za pomoci dalších vzorců: d dx (y j F j ) = dy j dx F j + y j d dx ( F j ) ; j N+, df dx = F x + F y j. y j + F j dy j dx. Řešíme soustavu tří rovic: ( F y j d dx F j ) = 0 j / y ; j N +, j= d dx (y j F j ) = dy j dx F j + y j 3 d dx ( F j ), df dx = F x + F y j y j + F j dy j dx, 4 Variace je změa daé fukce jako celku. 5 Jedá se o metodu hledáí extrémů fukce, která je ějakým způsobem omezeá. 6 Fukcioál chápeme jako fukci jié fukce. Obecě je to zobrazeí z možiy fukcí do možiy čísel, apř. možiy všech reálých čísel R.
4 y j (y j F y j y j d dx F j ) = 0, j= d dx ( F j ) = dy j dx F j d dx (y j F j ), df dx F x = y j F F + yj j dy j dx, (y j F y j + dy j dx F j d dx (y j F )) = 0, j j= df dx F x = y j F F + yj j dy j dx. ( df dx F x d dx (y j F )) = 0, j j= ( d dx (F y j F j ) F x ) = 0, j= Pro j = : d dx F (F y ) F x = 0. Fukcioál F eí explicitě závislý 7 a souřadici x tz. F x = 0: Po itegraci: itegračí kostata; R. d dx F (F y ) = 0. F y F =, Dosadíme za fukcioál F: = F y F = (ρ l g y λ) + (y ) y [(ρ l g y λ) + (y ) ]. V rovici je azačeá derivace fukcioálu F, tuto derivaci řešíme samostatě: 7 Neí plě defiovaý. 4
5 F = [(ρ l g y λ) + (y ) ] = (ρ l g y λ) ( + (y ) ) = = (ρ l g y λ) [ + (y ) ] = (ρ l g y λ) {f[g(y )]} = = (ρ l g y λ) f (u) g (y ) ; substituce: u = + (y ), (ρ l g y λ) f (u) g (y ) = (ρ l g y λ) = (ρ l g y λ) ( u ) y, (u ) [ + (y ) ] = (ρ l g y λ) ( u ) y = (ρ l g y λ) { [ + (y ) ] } y = (ρ l g y λ) = (ρ l g y λ) + (y ) y, + (y ) y = (ρ y l g y λ) + (y ). F y = (ρ l g y λ) + (y ). Hodotu derivace fukcioálu F dosadíme do rovice a řešíme: = (ρ l g y λ) + (y ) y [(ρ l g y λ) + (y ) ], y = (ρ l g y λ) + (y ) y (ρ l g y λ) + (y ), = (ρ l g y λ) ( + (y ) = (ρ l g y λ) ( ( + (y ) ) (y ) + (y ) ), (y ) + (y ) ) = = (ρ l g y λ) ( + (y ) (y ) ) = (ρ l g y λ) + (y ) + (y ), + (y ) = ρ l g y λ. Pro řešeí této difereciálí rovice je zvolea metoda separace proměých: + (y ) = ρ l g y λ /, [ + (y ) ] = (ρ l g y λ) = + (y ) = + ( dy dx ), (ρ l g y λ) = ( dy dx ), 5
6 (ρ l g y λ) = ( dy dx ) /, (ρ l g y λ) c = (dx dy ) (ρ l g y λ) c = dx dy, dy = dx, (ρ l g y λ) c (ρ l g y λ) c dy = (ρ l g y λ) c dy = x + c, c itegračí kostata; c R. K itegraci levé stray rovice je použit vzorec: du u a = argcosh (u a ) + c,. (ρ l g y λ) c dy = x + c = argcosh ( ρ l g y λ ) + c c 3, c 3 itegračí kostata; c 3 R. ρ l lieárí hustota, x + c c 3 = argcosh ( ρ l g y λ ), cosh ( x + c c 3 ) = ρ l g y λ, y = ρ l g [λ + cosh ( x + c c 3 )] ; substituce: C = c c 3. Rovice řetězovky pro lao: f: y = ρ l g [λ + c x + C cosh ( )]. g gravitačí zrychleí; g = 9,8 (m s ), λ Lagrageův multiplikátor; λ R, itegračí kostata; R, C kostata 8 ; C R. Pro určeí kokrétí rovice tvaru osíků mostu je zapotřebí staovit kostaty v rovici řetězovky. Kokrétí rovice řetězovky pro hlaví osíky mostu Předběžě avržeé řešeí: Otočeím řetězovky z obr. o 80 získáme tvar hlavích osíků mostu: 8 Tato kostata je substitučím ahrazeím vztahu mezi itegračími kostatami c a c 3. Pro zjedodušeí rovice jsou tyto dvě kostaty složey do jedié kostaty C. 6
7 Rovice řetězovky pro hlaví osíky: f α : y = ρ l g [λ + c x + C cosh ( )]. Na takto vziklé křivce 9 volíme tři body, a základě kterých bude možo defiovat kostaty řetězovky: Obr.3: Staoveí tří bodů Bod O je počátkem kartézského systému souřadic: O = [0 ; 0]. Bod A je globálím extrémem řetězovky: a délka mostu, b výška mostu. A = [ a ; b]. Bod B se achází a koci mostu: B = [a ; 0]. Výraz (x + C) v rovici řetězovky, určuje posuutí řetězovky po ose x. x + C = 0 x = C řetězovka je souměrá podle přímky p: x = C. Řetězovka z obr.3 je souměrá podle přímky p: x = a C = a C = a. f α : y = ρ l g [λ + c x + C cosh ( )] = ρ l g [λ + cosh ( x a f α : O = [0 ; 0]; A = [ a ; b] ; B = [a ; 0] f α: y = ρ l g [λ + cosh ( x a 9 Taktéž řetězovce. 7
8 O f α : 0 = ρ l g. [λ + cosh ( 0 a )] = ρ l g [λ + cosh ( a A f α : b = a ρ l g. [λ + cosh ( a )] = ρ l g [λ + cosh 0], B f α : 0 = ρ l g [λ + cosh ( a a )] = a ρ l g [λ + cosh ( )]. 0 = ρ l g [λ + cosh ( a b = ρ l g (λ + cosh 0) = ρ l g [λ + ( e0 + e 0 0 = a ρ l g [λ + cosh ( )]. 0 = ρ l g [λ + cosh ( a b = ρ l g (λ + ), 0 = a ρ l g [λ + cosh ( )]. Řešeím této soustavy rovic jsou kostaty λ,. Předběžá vizualizace mostu Obr.4: Náčrt představy desigu 8
9 Hlaví osíky, zázorěé oražovým obrazcem, budou vyrobey ze sedvičových profilů 0. Podle pevostích aalýz bude dále rozhoduto o materiálu, ze kterého bude vyrobea závěsá kostrukce, zázorěá modrými svislými čarami. Sedvičové profily (sedviče) Obr.5: Ukázka sedvičových profilů Tyto kompozití materiály jsou zvoley pro výrobu hlavích osíků kvůli jejich velké tuhosti v ohybu a ízké hmotosti. Hmotostí porováí ocelových I profilů a sedvičových profilů : Obr.6: I profil Obr.7: Sedvič ρ Fe = 7 800( kg m 3 )... přibližá hustota oceli, 9 ρ c = 00 (kg m 3 )... hustota jádra, S I80 = (m )... obsah průřezu profilu 3 I 80, t = 3 (mm)... tloušťka 4 face-u 5, h = 80 (mm)... výška osíku 6, 0 Termiologická pozámka: sedvičový profil... sedvič Aby bylo porováváí objektiví, budou mít porovávaé osíky stejou délku, výšku i šířku. Viz obr.7. Jedá se o středí část osíku, které se říká jádro. Tato hodota byla poskytuta a kozultacích a ČVUT v Praze. 3 Zjištěa ze strojických tabulek. 4 Velikost tloušťky byla poskytuta a kozultacích a ČVUT v Praze. 5 Viz obr.7. Jedá se o vrchí a spodí část osíku. Jsou to vlastě desky, v tomto případě vyráběé z oceli.
10 Hmotost I profilu: b = 4 (mm)... šířka osíku 7, l (mm)... délka osíku. m I80 = S I80 l ρ Fe = l = 5,9 4 l (kg). Hmotost sedvičového profilu: m s = S Fe ρ Fe l + S c ρ c l = (S Fe ρ Fe + S c ρ c ) l = = [tb. ρ Fe + b. (h t). ρ c ]. l, m s = [ (80 3) 00] l = 0,3 05 l (kg), S Fe obsah ocelových desek, S c obsah jádra. Hmotostí porováí: m I 80 m s = 5,9 4 l 0,3 05 l = 9,008 sedvičový osík je 9x lehčí ež I profil. Ohybová tuhost obou osíků je při tom přibližě stejá 8. Použitá literatura RIEČAN, B.; BERO P.; SMIDA, J.; ŠEDIVÝ, J; BUŠEK, I. Matematika pro IV. ročík gymázií. Praha : Státí pedagogické akladatelství, 987. LEINVEBER, Ja a Pavel VÁVRA. Strojické tabulky: pomocá učebice pro školy techického zaměřeí. 3., dopl. vyd. Úvaly : Albra, 006, xiv, 94 s. ISBN Iteretové stráky Ecyklopedie fyziky [olie]. [cit ]. Dostupé z WWW: fyzika. jreichl. com/ Iovace studijího oboru Geotechika [olie]. [cit ]. Dostupé z WWW: geotechici. cz/ Sbírka řešeých úloh z fyziky [olie]. [cit ]. Dostupé z WWW: fyzikaliulohy. cz/ 6 Zjištěo ze strojických tabulek. 7 Zjištěo ze strojických tabulek. 8 Tato iformace získáa a kozultaci a ČVUT v Praze. 0
Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
VíceVýukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT
Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot
VíceSTUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6
Středoškolská techika 00 Setkáí a prezetace prací středoškolských studetů a ČVUT STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Pavel Husa Gymázium Jiřího z Poděbrad Studetská 66/II
Více3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
Více1.7.4 Těžiště, rovnovážná poloha
74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit
VíceMatematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
VíceMatematika I, část II
1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího
Více6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
VíceNMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n
Jméo: Příklad 3 Celkem bodů Bodů 8 0 30 Získáo [8 Uvažujte posloupost distribucí f } D R defiovaou jako f [δ kde δ a začí Diracovu distribuci v bodě a Najděte itu δ 0 + δ + této poslouposti aeb spočtěte
VíceModelování jednostupňové extrakce. Grygar Vojtěch
Modelováí jedostupňové extrakce Grygar Vojtěch Soutěží práce 009 UTB ve Zlíě, Fakulta aplikovaé iformatiky, 009 OBSAH ÚVOD...3 1 MODELOVÁNÍ PRACÍCH PROCESŮ...4 1.1 TERMODYNAMIKA PRACÍHO PROCESU...4 1.
Více3. DIFERENCIÁLNÍ ROVNICE
3 DIFERENCIÁLNÍ ROVNICE Difereciálí rovice (dále je DR) jsou veli důležitou částí ateatické aalýz, protože uožňují řešit celou řadu úloh z fzik a techické prae Občejé difereciálí rovice: rovice, v íž se
Víceodhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
VíceZákladní teoretický aparát a další potřebné znalosti pro úspěšné studium na strojní fakultě a k řešení technických problémů
Základí teoretický aarát a další otřebé zalosti ro úsěšé studium a strojí fakultě a k řešeí techických roblémů MATEMATIKA: logické uvažováí, matematické ástroje - elemetárí matematika (algebra, geometrie,
Vícejsou reálná a m, n jsou čísla přirozená.
.7.5 Racioálí a polomické fukce Předpoklad: 704 Pedagogická pozámka: Při opisováí defiic racioálí a polomické fukce si ěkteří studeti stěžovali, že je to příliš těžké. Ve skutečosti je sstém, kterým jsou
VíceWikiSkriptum Ing. Radek Fučík, Ph.D. verze: 1. října 2019
Matematika II - Sbírka příkladů WikiSkriptum Ig. Radek Fučík, Ph.D. verze:. říja 9 Obsah Pokročilé techiky itegrace a zobecěý Riemaův itegrál. Racioálí fukce.................................... Pokročilé
VíceL A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
Více1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
VíceIterační výpočty projekt č. 2
Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....
VíceUžitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:
Užitečé zdroje příkladů jsou: Materiály ke cvičeím z Kalkulu 3 od Kristýy Kucové: http://www.karli.mff.cui.cz/~kucova/historie8. php K posloupostem řad a fukcí Ilja Čerý: Iteligetí kalkulus. Olie zde:
VíceNálitky. Obr. 1 Schematický přehled typů nálitků
Nálitky Hlaví požadavky pro výpočet álitku: 1. doba tuhutí álitku > doba tuhutí odlitku 2. objem álitku(ů) musí být větší ež objem stažeiy v odlitku 3. musí být umožěo prouděí kovu z álitku do odlitku
VíceI. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0
8. Elemetárí fukce I. Expoeciálí fukce Defiice: Pro komplexí hodoty z defiujeme expoeciálí fukci předpisem ) e z = z k k!. Vlastosti expoeciálí fukce: a) řada ) koverguje absolutě v C; b) pro z = x + jy
Více1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V
Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být
VíceSprávnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
Více6. FUNKCE A POSLOUPNOSTI
6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat
VíceFUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL
Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost
VíceANALÝZA VLIVU NUMERICKÉ APERTURY A ZVĚTŠENÍ NA HODNOTU ROZPTYLOVÉ FUNKCE BODU
ANALÝZA VLIVU NUMERICKÉ APERTURY A ZVĚTŠENÍ NA HODNOTU ROZPTYLOVÉ FUNKCE BODU A.Mikš, J.Novák, P. Novák katedra fyziky, Fakulta stavebí ČVUT v Praze Abstrakt Práce se zabývá aalýzou vlivu velikosti umerické
Víceveličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
VíceUŽITÍ MATLABU V KOLORIMETRII. J.Novák, A.Mikš. Katedra fyziky, FSv ČVUT, Praha
UŽITÍ MATLABU V KOLORIMETRII J.Novák A.Mikš Katedra fyziky FSv ČVUT Praha Kolorimetrické metody jsou velmi často používáy jako diagostické metody v řadě oblastí vědy a techiky. V čláku jsou ukázáy příklady
Více23. Mechanické vlnění
3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze
Více5 Křivkové a plošné integrály
- 7 - Křivkové a plošé itegrály 5 Křivkové a plošé itegrály 51 Křivky Pozámka V této kapitole se budeme zabývat obecými křivkami v Vždy však můžeme položit = 2 či = a přejít tak k speciálím případům roviy
VíceTéma: 11) Dynamika stavebních konstrukcí
Počítačová podpora statických výpočtů Téma: ) Dyamika stavebích kostrukcí Katedra stavebí mechaiky Fakulta stavebí, VŠB V Techická uiverzita Ostrava Rozděleí mechaiky Statika Zabývá se problematikou působeí
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
Více3. ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI. 3.1 Základní elementární funkce. Nejprve uvedeme základní elementární funkce: KONSTANTNÍ FUNKCE
ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI Základí elemetárí fukce Nejprve uvedeme základí elemetárí fukce: KONSTANTNÍ FUNKCE Nechť a je reálé číslo Potom kostatí fukcí rozumíme fukce f defiovaou předpisem ( f
VícePři sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
VíceVYSOCE PŘESNÉ METODY OBRÁBĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,
VíceO Jensenově nerovnosti
O Jeseově erovosti Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikovaé matematiky, Fakulta elektrotechiky a iformatiky, Vysoká škola báňská Techická uiverzita Ostrava Ostrava, 28.1. 2019 (ŠKOMAM 2019)
Více2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT
2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic
VíceNMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019
Jméo: Příklad 2 3 Celkem bodů Bodů 0 8 2 30 Získáo 0 Uvažujte posloupost distribucí {f } + = D (R defiovaou jako f (x = ( δ x m, kde δ ( x m začí Diracovu distribuci v bodě m Najděte limitu f = lim + f
VíceNMAF061, ZS Zápočtová písemná práce skupina A 16. listopad dx
NMAF06, ZS 07 08 Zápočtová písemá práce skupia A 6. listopad 07 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo
VíceObsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...
Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1
VíceTržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.
Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví
VíceOdhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
VíceUžití binomické věty
9..9 Užití biomické věty Předpoklady: 98 Často ám z biomického rozvoje stačí pouze jede kokrétí čle. Př. : x Urči šestý čle biomického rozvoje xy + 4y. Získaý výraz uprav. Biomický rozvoj začíá: ( a +
VícePřednáška 7, 14. listopadu 2014
Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.
VíceIAJCE Přednáška č. 12
Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích
Vícef(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim
KAPITOLA 4: 4 Úvod Derivace fkce [MA-8:P4] Moivačí příklady: okamžiá ryclos, směrice ečy Defiice: Řekeme, že fkce f má v bodě derivaci [ derivaci zleva derivaci zprava ] rov čísl a, jesliže exisje [ x
VíceMATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
Více7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
VíceI. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =
Taylorovy řady ěkterých fukcí: I. TAYLORŮV POLYNOM Pro R platí: si) = 2+ = ), cos) = 2 2+)! = ), 2)! e = =.! Pro, : log + ) = = ) Pro, ) a a R: + ) a = a ) =, kde ) a = a a ) a 2) a +).!. Nalezěte Taylorův
Více4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
Více5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor.
5 PŘEDNÁŠKA 5: Jedorozměrý a třírozměrý harmoický oscilátor. Půjde o spektrum harmoického oscilátoru emá to ic společého se spektrem atomu ebo se spektrálími čarami atomu. Liší se to právě poteciálem!
Více1. Číselné obory, dělitelnost, výrazy
1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá
Více1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu
1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou
Více( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N.
.. Derivace elemetárích fukcí II Předpoklady: Př. : Urči derivaci fukce y ; N. Budeme postupovat stejě jako předtím dosazeím do vzorce: f ( + ) f ( ) f f ( + ) + + + +... + (biomická věta) + + +... + f
VíceSpojitost a limita funkcí jedné reálné proměnné
Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v
VíceU klasifikace podle minimální vzdálenosti je nutno zvolit:
.3. Klasifikace podle miimálí vzdáleosti Tato podkapitola je věováa popisu podstaty klasifikace podle miimálí vzdáleosti, jež úzce souvisí s klasifikací pomocí etaloů klasifikačích tříd. Představíme si
Více5. Lineární diferenciální rovnice n-tého řádu
5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá
VíceMatematická analýza I
1 Matematická aalýza ity posloupostí, součty ekoečých řad, ity fukce, derivace Matematická aalýza I látka z I. semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia a další 2 Matematická
Více2 STEJNORODOST BETONU KONSTRUKCE
STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů
VíceZákladní požadavky a pravidla měření
Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu
VíceUPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ
3..- 4.. 2009 DIVYP Bro, s.r.o., Filipova, 635 00 Bro, http://www.divypbro.cz UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ autoři: prof. Ig. Mila Holický, PhD., DrSc., Ig. Karel Jug, Ph.D., doc. Ig. Jaa Marková,
VíceSeznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.
2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se
Více1 Základní pojmy a vlastnosti
Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).
VíceNMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =
NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:
VíceS polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické
5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí
VíceMetody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
Vícemnožina všech reálných čísel
/6 FUNKCE Základí pojmy: Fukce sudá a lichá, Iverzí fukce Nepřímá úměrost, Mociá fukce, Epoeciálí fukce a rovice Logaritmus, logaritmická fukce a rovice Opakováí: Defiice fukce, graf fukce Defiičí obor,
VíceDERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM
Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře
Více2 Odvození pomocí rovnováhy sil
Řetězovka Abstrakt: Ukážeme si, že řetěz pověšený mezi dvěma body v homogenním gravitačním poli se prohne ve tvaru grafu funkce hyperbolický kosinus. Odvození provedeme dvojím způsobem: pomocí rovnováhy
VícePředmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE
Přdmět: SM 0 ROVIÉ PŘÍHRADOVÉ KOSTRUKCE doc. Ig. Michl POLÁK, CSc. Fkult stvbí, ČVUT v Prz ROVIÉ PŘÍHRADOVÉ KOSTRUKCE: KOSTRUKCE JE VYTVOŘEA Z PŘÍMÝCH PRUTŮ, PRUTY JSOU AVZÁJEM POSPOJOVÁY V BODECH STYČÍCÍCH,
VícePružnost a pevnost. 9. přednáška, 11. prosince 2018
Pružost a pevost 9. předáška, 11. prosice 2018 1) Krouceí prutu s kruhovým průřezem 2) Volé krouceí prutu s průřezem a) masivím b) otevřeým tekostěým c) uzavřeým tekostěým 3) Ohybové (vázaé) krouceí Rovoměré
VíceOdhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
VíceGRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components
Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ
Více8.1.3 Rekurentní zadání posloupnosti I
8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím
VíceSekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
VíceMocninné řady - sbírka příkladů
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Mocié řady - sbírka příkladů Vedoucí bakalářské práce: Mgr. Iveta Bebčáková, Ph.D.
VíceLaboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:
ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy
Více14. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
VíceTěžiště a moment setrvačnosti Nalezení práce polohy těžiště a momentu setrvačnosti vůči zadané ose u homogenních těles v třírozměrném prostoru.
Těžiště a momet setrvačosti Naleeí práce polohy těžiště a mometu setrvačosti vůči adaé ose u homogeích těles v tříroměrém prostoru. Př. 1 Najděte těžiště a momet setrvačosti kulové vrstvy vůči rotačí ose
VíceVzorový příklad na rozhodování BPH_ZMAN
Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha
Více1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
VíceMATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.
MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...
Více8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
VíceOVMT Přesnost měření a teorie chyb
Přesost měřeí a teorie chyb Základí pojmy Naměřeé údaje ejsou ikdy absolutě přesé, protože skutečé podmíky pro měřeí se odlišují od ideálích. Při každém měřeí vzikají odchylky od správých hodot chyby.
VíceMezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
VíceCyklické namáhání, druhy cyklických namáhání, stanovení meze únavy vzorku Ing. Jaroslav Svoboda
Středí průmyslová škola a Vyšší odborá škola tecická Bro, Sokolská 1 Šabloa: Iovace a zkvalitěí výuky prostředictvím ICT Název: Téma: Autor: Číslo: Aotace: Mecaika, pružost pevost Cyklické amááí, druy
Vícezákladním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
Více1 ROVNOMĚRNOST BETONU KONSTRUKCE
ROVNOMĚRNOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí rovoměrosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů
VíceVlastnosti posloupností
Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti
Více4EK311 Operační výzkum. 4. Distribuční úlohy LP část 2
4EK311 Operačí výzkum 4. Distribučí úlohy LP část 2 4.1 Dopraví problém obecý model miimalizovat za podmíek: m z = c ij x ij i=1 j=1 j=1 m i=1 x ij = a i, i = 1, 2,, m x ij = b j, j = 1, 2,, x ij 0, i
VíceDeskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
VíceKomplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
Více(3n + 1) 3n Příklady pro samostatnou práci
... 4. 5. 6. 0 0 0 a q koverguje pro q < geometrická řada diverguje harmoická řada koverguje srovejte s teleskopickou řadou + + utá podmíka kovergece + 4 + + 7 ití srovávací kritérium, srováí s ití podílové
VíceNávod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky.
Návod pro cvičeí předmětu Výkoová elektroika Návod pro výpočet základích iduktorů s jádrem a síťové frekveci pro obvody výkoové elektroiky. Úvod V obvodech výkoové elektroiky je možé většiu prvků vyrobit
VíceSEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU
SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii
VíceAplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus
Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová
VíceUSTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH
USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou
Více