Průřezové charakteristiky

Rozměr: px
Začít zobrazení ze stránky:

Download "Průřezové charakteristiky"

Transkript

1 Stavení statka, ročník komnovanéo stua Průřeové carakterstky ěžště složenýc oraců omogenníc průřeů Kvaratcké momenty áklaníc průřeů Kvaratcké momenty složenýc průřeů Kvaratcké momenty k pootočeným osám ěžště složenýc oraců neomogenníc průřeů Katera stavení mecanky Fakulta stavení, VŠB - ecncká unverta Ostrava

2 Průřey prutovýc konstrukčníc prvků Návr a posuek eformovatelnýc prutů vyžauje tv geometrcké (průřeové) carakterstky průřeu: Ploca průřeu Statcké momenty S a S průřeu k momentovým osám a Souřance, těžště průřeu Momenty setrvačnost, k osám, -Centrální momenty setrvačnost -Hlavní centrální momenty setrvačnost Devační moment D k osám, Poloměr setrvačnost, k osám, Přepokla: průře omogenní (stejnoroý), fktvní měrná tía g = (e fykálnío roměru)

3 Geometrcký pops prutu, ealace F F =F F F Osa prutu (přímý prut), přípaně střence prutu (přímý akřvený prut) Průře prutu o ploše a +y + + l ěžště průřeu Statcké scéma: statcký moel nosné konstrukce P P a R a R a l R

4 ěžště Fykální výnam těžště: a) motný o se soustřeěnou motností útvaru ) o, ve kterém le motný útvar vystavený tíe poepřít prot posunutí anž y ocáelo k rotac ěžště je cápáno jako statcký stře soustavy rovnoěžnýc sl v prostoru č rovně, které tvoří vlastní tíy elementů motnéo útvaru ěžnce osa procáející těžštěm

5 ěžště rovnnéo omogennío složenéo orace Složený rovnný oraec ( lomená čára neo složený plošný oraec) vnká spojením několka (oecně n, =,, n) jenoucýc rovnnýc oraců (prvků) v téže rovně, u kterýc umíme určt polou těžště a áklaní geometrcké carakterstky (úsečka, kru ) Postup: a) Složený oraec umístt o pravoúlé souřancové soustavy (výoný je počátek v levém orním rou orace) ) Roělt složený oraec na ílčí jenoucé orace c) Pro kažý oraec určt souřance a jeo těžště ) Pro kažý oraec spočítat tíovou fktvní sílu P Honota P opovíá élce ílčí čáry l neo velkost ílčí plocy e) Zavést fktvní síly P o těžště nejprve rovnoěžně s osou, poté s osou f) Určt výslenc tíovýc sl: R= l, R= g) Určt statcký stře soustavy těcto rovnoěžnýc sl (Vargnonova věta) Souřance statckéo střeu této soustavy = souřance těžště složenéo orace Např: -ovou souřanc těžště určíme rovnost statckéo momentu tíové síly k ose - S S R ( P ) P S neol S P P 5

6 Příkla ěžště rovnné lomené čáry Lomená čára může přestavovat např ealovaný lomený nosník konstantnío průřeu [0;] [;0] =[,5;] + =[,5;,5] Délky ílčíc čar (prutů) a jejc těžště Prut F = l = m + =[0;,5] [0;5] [;0] =[,5;,5] [6;] Prut F = l = Prut F = l = =,606 m =, m Celkem F = l = +,606 +, = 0,85 m [6;] 6

7 Příkla ěžště rovnné lomené čáry -ová souřance těžště: [;0] + Z Vargnonovy věty: [0;] l =[,5;] [6;] l l l l l =[0;,5] [0;5] l l P R l l + Délky l = m l =,606 m l =, m l = l = 0,85 m 0,606,5,,5,6m,606, ěžště je cápáno jako statcký stře soustavy rovnoěžnýc sl v prostoru č rovně, které tvoří vlastní tíy elementů motnéo útvaru 7

8 Příkla ěžště rovnné lomené čáry [0;] + [0;5] l =[0;,5] Délky =[,5;] l = m l l =,606 m l =, m [;0] l = l = 0,85 m l + l [6;] =[,6 ;,89] -ová souřance těžště: Z Vargnonovy věty: l l l P R,5,606,,5,606, l ěžště je cápáno jako statcký stře soustavy rovnoěžnýc sl v prostoru č rovně, které tvoří vlastní tíy elementů motnéo útvaru l l,89 m 8

9 ěžště složenýc oraců s otvory a výřey Zvláštní přípa složenýc oraců s otvory (s oslaením) neo s výřey (otvory souseící s orysem orace) Výpočet: Jenotlvé orace považovat a samostatné prvky e otvorů, otvory považovat a alší prvky se ápornou plocou (tíové síly opačně orentované) 9

10 ěžště oecnéo rovnnéo orace íu rovnnéo orace P le narat plocou Ploca elementárnío ílku: Celková ploca orace: P ~ Souřance těžště: Z Vargnonovy věty: S (a) S Příkla aplkace v přemětu Matematka ěžště rovnnéo orace jako statcký stře rovnné soustavy rovnoěžnýc sl 0

11 Statcké momenty rovnnýc oraců S S S S Roměr (jenotka) [élka ], pravla m neo mm K výklau statckýc momentů

12 Kvaratcké momenty rovnnýc oraců Moment setrvačnost (vžy klaný) kvaratcký moment plocy, vtažený k jené ose Defnuje tuost prutu k ané ose Devační moment (klaný č áporný) kvaratcký moment plocy vtažený ke věma vájemně kolmým osám Součn vou souřanc, ávsí na jejc naménkác D Ponámka: pro přípay jenoose neo vouose symetrckýc průřeů je D = 0 (ůka v ále) Polární moment (vžy klaný) kvaratcký moment plocy vtažený k jenomu ou pólu (v ále) Osy setrvačnost: Osy (tay, ), ke kterým jsou kvaratcké momenty vtaženy K výklau kvaratckýc momentů Roměr (jenotka) [élka ], pravla m neo mm

13 Centrální kvaratcké momenty rovnnýc oraců a centrální osy setrvačnost Momenty setrvačnost a evační moment možno počítat k lovolným vájemně kolmým osám - posunutým neo natočeným vleem k počátku Ve stavení mecance jsou ůležté kvaratcké momenty anéo orace (průřeu), které jsou vtaženy k jeo těžštním osám Jená se o centrální kvaratcké momenty (centrální momenty setrvačnost a centrální evační momenty) ěžštní osy se tuíž naývají centrální osy setrvačnost t t D, t Centrální moment setrvačnost rovnnéo orace je nejmenší momentů setrvačnost anéo orace vtaženýc k rovnoěžně posunutým osám

14 Centrální kvaratcké momenty oélníku, 0 t t D Zvoleno: O Výpočet centrálníc momentů setrvačnost: 8 8 t t Ooně: 0 D Důka nulovéo evačnío momentu symetrckéo průřeu: Poor: tyto vtay platí pro oélník uloženéo le oráku (tv nastojato) t

15 5 Centrální kvaratcké momenty oélníku, 0 t t D Zvoleno: O Výpočet centrálníc momentů setrvačnost: 8 8 t t Ooně: 0 D / t o t Důka nulovéo evačnío momentu symetrckéo průřeu : Oélník otočený o 90 : Pomůcka: ve vtaíc pro výpočet centrálníc momentů setrvačnost oélníku je mocněn na třetí vžy roměr, který je kolmý k příslušné centrální ose setrvačnost t

16 Kvaratcké momenty oélníku k rovnoěžně posunutým osám Zvoleno: O, c, o c t D D t c t t c c vertkální rameno těžště válenost posunuté osy o osy těžštní t orontální rameno těžště válenost posunuté osy o osy těžštní t Stenerova věta Moment setrvačnost rovnnéo orace k lovolné (momotěžštní) ose je roven momentu setrvačnost k rovnoěžné těžštní ose, většenému o součn plošnéo osau a čtverce válenost oou os 6

17 7 Kvaratcké momenty oélníku k rovnoěžně posunutým osám,, c O Zvoleno: c t 0 c D D t t Stenerova věta t c vertkální rameno těžště - válenost posunuté osy o osy těžštní orontální rameno těžště - válenost posunuté osy o osy těžštní Důka: > t stejným půsoem okažte pro t > t > t Využtí: kvaratcké momenty složenýc průřeů t t o c

18 8 Zvoleno: O ve vrcolu trojúelníku Kvaratcké momenty pravoúléo trojúelníku Pravoúlý trojúelník (a) () Výpočet nejprve kvaratckýc momentů k voorovné ose a svslé ose : D 0 0 0,, c O ay osy, nejsou těžštní osy!!!

19 Centrální kvaratcké momenty áklaníc oraců (v taulky) D 0 D 0 a a a a D D 7 r r r 6 D 0 9

20 Centrální kvaratcké momenty válcovánýc proflů Nepočítají se - v taulky V taulkác jsou uveeny: motnost průřeu na jenotku élky, potřené geometrcké roměry a průřeové carakterstky průřeů Honoty jsou vtaženy k osám y- (v rovně y- více v přemětu Pružnost a plastcta) 0

21 Centrální kvaratcké momenty válcovánýc U proflů Poku uete v přemětu Stavení statka počítat průřeové carakterstky složenýc válcovanýc průřeů, uou áklaní taulkové onoty aané

22 Centrální kvaratcké momenty složenýc průřeů Postup výpočtu: Využtí kvaratckýc momentů k rovnoěžně posunutým osám a) volt pomocnou souřancovou soustavu, (výoné volt počátek v levém orním rou neo na ose symetre) ) roělt složený oraec na n áklaníc prvků =,, n c) pro kažý prvek určt a souřance jeo těžště [ ; ] v pomocné souřancové soustavě ) určt souřance těžště [ ; ] celéo orace, kterým proložt centrální osy setrvačnost průřeu t, t rovnoěžné s osam, e) pro kažý prvek určt ramena těžště : c, f) s využtím Stenerovy věty vypočítat centrální kvaratcké momenty celéo orace: n c n n D D c (Otvory mají plocy momenty setrvačnost se naménkem mínus, evační momenty s opačným naménkem než plné prvky)

23 Příkla ěžště složenéo orace íová síla ~ Ploca P = = =,0 m P = = = 8,0 m Celková ploca P = = m P = = 5 =0,0 m

24 Příkla -ěžště složenéo orace : -ová souřance,5 m 0,5 8 P P P P

25 Příkla -ěžště složenéo orace : -ová souřance P P P P 0,5 8 06,9 m 5

26 Příkla Centrální moment setrvačnost Ramena ílčíc těžšť c = = 0,5 -,9 = -, m c = =,0 -,9= -0,9 m c = = 6,0 -,9 =, m Momenty setrvačnost ílčíc oraců, = / = 0 m, = / = 0667 m, = 5 / = m Centrální moment setrvačnost = ( + c ) = 0 +,0 (-,) ,0 (-0,9) + + 0,0, =, m 6

27 Příkla Centrální moment setrvačnost Ramena ílčíc těžšť = =,0 -,5 = -,5 m = - =,0 -,5 = -0,5 m = - =,5-,5=,0 m Momenty setrvačnost ílčíc oraců, = / = 5 m, = / = 667 m, = 5 / = 08 m Centrální moment setrvačnost = ( + ) = 5 +,0 (-,5) ,0 (-0,5) ,0,0 = 9,8 m 7

28 Příkla Devační moment D Devační moment ílčíc průřeů D = D = D = 0 m (-ose symetrcký průře) Devační moment D celéo průřeu D = (D + c ) = =,0 (-,) (-,5) + + 8,0 (-0,9) (-0,5) + + 0,0,,0 = 5,0 m = =,0 -,5 = -,5 m = - =,0 -,5 = -0,5 m = - =,5-,5=,0 m c = = 0,5 -,9 = -, m c = - =,0 -,9= -0,9 m c = = 6,0 -,9 =, 8 m

29 Kvaratcké momenty k pootočeným osám Jsou-l námy kvaratcké momenty rovnnéo orace pro pravoúlou vojc os, s počátkem o, je možno určt onoty kvaratckýc momentů pro jnou vojc pravoúlýc os,, pootočenou o půvoníc os o úel α: cos sn sn D sn cos D sn D sn Dcos Změnou úlu, se mění onoty kvaratckýc momentů k pootočeným osám Estuje úel pootočení os 0, př kterém naývají momenty setrvačnost k těmto osám etrémníc onot a evační moment je nulový Osy pootočené o úel 0 lavní osy setrvačnost Momenty setrvačnost vtažené k lavním osám (etrémní momenty setrvačnost) lavní momenty setrvačnost, o tg 0 D V přípaě symetrckéo průřeu (stačí jenoose symetrcký), je D =0, α 0 =0 Potom momenty setrvačnost a vtažené osám, jsou ároveň lavní momenty setrvačnost Větší nc je, menší Osy, jsou pak ároveň lavní osy setrvačnost (v níže) 9

30 Hlavní momenty setrvačnost Úpravou přeešlýc vtaů pro nesymetrcký průře: D, Znaménko pře omocnnou: + - Hlavní osy setrvačnost:, tg, D ma mn ma mn 0 90 Poučka: Součet momentů setrvačnost ke věma vájemně kolmým osám setrvačnost se př otáčení oou os kolem počátku nemění, ůstává konstantní (neměnný, nvarantní) 0

31 Hlavní centrální momenty setrvačnost Ve stavení mecance jsou ůležté lavní momenty setrvačnost vtažené k lavním osám procáejícíc těžštěm orace Jená se o: Hlavní centrální momenty setrvačnost, Moment setrvačnost vtažený k lavním osám procáejícíc těžštěm (lavní centrální osy setrvačnost) U symetrckýc průřeů to jsou momenty setrvačnost vtažené k těžštním osám t, t Hlavní centrální osy setrvačnost, Dvě vájemně kolmé osy procáející těžštěm, které jsou o souřanéo systému pootočeny o úel, Momenty setrvačnost vtažené k těmto osám jsou lavní centrální momenty setrvačnost průřeu

32 Hlavní centrální momenty setrvačnost Symetrcké průřey: centrální momenty setrvačnost a (vtažené k centrálním (těžštním) osám t, t ) jsou ároveň lavní centrální momenty setrvačnost Větší nc je, menší Osy t, t jsou lavní centrální osy setrvačnost Nesymetrcké průřey: D, Znaménko pře omocnnou: + - ma mn Hlavní centrální osy setrvačnost s počátkem v těžšt průřeu : tg,, D ma mn 0 90

33 Příkla : pokračování Hlavní centrální momenty setrvačnost, Hl centrální momenty setrvačnost,, 9,8, 9,8,9 m 6,0 m D 5 Natočení l centrální momentů, tg tg 7,9 tg tg D D 6,,9, 5 6,0, 5

34 Příkla : pokračování natočení lavníc centrálníc os setrvačnost V této poloe má průře největší tuost

35 Poloměr setrvačnost Geometrcká carakterstka průřeu: Hlavní centrální poloměry setrvačnost: ma ma mn mn Hlavní centrální poloměry setrvačnost pro oélníkový průře : (šířka, výška ) ma 0,887 mn 0,887 Hlavní centrální poloměry setrvačnost pro čtvercový průře (strana a): 0,887 a ma mn Hlavní centrální poloměry setrvačnost pro kruový průře: ma mn π r π r r r Roměr [élka], pravla m neo mm 5

36 Polární moment setrvačnost Polární moment setrvačnost vtažený k ou (pólu): (p je válenost o pólu) p p p Ve stavařské pra: pólem je výraně těžště průřeu, centrální polární moment setrvačnost, využtí u rotačně symetrckýc průřeů Kvaratcký moment, roměr [élka ], pravla m neo mm p Poučka: Polární moment setrvačnost k pólu (ou) O je roven součtu momentů setrvačnost ; vtaženýc k jakýmkol věma vájemně kolmým osám setrvačnost, které tímto oem (pólem) procáejí Roměr [élka ], pravla m neo mm K výklau polárnío momentu setrvačnost 6

37 Neomogenní složený oraec Dílčí prvky nemají stejnou měrnou tíu (např želeoetonový sloup), neo přestavují ealované ojemy o růnýc průřeec (např příraová konstrukce s růným průřey prutů v násleující snímek) íová síla neomogennío složenéo orace nepřestavuje poue élku ílčí čáry l neo velkost ílčí plocy Do tíové síly nutno arnout také vlv skutečné tíy ílčío prvku Další postup výpočtu je pak soný jako u omogennío orace Vlastní tía (tíová síla) tělesa: P=V g = l g = l g [N] Vlastní tía (tíová síla) úsečky P = l m g [N] V ojem [m ] - ustota [kg / m ] g - tíové ryclení 98 [m / s ] ploca [m ] l élka [m] g - měrná tía [N / m ] m měrná motnost [kg / m] P ěžště úsečky 7

38 ěžště neomogenní rovnné prutové konstrukce Příraová konstrukce s n pruty (=,, n ) stejnéo materálu (γ = konst) o růnýc průřeec pruty o stejnýc élkác mají roílné tíové síly Konstrukce přestavuje složený rovnný oraec několk spojenýc úseček o íová síla prutu: P V g l g l + Řešení výpočet : V těžštíc jenotlvýc prutů aveeme ílčí tíové síly těžště [ ; ] přestavuje statcký stře soustavy rovnoěžnýc sl R P R P R P P P + 8

39 ěžště neomogenní rovnné prutové konstrukce Řešení výpočet : íová síla prutu: V těžštíc jenotlvýc prutů aveeme ílčí tíové síly o P V g l g l + těžště [ ; ] přestavuje statcký stře soustavy rovnoěžnýc sl P R R R P P P P + 9

40 Průřeové carakterstky orace složenéo válcovanýc tyčí o UPN 60 PN 0 Příkla č k procvčení (uete potřeovat): Dle postupu u příklau spočítejte všecny průřeové carakterstky, které jsme na této přenášce proíral Průře je složen válcovanýc U60 a 0 proflů Zaané onoty konkrétně pro tento průře: 0:,0,60 6 mm mm,,,0 mm 06mm, 6 0mm Ponámka (pro vaš přípanou kontrolu taulkovýc onot): Poor na uložení válcovanéo U proflu Osy jsou oprot osám v taulkác vájemně přeoené U 60: 8500,0 mm mm, mm, 65mm, 60mm e 8,mm poloa těžště U proflu kóty, v snímky,na kterýc jsou taulky průřeů 9,50 6 0

41 Průřeové carakterstky orace složenéo válcovanýc tyčí P U R [, ] P U c U c t t c c D D c,, o Nápověa: = 7,80-5 m Průře je symetrcký k ose D =0, centrální osy setrvačnost = lavní centrální osy setrvačnost

42 Průřeové carakterstky orace s otvorem Příkla č k procvčení (uete potřeovat): Dle postupu u příklau spočítejte všecny průřeové carakterstky, které jsme proíral Průře tvoří oélníková ploca s otvorem Nápověa: = [,86 ;,] = 6,7 m =,07 m

43 Srnutí áklaníc pojmů Statcké momenty plocy [m ] : k ose : k ose : k ou o: S S S o Kvaratcké momenty plocy [m ] : setrvačnost k ose : setrvačnost k ose : evační k osám : D polární k ou (pólu) p : p Momenty setrvačnost (MS) včetně evačnío: k lovolným osám, : oecně MS -,, D, k těžštním osám t, t : centrální MS, je-l symetre alespoň k jené ose D =0 k pootočeným vájemně kolmým osám : oecně -,, D k pootočeným vájemně kolmým osám - osy neprocáejí těžštěm etrémní onoty MS (, ) : lavní MS, = ma, = mn D =0 k pootočeným vájemně kolmým osám - osy procáejí těžštěm etrémní onoty MS (, ) : lavní centrální MS, = ma, = mn D =0 p

Průřezové charakteristiky

Průřezové charakteristiky Stavení statka, ročník akalářskéo stua Průřeové carakterstky ěžště složenýc oraců omogenníc průřeů Kvaratcké momenty áklaníc průřeů Kvaratcké momenty složenýc průřeů ěžště složenýc oraců neomogenníc průřeů

Více

Těžiště. Fyzikální význam těžiště:

Těžiště. Fyzikální význam těžiště: ěžště Fykální výnam těžště: a) hmotný bod se soustředěnou hmotností útvaru b) bod, ve kterém le hmotný útvar vystavený tíe podepřít prot posunutí anž by docháelo k rotac ěžště je chápáno jako statcký střed

Více

Průřezové charakteristiky

Průřezové charakteristiky Stavení statka rčník akalářské stua růřey prutvý knstrukční prvků Návr a psuek efrmvatelný prutů vyžauje tv gemetrké (průřevé) arakterstky průřeu: růřevé arakterstky ěžště slžený raů mgenní průřeů Kvaratké

Více

Téma 10: Momenty setrvačnosti a deviační momenty

Téma 10: Momenty setrvačnosti a deviační momenty Savení saika, ročník akalářskéo sudia Téma : Momeny servačnosi a deviační momeny Cenrální kvadraické momeny ákladníc průřeů Cenrální kvadraické momeny složenýc průřeů Kvadraické momeny k pooočeným osám

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová

Více

Grafické řešení úloh LP se dvěma neznámými

Grafické řešení úloh LP se dvěma neznámými . přenáška Grafické řešení úloh LP se věma nenámými Moel úlohy lineárního programování, který obsahuje poue vě nenámé, le řešit graficky v rovině pravoúhlých souřaných os. V této rovině se nejprve obraí

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plasticita II. ročník bakalářskéo stuia oc. Ing. Martin Krejsa, P.. Katera stavební ecanik Plošné konstrukce, nosné esk Nosné esk Iealiují se jako rovinný obraec (nejčastěji ve voorovné rovině),

Více

9. Kombinované namáhání O kombinovaném namáhání nosníku mluvíme, když průřez namáhán nějakou kombinací vnitřních sil:

9. Kombinované namáhání O kombinovaném namáhání nosníku mluvíme, když průřez namáhán nějakou kombinací vnitřních sil: 9. Komnované namáání O komnovaném namáání nosníku mluvím, kdž průř namáán nějakou komnací vntřníc sl: M normálová síla M,M oové momnt M = M k M M = M k kroutící momnt Vntřní síl dostanm ntgrací napětí

Více

Základní pojmy Přímková a rovinná soustava sil

Základní pojmy Přímková a rovinná soustava sil Stavební statka, 1.ročník bakalářského studa Základní pojmy římková a rovnná soustava sl Základní pojmy římková soustava sl ovnný svaek sl Statcký moment síly k bodu a dvojce sl v rovně Obecná rovnná soustava

Více

Průřezové charakteristiky základních profilů.

Průřezové charakteristiky základních profilů. Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové

Více

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia Stavební statika, 1.ročník bakalářského stuia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katera stavební mechaniky Fakulta stavební, VŠB - Technická univerzita

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Krejsa, Ph.D. Katera stavební mechanky Moely položí Záklaové konstrukce Záklaové konstrukce zajšťují: přenesení tíhy vrchní stavby o položí

Více

Normálová napětí v prutech namáhaných na ohyb

Normálová napětí v prutech namáhaných na ohyb Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené

Více

6.3 Momenty setrvačnosti a deviační momenty rovinných obrazců. yda. 1) I y, I z > 0. 2) I y, I z závisí na vzdálenosti plochy od osy II I I I I

6.3 Momenty setrvačnosti a deviační momenty rovinných obrazců. yda. 1) I y, I z > 0. 2) I y, I z závisí na vzdálenosti plochy od osy II I I I I 6.3 Moment setrvačnosti a deviační moment rovinných obraců Statické moment rovinného obrace -k ose xiální moment setrvačnosti rovinného obrace -k ose -k ose Pon.: 1), > 0 S d d d. S d -k ose [m 3 ] [m

Více

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního

Více

Osově namáhaný prut základní veličiny

Osově namáhaný prut základní veličiny Pružnost a pevnost BD0 Osově namáhaný prut základní velčny ormálová síla půsoící v průřezu osově namáhaného prutu se získá ntegrací normálového napětí po ploše průřezu. da A Vzhledem k rovnoměrnému rozložení

Více

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D. Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+

Více

Téma 7, modely podloží

Téma 7, modely podloží Pružnost a plastcta II.,.ročník bakalářského stua, přenášky Janas, Téma 7, moely položí Úvo Wnklerův moel položí Pasternakův moel položí Pružný poloprostor Nosník na pružném Wnklerově položí, řešení ODM

Více

Rovinná napjatost a Mohrova kružnice

Rovinná napjatost a Mohrova kružnice Rovinná napjatost a ohrova kružnice Dvojosý stav napjatosti - ukák anačení orientace napětí v rovině x Na obr. vlevo dole jsou vnačen složk napětí. Kladná orientace napětí x a je v případě, že vektor směřují

Více

SMR 2. Pavel Padevět

SMR 2. Pavel Padevět SR Pve Pevět Přenášk č. Přenášk č. PRINCIP VIRTUÁLNÍCH PRCÍ Výpočet přetvoření n sttk určtý konstrukí Přenášk č. Dopňková vrtuání práe momentů Vv n výpočet eformí: oment Posouvjíí sí Normáové sí (přírové

Více

Soustava hmotných bodů

Soustava hmotných bodů Soustava hmotných bodů Těleso soustava hmotných bodů Tuhé těleso - pevný předmět jehož rozměr se nemění každé těleso se skládá z mnoha částc síla působící na -tou částc výsledná síla působící na předmět

Více

Steinerova věta a průřezové moduly. Znění a použití Steinerovy věty. Určeno pro druhý ročník strojírenství M/01. Vytvořeno červen 2013

Steinerova věta a průřezové moduly. Znění a použití Steinerovy věty. Určeno pro druhý ročník strojírenství M/01. Vytvořeno červen 2013 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Steinerova

Více

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů

Více

Přednáška 02. License" found at

Přednáška 02. License found at Přenáška 02 Prostý ob Hpotéa o acování rovinnosti průřeu Křivost prutu, vta mei momentem a křivostí Roložení napětí při obu Pružný průřeový moul Příkla Coprigt (c) 2011 Vít Šmilauer Cec Tecnical Universit

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

Podmínky k získání zápočtu

Podmínky k získání zápočtu Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné

Více

K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průběhu semestru

K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průběhu semestru Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní carakter a bude v průběu semestru postupně doplňován. Autor: Jan Vyčicl E mail:

Více

STACIONÁRNÍ MAGNETICKÉ POLE

STACIONÁRNÍ MAGNETICKÉ POLE Příklay: 1. Přímý voič o élce 0,40 m, kterým prochází prou 21 A, leží v homogenním magnetickém poli kolmo k inukčním čarám. Velikost vektoru magnetické inukce je 1,2 T. Vypočtěte práci, kterou musíme vykonat

Více

Trojkloubový nosník. Rovinné nosníkové soustavy

Trojkloubový nosník. Rovinné nosníkové soustavy Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Kter stvení mehniky Fkult

Více

Smyková napětí v ohýbaných nosnících

Smyková napětí v ohýbaných nosnících Pružnost a plasticita, 2.ročník kominovaného studia Smková napětí v ohýaných nosnících Základní vtah a předpoklad řešení ýpočet smkového napětí odélníkového průřeu Dimenování nosníků namáhaných na smk

Více

Veličiny charakterizující geometrii ploch

Veličiny charakterizující geometrii ploch Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

Obsah. Perspektivy krajinného managementu - inovace krajinářských discipĺın. Jakob Steiner švýcarský matematik - geometr. vzorce, integrační metody

Obsah. Perspektivy krajinného managementu - inovace krajinářských discipĺın. Jakob Steiner švýcarský matematik - geometr. vzorce, integrační metody Moment setrvčnosti průřezů - použití určitýc integrálů v ecnické mecnice Dn Říová, Pvl Kotásková Mendelu Brno Perspektiv krjinnéo mngementu - inovce krjinářskýc discipĺın reg.č. CZ..7/../5.8 Os Moment

Více

TĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli

TĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli SAIKA - těžště ĚŽIŠĚ A SABILIA ěžště tělesa bod, kterým stále prochází výsledce tíhových sl všech jeho hmotých bodů, ať těleso atáčíme jakkol bod, ke kterému astává rovováha mometů způsobeých tíhou jedotlvých

Více

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECNICKÁ UNIVEZITA OSTAVA FAKULTA STOJNÍ PUŽNOST A PEVNOST V PŘÍKLADEC Kvadratický moment I doc. Ing. Karel Frydrýšek, Ph.D., ING-PAED IGIP Ing. Milan Sivera Ing. ichard Klučka Ing.

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon Peter Dourmashkin MIT 26, překla: Jan Pacák (27) Obsah 5 AMPÉRŮV ZÁKON 3 51 ÚKOLY 3 52 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ 3 ÚLOHA 1: VÁLCOVÝ PLÁŠŤ

Více

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i.

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i. Rovnný svazek sl Lze odvodt z obecného prostorového svazku sl vloučením edné dmenze = cos cos =sn e 2 = cos = sn = e 1 e 2 e 1 Určení výslednce r n r = =1 r e 1 r e 2 =...e 1...e 2 : r = n = n =1 =1 n

Více

STATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA

STATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA Zaání STATICKY NEURČITÉ RÁOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ ETODA Příkla č. Vykreslete průěhy vnitřníh sil na konstruki zorazené na Or.. Voorovná část konstruke (příčle) je složena z průřezu a

Více

7 Součinitele tlaků a sil

7 Součinitele tlaků a sil 7 Součinitele tlaků a sil 7.1 Oecná ustanovení 7.1.1 Druy součinitelů Eurokó uváí součinitele tlaků, sil a tření pro ěžné typy konstrukcí. Jejic onoty yly o Eurokóu převzaty z různýc zrojů, zejména z norem

Více

1. Úvod do pružnosti a pevnosti

1. Úvod do pružnosti a pevnosti 1. Úvod do pružnosti a pevnosti Mechanika je nejstarší vědní obor a její nedílnou součástí je nauka o pružnosti a pevnosti. Pružností nazýváme schopnost pevných těles získat po odstranění vnějších účinků

Více

Vnitřní síly v prutových konstrukcích

Vnitřní síly v prutových konstrukcích Vnitřní síly v prutových konstrukcích Síla je vektorová fyikální veličina, která vyjadřuje míru působení těles nebo polí. Zavedení síly v klasické Newtonově mechanice (popis pohybu těles) dp dv F = = m

Více

Zjednodušená styčníková metoda

Zjednodušená styčníková metoda Stvní sttik, 1.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Zjnoušná styčníková mto Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů

Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů Jedenácté cvičení bude vysvětlovat tuto problematiku: Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů

Více

FYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohybová rovnce Prof. RNDr. Vlém Mádr, CSc. Prof. Ing. Lbor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA

1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA .5. OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA.5. ZÁKLADNÍ ROVNICE DYNAMIKY PRO ROTAČNÍ POHYB Fz F Z výsednce zrychujících s F m.a n m a t a n r z F Zrychující moment M F. r F. r z z z m.a t r6,5cm ρ r ω,ε r

Více

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M. Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením

Více

Měření momentu setrvačnosti

Měření momentu setrvačnosti Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :

Více

Statika soustavy těles v rovině

Statika soustavy těles v rovině Statka soustavy těles v rovně Zpracoval: Ing. Mroslav yrtus, Ph.. U mechancké soustavy s deálním knematckým dvojcem znázorněné na obrázku určete: počet stupňů volnost početně všechny reakce a moment M

Více

Momenty setrvačnosti a deviační momenty

Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty charakterizují spolu shmotností a statickými momenty hmoty rozložení hmotnosti tělesa vprostoru. Jako takové se proto vyskytují

Více

Střední škola automobilní Ústí nad Orlicí

Střední škola automobilní Ústí nad Orlicí Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ PRUŽNOST A PEVNOST V PŘÍKLADECH Kvadratický moment II doc. Ing. Karel Frydrýšek, Ph.D., ING-PAED IGIP Ing. Milan Sivera Ing. Richard Klučka

Více

Statika 2. Excentrický tlak za. Miroslav Vokáč 6. prosince ČVUT v Praze, Fakulta architektury. Statika 2. M.

Statika 2. Excentrický tlak za. Miroslav Vokáč 6. prosince ČVUT v Praze, Fakulta architektury. Statika 2. M. 6. přednáška Miroslav Vokáč miroslav.vokac@cvut.c ČVUT v Prae, akulta architektury 6. prosince 2018 Průběh σ x od tlakové síly v průřeu ávisí na její excentricitě k těžišti: e = 0 e < j e = j e > j x x

Více

Elastické deformace těles

Elastické deformace těles Eastické eformace těes 15 Na oceový rát ék L 15 m a průměru 1 mm zavěsíme závaží o hmotnosti m 110 kg přičemž Youngův mou pružnosti ocei v tahu E 16 GPa a mez pružnosti ocei σ P 0 Pa Určete reativní prooužení

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil Přímková a rovinná soustava sil 1) Souřadný systém - v prostoru - v rovině + y + 2) Síla P ( nebo F) - vektorová veličina - působiště velikost orientace Soustavy sil - přehled Soustavy sil můžeme rodělit

Více

PRŮŘEZOVÉ CHARAKTERISTIKY

PRŮŘEZOVÉ CHARAKTERISTIKY . cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,

Více

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228) Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova

Více

Fotogrammetrie. Rekonstrukce svislého snímku

Fotogrammetrie. Rekonstrukce svislého snímku Fotogrammetrie Rekonstrukce svisléo snímku Zaání: prove te úplnou rekonstrukci svisléo snímku anéo objektu, je-li známo, že vstupní část má čtvercový půorys o élce strany s = 2. pro větší přelenost nejprve

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...

Více

STAVEBNÍ STATIKA. Ing. Petr Konečný, Ph.D. LPH 407/3. tel

STAVEBNÍ STATIKA. Ing. Petr Konečný, Ph.D. LPH 407/3. tel STAVEBNÍ STATIKA Ing. Petr Konečný, Ph.D. LPH 47/3 tel. 59 732 1394 petr.konecny@vsb.c http://fast1.vsb.c/konecny roklad síly v rovině síla pod úhlem γ - (k ose ) až -18 až +18 x A γ P P P x γ + x P x

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz

Více

FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU

FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU F. Dušek, D. Honc Katera řízení procesů, Fakulta elektrotechniky a informatiky, Univerzita Parubice Abstrakt Článek se zabývá sestavením nelineárního ynamického moelu

Více

Příklad 4 Ohýbaný nosník napětí

Příklad 4 Ohýbaný nosník napětí Příklad 4 Oýaný nosník napěí Zadání Nosník s převislým koncem je aížen spojiým aížení q = 4 kn/m a osamělou silou F = 40 kn. Průře nosníku je ocelový svařovaný proil. Roměr nosníku jsou: L =,6 m L =, m

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1

5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1 Řešení úloh 1 kola 7 ročníku fyzikální olympiáy Kategorie C Autoři úloh: J Thomas (1,, 3), J Jírů (4, ), J Šlégr (6) a T Táborský (7) 1a) Označme stranu čtverce na mapě Autobus za 1 hoinu urazí ráhu s

Více

Z hlediska pružnosti a pevnosti si lze stav napjatosti

Z hlediska pružnosti a pevnosti si lze stav napjatosti S T R O J N IC K Á P Ř ÍR U Č K A část 7, díl 4, kapitola 1, str. 1 7/4.1 T Y P Y N A P J A T O S T I A T R A N S F O R M A C E N A P J A T O S T I Pojmem napjatost roumíme stav určitého bodu tělesa, který

Více

Kuličkové šrouby a matice - ekonomické

Kuličkové šrouby a matice - ekonomické Kuličkové šrouby a matice - ekonomické Tiskové chyby, rozměrové a konstrukční změny vyhrazeny. Obsah Obsah 3 Deformační zatížení 4 Kritická rychlost 5 Kuličková matice FSU 6 Kuličková matice FSE 7 Kuličková

Více

LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM

LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM - predpokladejme, e name linearni a kvadraticke moment k osam, a chceme urcit moment k osam a. - souradnice elementu ds k posunutm osam jsou potom: = - d

Více

Obr. 5 Plovoucí otoč - nerovnovážný stav

Obr. 5 Plovoucí otoč - nerovnovážný stav Te International Journal of TRANSPORT & LOGISTICS Medzinárodný časopis DOPRAVA A LOGISTIKA STABILITA PLOVOUCÍ PÁSOVÉ DOPRAVNÍ TRASY ISSN 45-07X Leopold Hrabovský Klíčová slova: plovoucí pásový dopravník,

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ PRAVIDLA PRO KÓTOVÁNÍ SOUČÁSTÍ

Více

Nejprve určíme posouvající sílu. Pokud postupujeme zprava, zjistíme, že zde nepůsobí žádné silové účinky, píšeme proto:

Nejprve určíme posouvající sílu. Pokud postupujeme zprava, zjistíme, že zde nepůsobí žádné silové účinky, píšeme proto: Řešte daný nosník: a,m, b,m, c,m, F = 5kN, kn bychom nal kompletně slové účnky působící na nosník, nejprve vyšetříme reakce v uloženích. Reakc určíme například momentové podmínky rovnováhy k bodu. Fb =

Více

VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH PŘÍMÝCH NOSNÍCÍCH

VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH PŘÍMÝCH NOSNÍCÍCH Mioš Hüttner SMR přetvoření přímýh nosníků vičení VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH PŘÍMÝCH NOSNÍCÍCH Zaání Příka č. 1 Vpočítejte maimání průh nosníku o rozpětí zatíženého uprostře siou, viz Or.

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

1 Veličiny charakterizující geometrii ploch

1 Veličiny charakterizující geometrii ploch 1 Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

Zakládání staveb 9 cvičení

Zakládání staveb 9 cvičení Zakláání tave 9 včení Únonot áklaové půy Mení tavy Geotehnké kategore Mení tav únonot (.MS) MEZÍ STAVY I. Skupna mení tav únonot (hrouení kontruke, nepříputné aoření, naklonění) II. Skupna mení tav přetvoření

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Schéma podloží pod základem. Parametry podloží: c ef c d. třída tloušťka ɣ E def ν β ϕef

Schéma podloží pod základem. Parametry podloží: c ef c d. třída tloušťka ɣ E def ν β ϕef Příkla avrhněte záklaovou esku ze ŽB po sloupy o rozměru 0,6 x 0,6 m a stanovte max. provozní napětí záklaové půy. Zatížení a geometrie le orázku. Tloušťka esky hs = 0,4 m. Zatížení: rohové sloupy 1 =

Více

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. 1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Rovinné nosníkové soustavy III Příhradový nosník

Rovinné nosníkové soustavy III Příhradový nosník Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená

Více

příklad 16 - Draft verze pajcu VUT FAST KDK Pešek 2016

příklad 16 - Draft verze pajcu VUT FAST KDK Pešek 2016 příklad - Drat vere pajcu VUT FAST KDK Pešek 0 VZPĚR SOŽEÉHO PRUTU A KŘÍŽOVÉHO PRUTU ZE DVOU ÚHEÍKŮ Vpočítejte návrhovou vpěrnou únosnost prutu délk 84 milimetrů kloubově uloženého na obou koncí pro všen

Více

Otáčení a posunutí. posunutí (translace) otočení (rotace) všechny body tělesa se pohybují po kružnicích okolo osy otáčení

Otáčení a posunutí. posunutí (translace) otočení (rotace) všechny body tělesa se pohybují po kružnicích okolo osy otáčení Otáčení a posunutí posunutí (translace) všechny body tělesa se pohybují po rovnoběžných trajektorích otočení (rotace) všechny body tělesa se pohybují po kružncích okolo osy otáčení Analoge otáčení a posunutí

Více

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load 7..0 Protlačení Je jev, ke kterému ochází při působení koncentrovaného zatížení na malé ploše A loa PROTLAČENÍ A loa A loa A loa Zatěžovací plochu A loa obyčejně přestavuje kontaktní plocha mezi sloupem

Více

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná

Více

LINEÁRNÍ PERSPEKTIVA. Přednáška DG2*A 6. týden

LINEÁRNÍ PERSPEKTIVA. Přednáška DG2*A 6. týden LINEÁRNÍ PERSPEKTIVA Přednáška DG*A 6. týden DRY VOLNÉ PERSPEKTIVY Muíme vždy volit ouřadnicový ytém. Souřadné oy pravidla umíťujeme tak, aby byly rovnoběžné ranami obraovanéo objektu. JEDNOÚBĚŽNÍKOVÁ

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

Zakládání staveb 4 cvičení

Zakládání staveb 4 cvičení Zakláání tave 4 včení Únonot záklaové půy Mezní tavy Geotehnké kategore Mezní tav únonot (.MS) MEZÍ STAVY I. Skupna mezní tav únonot (zhrouení kontruke, nepříputné zaoření, naklonění) II. Skupna mezní

Více

VÝPOČET PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ SILOVOU METODOU řešený příklad pro BO004

VÝPOČET PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ SILOVOU METODOU řešený příklad pro BO004 VÝPOČET PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ SILOVOU METODOU řešený příklad pro BO00 Slová metoda využívá prncp vrtuální práce. Zavádí se nový zatěžovací stav vrtuální zatížení. V tomto zatěžovacím stavu

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

1. Úlohy z gravimetrie

1. Úlohy z gravimetrie . Úloy ravimetrie Úvodní problém nakreslete raf náorňující tíový účinek koule podle vorce pro vertikální složku. loubka středu koule 500 m poloměr koule R 50 m diferenční ustota σ 500 k/m Základy Geofyiky:

Více

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.

Více

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál.

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál. E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 III.6. Aplikace trojných integrálů Příklad 6. Užitím vorce pro výpočet objemu tělesa pomocí trojného integrálu (tj.v ddd ukažte, že objem

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Překlad z vyztuženého zdiva (v 1.0)

Překlad z vyztuženého zdiva (v 1.0) Překla z vyztuženého ziva (v 1.0) Výpočetní pomůcka pro poouzení zěného vyztuženého překlau Smazat zaané honoty Nápověa - čti pře prvním použitím programu!!! O programu 0. Pomínka prutového či těnového

Více

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2]. Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y

Více

Téma 1 Deformace staticky určitých prutových konstrukcí

Téma 1 Deformace staticky určitých prutových konstrukcí Saka savebních konsrukcí I Téma Deformace sacky určých pruových konsrukcí Kaera savební mechanky Fakua savební, VŠB - Techncká unvera Osrava Osnova přenášky Poem eformace Prncp vruáních prací Deformace

Více