DYNAMIKA BODU. kterou nazýváme setrvačnou silou. Pohybovou rovnici (2) pomocí ní přepíšeme na

Rozměr: px
Začít zobrazení ze stránky:

Download "DYNAMIKA BODU. kterou nazýváme setrvačnou silou. Pohybovou rovnici (2) pomocí ní přepíšeme na"

Transkript

1 DYNMIK BODU POHYBOVÉ OVNIC Ze kušenost je námo že tělesa (bod) jsou schon uvádět do ohbu nebo měnt jejch ohbový stav na ně ůsobí (statcké) slové účnk. Kvantfkací tohoto stavu je Newtonův nc síl (. nc klascké mechank) d ( m v) =. () Velčnu H = mv naýváme hbností hmotného bodu. Na avé staně stojí vektoový součet (výslednce) všech statckých sl na hmotný bod ůsobících. Je-l hmotnost hmotného bodu konstantní dostáváme () m a =. () Součn hmotnost a chlení a hmotného bodu má omě síl naýváme j chlující síla. ovnc () naýváme ohbovou ovncí hmotného bodu ve vektoovém tvau. kálně vjadřuje ekvvalenc chlující (dnamcké) síl s výsledncí sl statckých. V technckých úlohách avádíme často oačně oentovanou sílu D m a kteou naýváme setvačnou slou. Pohbovou ovnc () omocí ní řeíšeme na D + = 0. (3) Tento vtah vjadřuje ovnováhu setvačné (dnamcké) síl s výsledncí sl statckých. Vektoovou ovnc () es. (3) oesujeme v ůných vhodně volených souřadncových soustavách do jedné (úloha na římce) ou (úloha v ovně) č tří (úloha v ostou) skaláních ohbových ovnc. Po volný ohb bodu o římce (kd všechn statcké síl ted jedná skalání ovnce ohbu tva mají smě této římk) má m a = (4) kde chlení římočaého ohbu vjadřujeme jednou e tří mechank I námých ávslostí d a = = = = v. (5) d d Dosaením do (4) ř nalost sl jako funkcí chlost v dáh oříadě času t ískáme ohbovou ovnc ve tvau dfeencální ovnce kteou ř nalost očátečních odmínek ( 0) = 0 (dáha v čase t = 0 ) a v ( 0) = v0 (chlost v čase t = 0 ) můžeme (někd analtck vždck však numeck) řešt a ískat tím nalost ohbu bodu ted ávslost chlost na t t v. čase v ( ) dáh na čase ( ) a chlost na dáe ( )

2 Po bod váaný k hladké (be tření) ovnné křvce kd všechn statcké síl ůsobí v oné ovně oesujeme ohbovou ovnc (4) do ou směů. Nejvýhodněj do směu tečn a nomál ke křvce. Příslušné skalání ovnce mají tva Po tečné chlení řejmě latí m a t = t m a n = n. (6) d s = = = = v (7) ds ds a t kde s je oběhnutá dáha (o křvce) v velkost chlost a t čas. Po nomálové chlení latí v = (8) a n kde je olomě křvost křvk v uvažované oloe (dané aametem s). Př nalost tečných složek t statckých sl jako funkcí v s oříadě t ískáme vní ovnc v (6) jakožto dfeencální ovnc kteá je tv. vlastní ohbovou ovncí. Ve směu tečn ke křvce totž docháí k ohbu. Ve směu nomál k ohbu nedocháí očež duhá ovnce učuje eakc vab (křvk) na bod. Jedna e statckých sl je totž nomálová eakce N námá mechank I. Duhá ovnce v (6) má odle (8) tva kde Oud n m v N + n je součet nomálových složek statckých akčních sl. mv N + n. (9) Z této ovnce ř nalost ohbu (o vřešení vlastní ohbové dfeencální ovnce) m v vjádříme ávslost velkost eakce N na čase. Síla (dnamcká) m a n se naývá odstřeou slou. Oentace nomál je řtom do středu křvost křvk. Ponámka: Je-l křvkou kužnce (velce častý říad) je = (olomě kužnce) a v = ω kde ω je úhlová chlost říslušného kuhového ohbu bodu. Tečné chlení je ak a t = α kde α je úhlové chlení kuhového ohbu. Uvažujeme-l navíc třecí účnek s koefcentem smkového tření f dostáváme ovnce (6) ve tvau m a = f N t t

3 m an = n N. (0) Vlastní ohbová ovnce je vní ovncí kteá ovšem obsahuje eakc N. Poto je nejve v nutno algebacké duhé ovnce (0) učt eakc N dosaením a a n = a dosa do ovnce vní. Získáme vlastní ohbovou ovnc ve tvau dfeencální ovnce kteou řešíme ř očátečních odmínkách s ( 0) = s0 (dáha v čase t = 0 ) a v ( 0) = v0 (chlost v čase t = 0 ) odobně jako u římočaého ohbu. Ze duhé ovnce (0) o vřešení ohbu le ískat (odobně jako u hladké křvk) ávslost eakce na čase. U volné ovnné křvk je možno vektoovou ovnc () (oříadě (3)) oesovat do složek evného souřadncového sstému. Pohbové ovnce ak jsou kde a a a jsou složk chlení a chlení le vjádřt jako Jestlže složk a a ávsejí oue na m a = m a = () složk statcké síl = d = = = v d d d = = = = v d d. v eventuelně t a složk jen na t le obě dfeencální ovnce řešt neávsle. Získané ávslost ( t) ( t) v tomto sstému. Složk v eventuelně vnklé jejch řešením tvoří aametcké ovnce ovnné křvk o níž se bod ohbuje. Vloučením aametu (okud to le analtck udělat) ískáme analtcko geometckou ovnc dáh. ve tvau ( ) Pohb bodu je možno sledovat v souřadncové soustavě jež koná vhledem k nehbné soustavě (sojené se Zemí) ředesaný ohb. Můžeme nař. ohb bodu sledovat v ojíždějícím se automoblu výtahu aod. Jestlže oklad ohbu 3 = + 3 kde 3 = ohblvý bod kteý sledujeme = ohbující se soustava (sojená s výtahem atd.) je obecný (ted neákladní) latí o chlení absolutního ohbu a3 = a + a3 + a c () kde a je chlení unášvého a 3 chlení elatvního ohbu (učí se odle toho o jaký ohb se jedná v konkétní úloe). Zchlení a c = ω v3 je Coolsovo chlení. Pokud oklad je ákladní a ted unášvý ohb je osuvem je ω = 0 a ted a 0 =. Do ohbové ovnce () es. (3) nní dosaujeme a chlení a chlení a 3 (). Dnamcká setvačná síla Dc m ac m ω v3 = m( v3 ω ) se naývá Coolsova c

4 síla. Př nalost unášvého ohbu le os ohbové ovnce () ovést odobně jako o říad výše kd všechn velčn bl ovnou vjadřován v souřadncovém sstému. ZÁKONY DYNMIKY BODU Newtonův nc síl le cháat jako ákon o měně hbnost v dfeencálním tvau. Platí totž dh d ( mv ) = = (3) kde je výslednce všech statckých sl na bod ůsobících. Seaací oměnných a ntegací oud dostaneme H t = t dh H H =. (4) Velčně naavo I t = s H t t říkáme (časový) muls síl. oměem velčn je [ Ns ]. ovnce (4) vjadřuje ákon o měně hbnost v ntegálním tvau. Slovní fomulace: Vektoový odíl hbností bodu na konc a na očátku děje se ovná mulsu výslednce statckých sl v ůběhu děje na bod ůsobících. Z ovnost (4) lne že oměem hbnost je Newtonsekunda [ Ns ]. Zákon oužíváme ejména tehd kd muls na avé staně se snadno sočítá. Je-l nař. síla konstantní (jako vekto ted co do velkost co do směu) je (4) možno řesat jako H H = t. ( ) t Je-l síla dokonce nulová je oud hned H = H. Je to tvení kteému říkáme věta o achování hbnost kteá neříká nc jného než že bod konstantní hmotnost na kteý neůsobí žádná síla se ohbuje ovnoměně římočaře (s konstantním vektoem chlost v ). Podobně jako o sílu bl defnován moment síl k bodu a k ose defnujeme moment hbnost k bodu a k ose. Moment hbnost k bodu (v ob.) je defnován vtahem = H = mv (5) kde je olohový vekto L s očátečním bodem a koncovým bodem jako hmotným bodem m. Výsledkem je volný vekto N m s = kg m / s. L. oměem velkost momentu hbnost je [ ] [ ]

5 Ponámka: Podle avdel áce s vektoovým součnem je vekto učenou nostelkam vektoů H a (to je de na ovnu nákesn). Jeho velkost je L kolmý na ovnu L = H sn γ (6) kde be šk načíme velkost říslušných vektoů a γ je úhel kteý svíají nostelk obou vektoových čntelů (v ob.). Smsl vektou L je dán avdlem avé uk. Položíme-l avou uku na náčtek tak ab st směřoval od vektou k vektou H ak alec ukauje smsl výsledku. Zde ukáaný náčtek dává smsl vektou L a nákesnu. Moment hbnost k ose o (v ob.) je ůmět vektou momentu hbnost k lbovolnému bodu té os (v defnce výše) do té os. Matematck vjádřeno ( e L ) = e[ e ( H )] L0 = e (7) kde e je jednotkový vekto směu os o omocí něhož je učena kladná oentace této os. Ponámk: ) Výsledný vekto L 0 samořejmě neávsí na volbě bodu na ose o. ) Vekto L 0 má vžd smě os o. Jeho velkost (včetně naménka) je ovna L 0 = L cosδ (8) kde δ je úhel kteý svíá osa o s nostelkou vektou L (v ob.) 3) Snadno le ověřt že souřadnce vektou L 0 k očátku 0 katéského souřadncového sstému (učeného odle defnce momentu hbnost k bodu) jsou velkost momentů hbnost L L L k osám tohoto katéského sstému (učené odle defnce momentu hbnost k ose). 4) Jsou-l osa o a nostelka hbnost H ě kolmé mmoběžk o nejkatší vdálenost (nejčastější říad výočtu momentu hbnost k ose) je velkost L ovna 0

6 L 0 = H (9) a smsl L 0 je dán avdlem avé uk. Položíme-l avou uku na náčtek (v ob.) tak ab st ukaoval smsl vektou H ukauje alec na ose smsl výsledku. Devujme vtah (5) a ředokladu konstantní hmotnost odle času. Dostaneme dl d = m v + m. d Podle knematcké defnce = v (chlost bodu) a = a (chlení bodu). Ted je dl = v m v + ma. Podle (6) je vní sčítanec vavo nulový otože vekto v a γ = 0 ). Př konstantní hmotnost odle (3) je m a =. Poto dl =. mv jsou ovnoběžné (a ted Součn vavo vjadřuje moment výslednce statckých sl k bodu. Je ted dl = M. (0) Potože jednotkový vekto o os o je na čase neávslý le skaláním řenásobením výau (0) ískat analogcký vtah o (velkost) momentu k ose ve tvau dl o = M. () o Výa (0) a () vjadřují ákon o měně momentu hbnost (k bodu nebo k ose) v dfeencálním tvau. Seaací a ntegací (0) es. () dostaneme

7 L t = t dl M L L = M. () L t Velčně vavo říkáme (časový) muls momentu výslednce statckých sl. Je řtom lhostejné da se jedná o moment k bodu nebo k ose. Vtah () latí o oba t momentů ovšem o moment hbnost vlevo moment síl vavo vžd ke stejnému bodu (ose). ovnce vjadřuje ákon o měně momentu hbnost v ntegálním tvau. Slovní fomulace: odíl momentů hbnost k nehbnému bodu (ose) na konc a na ačátku děje se ovná mulsu momentu výslednce statckých sl v ůběhu děje na bod ůsobících (ke stejnému bodu nebo ose). Zákon oužíváme ejména tehd kd muls na avé staně se snadno učí. Je-l výsledný statcký moment konstantní (jako vekto) je L L = M t. ( ) t Je-l moment síl nulový dostáváme oud L = L kteému říkáme věta o achování momentu hbnost. Ponámka: Moment síl k bodu je nulový nejen o nulovou sílu ale o nulové ameno ted kdž síla stále říslušným bodem ocháí. To je říad tv. centálního ohbu kteým se řídí ohb lanet kolem Slunce nebo dužc kolem Země. Stejně tak moment síl k ose je nulový nejen o nulovou sílu ale o říad že osa o s nostelkou síl jsou ovnoběžné nebo ůnoběžné římk. Za ředokladu konstantní hmotnost (3) lne m =. Skaláním řenásobením vektoem d vhledem k defnc chlost oud lne d m d = m = m v = d. Potože řejmě a otože Integací = d d je element áce dw máme oud m v v m = d Defnujeme-l knetckou eneg bodu jako t ( v v) = v = d. m v m v = W. k = m v (3)

8 dostáváme oud k k = W. (4) oměem knetcké enege (stejně jako áce) je Joule (= kg m / s ). ovnce (4) vjadřuje ákon o měně knetcké enege. Jeho slovní fomulace: odíl knetckých enegí me ěma oloham bodu (daným olohovým vekto a ) je oven ác výslednce statckých sl na bod ůsobících v ůběhu jeho řemsťování me míněným oloham. Ponámk: ) Zatímco ákon o měně hbnost a momentu hbnost jsou vektoové (a tudíž se oesují do směů) ákon o měně knetcké enege je skalání. ) Po úsěšné oužtí ákona je třeba výslednou sílu nát jako funkc oloh včetně tvau dáh o kteé bod řemsťujeme. V mechance se setkáváme ovněž se slam u nchž áce neávsí na tvau dáh (což je ekvvalentní s tvením že áce takové síl o uavřené dáe je nulová). Takové síl naýváme konevatvní (otencální). Nechť estuje ve volené souřadncové soustavě funkce ( ) enege bodu že o složk síl v této souřadncové soustavě latí Pak o tuto souřadncovou soustavu je dw = d = = ; = ; = gad. d + d + d d d - tv. otencální d d kde na avé staně stojí totální dfeencál otencální enege. Potože o konevatvní sílu dw d je říůstek otencální enege komenován ací sotřebovanou slou a naoak slou vkonaná áce namená stejný úbtek otencální enege ř řechodu ůsobště síl jedné oloh do duhé. Integací ředchoí ovnce ískáme W = d d kde = [ ] = odkud = ( ) ( ). Tato ovnce ve sovnání s (.4) dává ( = W ) = k k + k = + k = konst. (5) Př ohbu v slovém ol konevatvním (otencálním) je celková mechancká enege daná součtem otencální a knematcké enege konstantní. Jedná se o ákon achování celkové mechancké enege. Potencální eneg též naýváme otencálem říslušejícím =. Potože [ ] k slovému ol ( ) ( ) ( ) ( ) ; ;

9 je ; ; ; ;. Vhledem k áměnnost duhých smíšených devací oud lne = = = ; ;. (6) Tto tv. Cauchov emannov odmínk jsou ostačujícím odmínkam konevatvnost slového ole. Po ovnnou úlohu (ovnné slové ole) odadá smě os a e tří odmínek se stává jedná tvau =. (7) Po jednooměnou úlohu k síle ( ) e. otencální enege jako ( ) ( ) ( ) + = C d d d o lbovolnou avní konstantu C. Potencální enege je učena až na avní konstantu. Tuto konstantu učujeme volbou nulové kladn otencální enege. PŘÍKLDY KONZVTIVNÍCH SIL a) tíha volba nulové hladn lbovolně (odle tu úloh) b) síla v užně o tuhost k volba nulové hladn ve volné délce užn o l Příklad nekonevatvních sl: asvní účnk de se část mechancké enege řeměňuje v eneg teelnou.

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět SMR Pavel Padevět Oganzace předmětu Přednášející Pavel Padevět, K 3, D 09 e-mal: pavel.padevet@fsv.cvut.cz Infomace k předmětu: https://mech.fsv.cvut.cz/student SMR Heslo: odné číslo bez lomítka (případně

Více

Výslednice, rovnováha silové soustavy.

Výslednice, rovnováha silové soustavy. Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky

Více

Základní pojmy Přímková a rovinná soustava sil

Základní pojmy Přímková a rovinná soustava sil Stavební statka, 1.ročník bakalářského studa Základní pojmy římková a rovnná soustava sl Základní pojmy římková soustava sl ovnný svaek sl Statcký moment síly k bodu a dvojce sl v rovně Obecná rovnná soustava

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět SR 1 Pavel Padevět ITŘÍ SÍY PRUTU ITŘÍ SÍY PRUTU Put (nosník) konstukční vek u něhož délka načně řevládá nad dalšími dvěma oměy. Při řešení tyto vky modelujeme jejich střednicí čáou tvořenou sojnicí těžišť

Více

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod

Více

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,

Více

Q N v místě r. Zobecnění Coulombova zákona Q 3 Q 4 Q 1 Q 2

Q N v místě r. Zobecnění Coulombova zákona Q 3 Q 4 Q 1 Q 2 Zobecnění Coulombova zákona Uvažme nyní, jaké elektostatcké pole vytvoří ne jeden centální) bodový náboj, ale více nábojů, tzv. soustava bodových) nábojů : echť je náboj v místě v místě.... v místě Pak

Více

DYNAMIKA HMOTNÉHO BODU

DYNAMIKA HMOTNÉHO BODU DYNAMIKA HMOTNÉHO BODU Součást Newtonovské klasická mechanika (v

Více

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016 Řešení testu b Fika I (Mecanika a molekulová fika NOFY. ledna 6 Příklad Zadání: Po kouli o poloměu se be pokluovaní valí malá koule o poloměu. Jaká bude úlová clost otáčení malé koule v okamžiku kd se

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá

Více

Soustava hmotných bodů

Soustava hmotných bodů Soustava hmotných bodů Těleso soustava hmotných bodů Tuhé těleso - pevný předmět jehož rozměr se nemění každé těleso se skládá z mnoha částc síla působící na -tou částc výsledná síla působící na předmět

Více

Dynamika tuhého tělesa. Petr Šidlof

Dynamika tuhého tělesa. Petr Šidlof Dnaika tuhého tělesa Pet Šidlof Dnaika tuhého tělesa Pvní věta ipulsová F dp dt a t Zchlení těžiště Výslednice vnějších sil F A F B F C Celková hbnost soustav p p i Hotnost soustav i těžiště soustav se

Více

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3 lektostatické pole Dvě stejné malé kuličk o hmotnosti m jež jsou souhlasně nabité nábojem jsou pověšen na tenkých nitích stejné délk v kapalině s hustotou 8 g/cm Vpočtěte jakou hustotu ρ musí mít mateiál

Více

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228) Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova

Více

MECHANIKA I. Jaromír Švígler

MECHANIKA I. Jaromír Švígler MECHNIK I Jaomí Švígle OBSH Předmluva Rozdělení a základní pojm mechank 4 Statka Základní pojm a aom statk Síla Moment síl k bodu a k ose Slová dvojce Základní věta statk Páce a výkon síl a momentu 5 Slové

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny. 75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,

Více

Stavební mechanika 1 (132SM01)

Stavební mechanika 1 (132SM01) Stavební mechanika 1 (132SM01) Přednáší: Ing. Jiří Němeček, Ph.D. Kateda stavební mechanik K132 místnost 331a e-mail: jii.nemecek@fsv.cvut.c http://mech.fsv.cvut.c/ Liteatua: Kabele a kol., Stavební mechanika

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...

Více

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..

Více

K přednášce NUFY080 Fyzika I prozatímní učební materiál, verze 01 Keplerova úloha Leoš Dvořák, MFF UK Praha, Keplerova úloha

K přednášce NUFY080 Fyzika I prozatímní učební materiál, verze 01 Keplerova úloha Leoš Dvořák, MFF UK Praha, Keplerova úloha K řednášce NUFY080 Fyzika I ozatímní učební mateiál, veze 01 Keleova úloha eoš Dvořák, MFF UK Paha, 014 Keleova úloha Chceme sočítat, jak se ohybuje hmotný bod gavitačně řitahovaný nehybným silovým centem.

Více

Z transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1)

Z transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1) Z transformace Definice Z transformací komplexní posloupnosti f = { roumíme funkci F ( definovanou vtahem F ( = n, ( pokud řada vpravo konverguje aspoň v jednom bodě 0 C Náev Z transformace budeme také

Více

Statika soustavy těles v rovině

Statika soustavy těles v rovině Statka soustavy těles v rovně Zpracoval: Ing. Mroslav yrtus, Ph.. U mechancké soustavy s deálním knematckým dvojcem znázorněné na obrázku určete: počet stupňů volnost početně všechny reakce a moment M

Více

Nejprve určíme posouvající sílu. Pokud postupujeme zprava, zjistíme, že zde nepůsobí žádné silové účinky, píšeme proto:

Nejprve určíme posouvající sílu. Pokud postupujeme zprava, zjistíme, že zde nepůsobí žádné silové účinky, píšeme proto: Řešte daný nosník: a,m, b,m, c,m, F = 5kN, kn bychom nal kompletně slové účnky působící na nosník, nejprve vyšetříme reakce v uloženích. Reakc určíme například momentové podmínky rovnováhy k bodu. Fb =

Více

ZÁKLADY GEOMETRIE KŘIVEK A PLOCH

ZÁKLADY GEOMETRIE KŘIVEK A PLOCH ZÁKLADY GEOMETRIE KŘIVEK A PLOCH Povzoní studní mateál - - Křvky v toozměném postou Úvod E - toozměný eukldovský posto s pevně zvolenou katézskou soustavou P e e V - eho zaměření D Nechť J R Zobazení X

Více

Dynamika tuhého tělesa

Dynamika tuhého tělesa Dnaika tuhého tělesa Pet Šidlof ECHNCKÁ UNVERZA V LBERC Fakulta echatonik, infoatik a eioboových studií ento ateiál vnikl v áci pojektu ESF CZ..7/../7.47 Reflexe požadavků půslu na výuku v oblasti autoatického

Více

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil 3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová

Více

FYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohybová rovnce Prof. RNDr. Vlém Mádr, CSc. Prof. Ing. Lbor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů

Více

Upřesnění dráhy české družice MIMOSA

Upřesnění dráhy české družice MIMOSA Západočeská unveta v Pln Fakulta aplkovaných věd Kateda matematk Dplomová páce Upřesnění dáh české dužce MIMOSA Pleň, 4 Vojtěch Šejbe Poděkování Rád bch na tomto místě poděkoval panu Pof. Ing. Josefu Kabeláčov,

Více

1.7.2 Moment síly vzhledem k ose otáčení

1.7.2 Moment síly vzhledem k ose otáčení .7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá

Více

Rovinná a prostorová napjatost

Rovinná a prostorová napjatost Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových

Více

TECHNICKÁ UNIVERZITA V LIBERCI. Fakulta strojní DIPLOMOVÁ PRÁCE. Matematický model kinematiky robotizovaného podvozku se šestnácti stupni volnosti

TECHNICKÁ UNIVERZITA V LIBERCI. Fakulta strojní DIPLOMOVÁ PRÁCE. Matematický model kinematiky robotizovaného podvozku se šestnácti stupni volnosti ECHNICKÁ UNIVERZIA V IERCI Fakulta stojní DIPOMOVÁ PRÁCE Matematcký model knematk obotovaného podvoku se šestnáct stupn volnost Mathematcal Model of Roboted Chasss Knematcs wth Steen Degees of Feedom 7

Více

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t)

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t) MARKOVOVY PROCESY JAKO APARÁT PRO ŘEŠENÍ SPOLEHLIVOSTI VÍCESTAVOVÝCH SYSTÉMŮ Náhodné rocesy Náhodným (stochastckým) rocesem nazveme zobrazení, které každé hodnotě náhodnou velčnu X ( t). Proměnná t má

Více

Těžiště. Fyzikální význam těžiště:

Těžiště. Fyzikální význam těžiště: ěžště Fykální výnam těžště: a) hmotný bod se soustředěnou hmotností útvaru b) bod, ve kterém le hmotný útvar vystavený tíe podepřít prot posunutí anž by docháelo k rotac ěžště je chápáno jako statcký střed

Více

2. Najděte funkce, které vedou s těmto soustavám normálních rovnic

2. Najděte funkce, které vedou s těmto soustavám normálních rovnic Zadání. Sestavte soustavu normálních rovnc ro funkce b b a) b + + b) b b +. Najděte funkce, které vedou s těmto soustavám normálních rovnc nb a) nb. Z dat v tabulce 99 4 4 b) určete a) rovnc regresní funkce

Více

Konstrukci (jejíčásti) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).

Konstrukci (jejíčásti) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině). . íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjíčásti) budm idaliovat jako tuhá (ndfomovatlná)

Více

MECHANIKA I. Jaromír Švígler

MECHANIKA I. Jaromír Švígler MECHNIK I Jaomí Švígle OBSH Pedmluva Rozdlení a základní pojm mechank 4 Statka Základní pojm a aom statk Síla Moment síl k bodu a k ose Slová dvojce Základní vta statk Páce a výkon síl a momentu 5 Slové

Více

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i.

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i. Rovnný svazek sl Lze odvodt z obecného prostorového svazku sl vloučením edné dmenze = cos cos =sn e 2 = cos = sn = e 1 e 2 e 1 Určení výslednce r n r = =1 r e 1 r e 2 =...e 1...e 2 : r = n = n =1 =1 n

Více

Literatura SETRVAČNÍKY A JEJICH APLIKACE. Obsah. [1] Brdička, M., Hladík, A.: Teoretická mechanika. Akademia, Praha 1987.

Literatura SETRVAČNÍKY A JEJICH APLIKACE. Obsah. [1] Brdička, M., Hladík, A.: Teoretická mechanika. Akademia, Praha 1987. teatua [1] Bdčka,., Hladík, A.: Teoetcká mechanka. Akadema, Paha 1987. [] Gonda, J.: Dnamka pe nženeov. Vdavatel stvo SAV, Batslava 1966. [3] Hoák, Z., Kupka, F., Šndelář, V.: Techncká fzka. SNT, Paha

Více

Přednáška č. 11 Analýza rozptylu při dvojném třídění

Přednáška č. 11 Analýza rozptylu při dvojném třídění Přednáška č. Analýza roztlu ř dvojném třídění Ve většně říadů v rax výsledk exermentu, rozboru závsí na více faktorech. Př této analýze se osuzují výsledk náhodných okusů (exerment nebo soubor získané

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO DOPLŇKOÉ TXTY BB0 PAL SCHAUR INTRNÍ MATRIÁL FAST UT BRNĚ TUHÉ TĚLSO Tuhé těleso je těleso, o teé latí, že libovolná síla ůsobící na těleso nezůsobí jeho defoaci, ale ůže ít ouze ohybový účine. Libovolná

Více

Kinematika. Hmotný bod. Poloha bodu

Kinematika. Hmotný bod. Poloha bodu Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény

Více

KOMPLEXNÍ ČÍSLA (druhá část)

KOMPLEXNÍ ČÍSLA (druhá část) KOMPLEXNÍ ČÍSLA (druhá část) V první kaptole jsme se senáml s algebrackým tvarem komplexního čísla. Některé výpočty s komplexním čísly je však lépe provádět ve tvaru gonometrckém. Pon. V následujícím textu

Více

Gravitační a elektrické pole

Gravitační a elektrické pole Gavitační a elektické pole Newtonův gavitační zákon Aistotelés (384-3 př. n. l.) předpokládal, že na tělesa působí síla směřující svisle dolů. Poto jsou těžké předměty (skály tvořící placatou Zemi) dole

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

2.1 Shrnutí základních poznatků

2.1 Shrnutí základních poznatků .1 Shnutí základních poznatků S plnostěnnými otujícími kotouči se setkáváme hlavně u paních a spalovacích tubín a tubokompesoů. Matematický model otujících kotoučů můžeme s úspěchem využít např. i při

Více

V soustavě N hmotných bodů působí síly. vnější. vnitřní jsou svázány principem akce a reakce

V soustavě N hmotných bodů působí síly. vnější. vnitřní jsou svázány principem akce a reakce 3.3. naka sousta hotnýh bodů (HB) Soustaa hotnýh bodů toří nejobenější těleso ehank. a odíl od tuhého tělesa se ůže taoě ěnt. V soustaě hotnýh bodů působí síl F nější (,,... ) ntřní jsou sáán pnpe ake

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé

Více

LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM

LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM - predpokladejme, e name linearni a kvadraticke moment k osam, a chceme urcit moment k osam a. - souradnice elementu ds k posunutm osam jsou potom: = - d

Více

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základ matematik pro FEK. přednáška Blanka Šedivá KMA imní semestr /7 Blanka Šedivá (KMA) Základ matematik pro FEK imní semestr /7 / Příklad ekonomických vtahů ve formě funkcí více proměnných I Poptávková

Více

eská zem d lská univerzita v Praze, Technická fakulta

eská zem d lská univerzita v Praze, Technická fakulta eská zemdlská unvezta v Paze, Techncká fakulta 9. lektcké pole 9. lektcký náboj Každá látka je vytvoena z tzv. elementáních ástc, kteé vytváejí složtjší stuktuy. ástce na sebe vzájemn psobí slam, kteé

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil Přímková a rovinná soustava sil 1) Souřadný systém - v prostoru - v rovině + y + 2) Síla P ( nebo F) - vektorová veličina - působiště velikost orientace Soustavy sil - přehled Soustavy sil můžeme rodělit

Více

hmotný bod: těleso s nekonečně malými rozměry, ale nenulovou hmotností, tj. žádné otáčení, žádná deformace atd. = bodová hmotnost

hmotný bod: těleso s nekonečně malými rozměry, ale nenulovou hmotností, tj. žádné otáčení, žádná deformace atd. = bodová hmotnost Kinematika hmotný bod: těleso s nekonečně malými omě, ale nenulovou hmotností, tj. žádné otáčení, žádná defomace atd. = bodová hmotnost popis pohbu hmotného bodu tj. poloha hmotného bodu v ávislosti na

Více

Kartézská soustava souřadnic

Kartézská soustava souřadnic Katézská soustava souřadnic Pavotočivá Levotočivá jednotkové vekto ve směu souřadnicových os Katézská soustava souřadnic otonomální báze z,, z Katézská soustava souřadnic polohový (adius) vekto z,, z velikost

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

CVIČENÍ Z ELEKTRONIKY

CVIČENÍ Z ELEKTRONIKY Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97

Více

F5 JEDNODUCHÁ KONZERVATIVNÍ POLE

F5 JEDNODUCHÁ KONZERVATIVNÍ POLE F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Evopský sociální fond Paha & EU: Investujeme do vaší budoucnosti F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Asi nejznámějším konzevativním polem je gavitační silové pole Ke gavitační

Více

ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 4

ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 4 ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI ZÁKLADNÍ PŘEDPOKLADY A POJMY. Látka, která vtváří příslušné těleso je dokonale lineárně pružné, mei napětím a přetvořením je lineární ávislost.. Látka hmotného tělesa

Více

Newtonův gravitační zákon

Newtonův gravitační zákon Gavitační pole FyzikaII základní definice Gavitační pole je posto, ve kteém působí gavitační síly. Zdojem gavitačního pole jsou všechny hmotné objekty. Každá dvě tělesa jsou k sobě přitahována gavitační

Více

= 1, (2.3) b 2 + z2. c2 se nazývá imaginární elipsoid. Jedná se o regulární kvadriku, která, jak vidíme z rovnice (2.3), neobsahuje žádný reálný bod.

= 1, (2.3) b 2 + z2. c2 se nazývá imaginární elipsoid. Jedná se o regulární kvadriku, která, jak vidíme z rovnice (2.3), neobsahuje žádný reálný bod. .. HYPERBOLOIDY 71 Kvadratiká ploha, jejíž rovnie je a + b + = 1,.3 se naývá imaginární elipsoid. Jedná se o regulární kvadriku, která, jak vidíme rovnie.3, neobsahuje žádný reálný bod.. Hperboloid Hperboloid

Více

1.6 Singulární kvadriky

1.6 Singulární kvadriky 22 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ neboť B = C =. Z rovnice (1.34) plne, že přímka, procháející singulárním bodem kvadrik má s kvadrikou společný poue tento singulární bod (je-li A ) nebo celá

Více

Příklady elektrostatických jevů - náboj

Příklady elektrostatických jevů - náboj lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém

Více

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2

Více

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, Liberec

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, Liberec TECHNICKÁ NIVERZITA V LIBERCI Katedrzik, Studentká, 46 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ ZKOŠKY Z FYZIKY Akademický rok: 03/04 Útav zdravotnických tudií Studijní obor: Biomedicínká technika Tématické okruh

Více

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických

Více

Otáčení a posunutí. posunutí (translace) otočení (rotace) všechny body tělesa se pohybují po kružnicích okolo osy otáčení

Otáčení a posunutí. posunutí (translace) otočení (rotace) všechny body tělesa se pohybují po kružnicích okolo osy otáčení Otáčení a posunutí posunutí (translace) všechny body tělesa se pohybují po rovnoběžných trajektorích otočení (rotace) všechny body tělesa se pohybují po kružncích okolo osy otáčení Analoge otáčení a posunutí

Více

Cvičení 1 (Opakování základních znalostí z pružnosti a pevnosti)

Cvičení 1 (Opakování základních znalostí z pružnosti a pevnosti) VŠ Techncká unverzta Ostrava akulta strojní Katedra ružnost a evnost (9 Pružnost a evnost v energetce (Návod do cvčení Cvčení (Oakování základních znalostí z ružnost a evnost utor: aroslav ojíček Verze:

Více

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu

Více

Příklady z přednášek Statistické srovnávání

Příklady z přednášek Statistické srovnávání říklad z řednášek Statstcké srovnávání Jednoduché ndvduální ndex říklad V následující tabulce jsou uveden údaje o očtu závažných závad v areálu určté frm zjštěných a oravených v letech 9-998. Závažná závada

Více

Rovnováha soustavy hmotných bodů, princip virtuální práce

Rovnováha soustavy hmotných bodů, princip virtuální práce K přednášce NUFY028 Teoretcká mechanka prozatímní učební text, verze 0. Prncp vrtuální práce Leoš Dvořák, MFF UK Praha, 204 Rovnováha soustav hmotných bodů, prncp vrtuální práce V této kaptole nepůjde

Více

ZÁKLADNÍ POJMY A VZTAHY V TECHNICKÉ PRUŽNOSTI

ZÁKLADNÍ POJMY A VZTAHY V TECHNICKÉ PRUŽNOSTI ZÁKLDNÍ POJY VZTHY V TECHNICKÉ PRUŽNOSTI Napětí velikost vnitřní síl na jednotku ploch konečné podíl elementů vnitřních sil a ploch Podle směru vnitřních sil avádíme: ds napětí celkové σ r = v obecném

Více

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

Definice : 1 Bod A Ω En se naývá vnitřní bod oboru Ω, kdž eistuje okolí U A, které celé patří do oboru Ω Bod B se naývá hraniční bod oboru Ω, kdž v ka

Definice : 1 Bod A Ω En se naývá vnitřní bod oboru Ω, kdž eistuje okolí U A, které celé patří do oboru Ω Bod B se naývá hraniční bod oboru Ω, kdž v ka 1 Diferenciální počet funkcí dvou proměnných 1 Výnačné bod a množin bodů v prostoru Souřadnicová soustava v prostoru Každému bodu v prostoru přiřaujeme v kartéské souřadnicové soustavě uspořádanou trojici

Více

Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence :

Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence : Skládání různoběžných kmitů Uvědomme si principiální bod tohoto problému : na jediný hmotný bod působí dvě nezávislé pružné síl ve dvou různých směrech. Jednotlivé mechanické pohb, které se budou skládat,

Více

Derivace a diferenciál funkce. b) f(x) =jx+1j v bodì x = 1;

Derivace a diferenciál funkce. b) f(x) =jx+1j v bodì x = 1; Devace a dfeencál funkce Doka¾te omocí dence, ¾e devace funkce f() = n,nn,jef 0 ()=n n. Doka¾te omocí dence, ¾e devace funkce f() =lnje f 0 () =. Podle dence devace vyoètìte devac funkce f() = sn o R.

Více

V. Soustavy s chemickou reakcí dokončení

V. Soustavy s chemickou reakcí dokončení V. Soustavy s chemckou eakcí dokončení Cheme Ústav ocesní a zacovatelské technky FS ČVU v Paze 1 5.5 Chemcká ovnováha vatných eakcí c A c R c B c S c A(t) c B(t) c R(t) c S(t) c AEQ c BEQ c REQ c SEQ c

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Střední půmyslová škola a Vyšší odboná škola technická Bno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechanika, dynamika Pohybová ovnice po

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

3.1 Shrnutí základních poznatků

3.1 Shrnutí základních poznatků 3.1 Shrnutí ákladních ponatků Uvažujme nosník, tj. prut, jejichž délka převládá nad charakteristickými roměr průřeu. Při tvorbě výpočtového modelu nosník totožňujeme s jeho podélnou osou a uvažujeme skutečný

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1

Více

I. MECHANIKA 3. Energie a silové pole I

I. MECHANIKA 3. Energie a silové pole I I. MECHNIK. Energe a slové ole I Obsah Imuls síly. Zákon zachování hybnos. Práce. Výkon. Knecká energe. Pole konzervavních sl. Práce o uzavřené křvce. Poencální energe, rovnováha (sablní, vraká, ndferenní)

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Analytické řešení jednorozměrného proudění newtonské kapaliny dvě pevné desky

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Analytické řešení jednorozměrného proudění newtonské kapaliny dvě pevné desky U8 Ústav rocesní a racovatelské technk FS ČVUT v Prae Analtcké řešení enoroměrného roění newtonské kaaln vě evné esk Jenoroměrné roění newtonské kaaln v meeře me věma evným eskam vlvem tlakového raent

Více

E = E red,pravý E red,levý + E D = E red,pravý + E ox,levý + E D

E = E red,pravý E red,levý + E D = E red,pravý + E ox,levý + E D 11. GALVANICKÉ ČLÁNKY 01 Výočet E článku, γ ± 1... 0 Střední aktvtní koefcent z E článku... 03 Výočet E článku, γ ± 1... 04 Tlak lnu na elektrodě z E článku; aktvtní koefcent... 05 E článku a dsocační

Více

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).

Konstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině). . íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha této kapitol: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjí části) budm idaliovat

Více

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka. OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která

Více

1.3.3 Přímky a polopřímky

1.3.3 Přímky a polopřímky 1.3.3 římky a olořímky ředoklady: 010302 edagogická oznámka: oslední říklad je oakování řeočtu řes jednotku. okud hodina robíhá dobře, dostanete se k němu řed koncem hodiny. edagogická oznámka: Nakreslím

Více

Diferenciální operátory vektorové analýzy verze 1.1

Diferenciální operátory vektorové analýzy verze 1.1 Úvod Difeenciální opeátoy vektoové analýzy veze. Následující text popisuje difeenciální opeátoy vektoové analýzy. Měl by sloužit především studentům předmětu MATEMAT na Univezitě Hadec Kálové k přípavě

Více

a polohovými vektory r k

a polohovými vektory r k Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,

Více

3. Silové působení na hmotné objekty

3. Silové působení na hmotné objekty SÍL OENT SÍLY - 10-3. Silové ůsobení na hmotné objekty 3.1 Síla a její osuvné účinky V této kaitole si oíšeme vlastnosti silových účinků ůsobících na konstrukce a reálné mechanické soustavy. Zavedeme kvantitativní

Více

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H.

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H. 7 Vlnovody Běžná vedení (koaxiální kabel, dvojlinka) jsou jen omezeně použitelná v mikovlnné části kmitočtového spekta. S ůstem kmitočtu přenášeného signálu totiž významně ostou ztáty v dielektiku těchto

Více

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním

Více

x 2(A), x y (A) y x (A), 2 f

x 2(A), x y (A) y x (A), 2 f II.10. Etrém funkcí Věta (nutná podmínka pro lokální etrém). Necht funkce f(, ) je diferencovatelná v bodě A. Má-li funkce f v bodě A lokální etrém, pak gradf(a) = 0. Onačme hlavní minor matice druhých

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více