Makroskopicky perfektní replika studovaného systému Mikroskopicky jednotlivé soustavy nejsou ekvivalentní

Rozměr: px
Začít zobrazení ze stránky:

Download "Makroskopicky perfektní replika studovaného systému Mikroskopicky jednotlivé soustavy nejsou ekvivalentní"

Transkript

1 Boltzmnov-Gibbsov formulce sttistické termodynmiky, SOUSAA rerezentue termodynmický systém ( mol lynu v obemu ) Mkroskoicky erfektní relik studovného systému Mikroskoicky ednotlivé soustvy nesou ekvivlentní Hodnoty + interkce Jednoznčně určuí říustné vlstní hodnoty energií eich degenerce Ω( ) Princi stených rriorních rvděodobností Kždý z Ω( ) stvů musí být v souboru rerezentován steněkrát Soustv chrkterizovná, Sestvíme knonický soubor soustv Ditermické stěny mezi soustvmi, soubor teelně izolován dibt. stěnmi Celkem soustv umístíme do teelného rezervoáru () Jednotlivé soustvy souboru mí stenou le mohou mít různé energie. Jedn soustv mikroknonického souboru

2 (, ) (,, ) (Sestává z soustv) Celý knonický soubor teelně izolueme od okolí Předstvue ednu soustvu mikroknonického souboru Jednotlivé soustvy knonického souboru mí různé energie, Musí ltit:... Počet relizcí soustvy mící Podmínk: {} distribuce soustv do energetických hldin Kždá soustv mikroknonikcého souboru má energii. Princi stených rriorních stí Kždá distribuce {} e steně rvděodobná. Musí mít stenou váhu v souborovém růměru. šechny musí být uvžovány Jednotlivé soustvy () sou zstoueny v knonickém souboru různým očtem Ω() (,)... Zstouení musí odovídt degenerci Soustv {,, } Chrkterizovná energií Počet relizcí soustvy v (,,) {} distribuce oulce

3 Počet možných relizcí distribuce! W( ) = k k! Sčítáme řes, tedy všechn možná rozdělení řes všechny soustvy mikroknonického souboru. Prvděodobnost, že soustv e ve stvu s rozdělením (,, ) P = = W ( ) ( ) W( ) Počet relizcí knonické soustvy ve stvu. Průměrná hodnot mechnické veličiny v knonickém souboru: M = MP Distribuce bude mít mximální očet relizcí když všechn budou stená. Pro velká bude distribuce úzká hrdíme růměr - oužitím ouze distribuce s mximální četností {} P W( ) = = W( ) =

4 Binomická řd (Pouze + 2 =) 2 ( x+ y) = x y = x y!!, 2!( )!!! = 0 2 Binomický koeficient f ( ) =!!( )! Hledáme mximum funkce i sou velká čísl f( ) ovžueme z soitou fci ln(x) e monotónní fce x : hledáme mximum ln f( ) dln f( ) d 0 = ( ) ln ( ) = 2 ( ) d ln f 2 ln f = f d = =-4/ ( ) 2 2 ln f ln f ln f ln f ( ) = ( ) ( ) = ( ) ( ) 2 ylorův rozvo První derivce nulová

5 2 2 ln f ln f ln f ln f ( ) = ( ) ( ) = ( ) ( ) 2 2 f ( ) = f ( ) ex ( ) 2 f ( x) = ex 2 ( 2πσ ) ( x x ) 2 2σ /2 2 Gussvská distribuce Stndrdní odchylk σ Gussovské rozdělení v limitě řechází n delt funkci ervděodobněší rozdělení e dobrou rerezentcí ro růměrné rozdělení otéž se dá ukázt ro olynomický rozvo: ostré mximum ro koeficient = = = = = 2 3 s s

6 Počet možných relizcí distribuce! W( ) = k k! Sčítáme řes, tedy všechn možná rozdělení řes všechny soustvy mikroknonického souboru. Prvděodobnost, že soustv e ve stvu s rozdělením (,, ) P = = W ( ) ( ) W( ) Počet relizcí knonické soustvy ve stvu. Průměrná hodnot mechnické veličiny v knonickém souboru: M = MP Distribuce bude mít mximální očet relizcí když všechn budou stená. Pro velká bude distribuce úzká hrdíme růměr - oužitím ouze distribuce s mximální četností {} P W( ) = = W( ) =

7 Hledáme distribuci, která mximlizue W() z slnění okrových odmínek: ln W ( ) k b k k0 k k b ln 0 ' e e b e ' b e P e b k b (, ) e b (, ) Q (,, ) (, )/ k e Střední hodnot mechnické veličiny: (,, ) ( e, ) Q (, )/ k

8 Průměrná hodnot mechnické veličiny v knonickém souboru: M = MP Q (,, ) e b b (,, ) ( e, ) Q (, ) (, ) lk systému ve stvu Práce vykonná n systému d Změn obemu vyvolná změnou energetických hldin = d = β, β, Klsická D: ( ) = = + β β = = ( ) + = (/ ),/, (, ) b (,, ) e Q β + = β, β, b konst. (, )

9 Soení sttistické klsické termodynmiky: d = dp + P d ntroie: Q (,, ) e b (, ) = δq δw rev rev f b,, 2, 3,... ln e b df

10 Soení sttistické klsické termodynmiky: d = dp + P d ntroie: Q (,, ) e b (, ) f b,, 2, 3,... ln e b df dbbpd k k = δq δw b, rev f f df db d b k e k Q b k b e Q b k b P k rev d f b b d P d d ln Qb bdq rev Rev. telo Změn vnitřní energie dodné systému Obemová ráce n systému Změn obemu d : vyvolá změnu energetických hldin Je-li ůvodní distribuce : d e ráce n systému vykonná Sumce reverzibilní ráce vykonná n systému zrůměrovná řes soubor Derivce stvové funkce β e integrční fktor q rev 2. Zákon D

11 Soení sttistické klsické termodynmiky: d = dp + P d ntroie: = δq δw rev rev d f b b d P d d ln Qb bdq rev Změn vnitřní energie Obemová ráce n systému Rev. telo dodné systému q d d ln Q k k rev q d d kln Q rev dq 0 Plyne římo z 2. věty D (dq/) e totálním differenciálem stvové funkce definice etnroie S S k ln Q const. Konstnt nezávisí n,, Položíme rovnou nule

12 Soení sttistické klsické termodynmiky: Q (,, ) (, )/ k e Knoniká rtiční funke ln Q, ln Q, S k ln Q const. A S

13 Soení sttistické klsické termodynmiky: Q (,, ) (, )/ k e Knoniká rtiční funke, / k e 2 k 2 2 ln Q k Q k ln Q, / k e ln Q kq k, S k ln Q const. ln Q k, ln Q S k k ln Q, A S A(, ) k ln Q Získáme z kvntové mechniky ( ) Umožňue výočet D vlstností z vlstností molekul Q (,, ) W,, e (, )/ k Místo řes stvy sčítáme řes energetické hldiny násobíme degenercí stvu

14 2. vět termodynmiky A(, ) k ln Q Q (,, ) W,, e (, )/ k Počet stvů s energií Ω(,,) nemůže odstrněním omezení klesnout ůvodní stvy sou stále dostuné.,/2,,, Ω (,,) Odstrněním řeážky se zvýší očet dovolených stvů (~ ) Ω 2 (,,) Uvžume izotermiký roces: W (,, ) W (,, ) 2 / W W k QQ,,,, e Q DA A2 Ak Q 2 ln 0 Obecně: odstrněním určitého omezení se zvýší očet dostuných kvntových stvů; oulce nových stvů => sontánní roces

15 elký knonický soubor (Grnd Cnonicl nsemble) μ, μ, μ, μ, μ, μ, μ, μ, μ, Stěny dovoluící řenos tel i látkovou výměnu eroustné dibtické stěný telená izolce... Počet soustv v souboru obshuících molekul mící energii Počet soustv v souboru Celková energie GC souboru - konstntní Celkový očet molekul v souboru elký knonický soubor ředstvue ednu soustvu mikroknonického systému (,,). Princi riorních rvděodobností Z slnění okrových odmínek GC odobné ko C hledáme nervděodobněší rozdělení. W!!

16 b g e e e α b k b g e e, b, g b g P e e Průměré hodnoty mechnických roměnných v GC: X b g, b, g e e ln X, b, g e e X b g b, g b ln g X, b, g e e X b b ln g X, b, g e e X g, b bg,

17 g f b, g, ln X lne e b g df

18 g f b, g, ln X lne e b g f f f df db dg d b g ' g, b, bg,, df dbdgbpd Uvžume ouze obemovou ráci df dbdgb d S oužitím rovnic ro,, b g d d d f b g b d b d g d m g k ds d d md b k m S kln X

19 elký knonický soubor (Grnd Cnonicl nsemble) X / k / k,, m e e m Prtiční funkce GC => ois otevřených izotermických systémů X Q (,, ) m (, )/ k e,, Qe (,, ) m / k m / k l m l e k ln λ... Absolutní ktivit X,, mq (,, ) l 0 Prtiční funkce GC e někdy výhodněší než knonická rtiční fce. G m S m S kln X k ln X,, m e chrkteristickou funkcí GC

20 Izotermicko-izobrický soubor (Isotherml-isobric nsemble),,,,,,,,, Flexibilí ditermiké stěny Přenos tel, flexibilní obem erosustné dibtické stěný telená izolce Prtiční funkce D(,, ) W,, e e / k / k G k ln D(,, ) Gibbsov volná energie e chrkteristickou funkcí II

21 Jkákoliv dlší sd nezávislých roměnných může být oužit k definici souboru odvození říslušné rtiční funkce. limitě ro velké systémy v rovnováze lze ukázt, že všechny soubory sou ekvivlentní: (, )/ k Q (,, ) W,, e Prvděodobnost ozorování určité hodnoty energie P() P ( ) CW e / k xtrémně úzk Gussovská distribuce ro velká (C e normlizční fktor) => Q (,, ) W,, (, )/ e k nergie v souboru e uniformě rozdělená do ednotlivých soustv, fluktuce mlé. => Knoniký soubor degenerue n mikroknonický soubor! ýběr souboru lze udělt n zákldě mtemtické vhodnosti, bez ohledu n D roměnné oisuící systém.

22 Mikroknonický soubor W(,, ) S,, klnw m ds d d d Knonický soubor Q (,, ) W,, e A(, ) k ln Q ln Q S k k ln Q, (, )/ k da Sd d md Chrkteristické funkce souboru elký knonický soubor, / k / k X,, m W(,, e ) e m k ln X,, m ln X S k k ln X m, d Sd dm d Izotermicko-izobrický soubor D(,, ) W,, e e G k ln D(,, ) ln D S k k ln D, / k / k dg Sd d md

23 Mikroknonický soubor W(,, ) elký knonický soubor S,, klnw, / k / k X,, m W(,, e ) e m k ln X,, m lnw k k lnw m lnw k,,, ln X S k k ln X m, ln X k m ln X k, m, m ds d d d d Sd dm d Knonický soubor Q (,, ) W,, e A(, ) k ln Q k 2 Izotermicko-izobrický soubor D(,, ) W,, e e G k ln D(,, ) ln Q S k k ln Q ln Q ln Q k,,, ln D S k k ln D, ln D m k ln D k,, (, )/ k da Sd d md ln Q m k / k / k, dg Sd d md

24 POSULÁ. Průměrná hodnot koresondue odovídící D vlstnosti. Střední hodnot kterékoliv mechnické roměnné M, kterou bychom u skutečné soustvy získli středováním řes dosttečně dlouhý čsový intervl, e rovn střední hodnotě M ro celý soubor, okud soustvy tohoto souboru věrně rerodukuí D stv i okolí skutečného soustvy. (Přesně slněno ro.) POSULÁ. Princi stených rirorních rvděodobností. souboru, který rerezentue izolovnou D soustvu (mikroknonickém souboru), sou ednotlivé členy rozděleny se stenou rvděodobností mezi všechny možné kvntové stvy konzistentní s,. Mechnické vlstnosti molekul ermodynmické vlstnosti soustv Prtiční funkce

25 GC rtiční funkce dvousložkové soustvy ) dovoďte b) nděte výrzy ro D veličiny GC rtiční funkce ideálního monotomického lynu e: q X e l 2mk q 2 h yočtěte termodynmické vlstnosti tkového lynu. 3/2

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

Fyzikální chemie. 1.2 Termodynamika

Fyzikální chemie. 1.2 Termodynamika Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický

Více

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace

Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním

Více

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny TERMIKA VIII Maxwellova rovnovážná rozdělovací funkce rychlostí Joule uv a Thomson uv okus ro reálné lyny 1 Maxwellova rovnovážná rozdělovací funkce rychlostí Maxwellova rychlostní rozdělovací funkce se

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

Termodynamika ideálního plynu

Termodynamika ideálního plynu Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu

Více

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1 9. Vriční počet. Definice. Nechť k 0 celé, < b R. Definujeme C k ([, b]) = { ỹ [,b] : ỹ C k (R) } ; C 0 ([, b]) = { y C ([, b]) : y() = y(b) = 0 }. Důležitá konstrukce. Shlzovcí funkce (molifiér, bump

Více

I. termodynamický zákon

I. termodynamický zákon řednášk 4 I. termodynmický zákon I. termodynmický zákon jkožto nejobecnější zákon zchování energie je jedním ze zákldních stvebních kmenů termodynmiky. této přednášce zopkujeme znění tohoto zákon n jeho

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 11. červenec 2012 Název zpracovaného celku: LINEÁRNÍ ROVNICE S PARAMETREM

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 11. červenec 2012 Název zpracovaného celku: LINEÁRNÍ ROVNICE S PARAMETREM Předmět: Ročník: Vytvořil: Dtum: MATEMATIA DRUHÝ Mgr. Tomáš MAŇÁ 11. červenec 01 Název zrcovného celku: LINEÁRNÍ ROVNICE S PARAMETREM LINEÁRNÍ ROVNICE S PARAMETREM Rovnice s rmetrem obshuje kromě neznámých

Více

Markovovy řetězce se spojitým časem CTMC (Continuous time Markov Chain)

Markovovy řetězce se spojitým časem CTMC (Continuous time Markov Chain) Markovovy řetězce se soitým časem CTMC (Continuous time Markov Chain) 3 5 1 4 Markovovy rocesy X Diskrétní stavový rostor Soitý obor arametru t { } S e1, e,, en t R t 0 0 t 1 t t 3 t Proces e Markovův

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená

Více

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

6. Setrvačný kmitový člen 2. řádu

6. Setrvačný kmitový člen 2. řádu 6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

jsou všechna reálná čísla x, pro která platí: + x 6

jsou všechna reálná čísla x, pro která platí: + x 6 Příkld 1. Kolik lichých přirozených čísel lze vytvořit z číslic 0, 1, 2,, 8, jestliže se žádná číslice neopkuje? A: 2 B: 6 C: 9 D: 52 E: 55 Příkld 2. Definičním oborem funkce y = A: x ( 5; ) B: x ( 5;

Více

Matematické metody v kartografii

Matematické metody v kartografii Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími

Více

NMAF061, ZS Písemná část zkoušky 25. leden 2018

NMAF061, ZS Písemná část zkoušky 25. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

1. Pokyny pro vypracování

1. Pokyny pro vypracování 1. Pokyny pro vyprcování Zvolený příkld z druhé kpitoly vyprcujte písemně (nejlépe vysázejte pomocí LATEXu) dodejte osobně po předchozí domluvě milem n krbek@physics.muni.cz. Dále si vyberte tři z jednodušších

Více

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc.

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc. Molekulová fyzik Reálný lyn Prof. RNDr. Enuel Svood, CSc. Reálný lyn Existence vzájeného silového ůsoení ezi částicei (tzv. vn der Wlsovské síly) Odudivá síl ezi částicei (interkce řekryvová) ři dosttečně

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

2.1 - ( ) ( ) (020201) [ ] [ ]

2.1 - ( ) ( ) (020201) [ ] [ ] - FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé

Více

Větu o spojitosti a jejich užití

Větu o spojitosti a jejich užití 0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1 Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci

Více

NMAF061, ZS Písemná část zkoušky 16. leden 2018

NMAF061, ZS Písemná část zkoušky 16. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 1 3 4 5 6 Celkem bodů Bodů 7 6

Více

Termodynamické základy ocelářských pochodů

Termodynamické základy ocelářských pochodů 29 3. Termodynamické základy ocelářských ochodů Termodynamika ůvodně vznikla jako vědní discilína zabývající se účinností teelných (arních) strojů. Později byly termodynamické zákony oužity ři studiu chemických

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

II. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky IV

II. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky IV II. MOLEKLOÁ FYZIKA 1. Základy termodynamiky I 1 Obsah Princi maxima entroie. Minimum vnitřní energie. D otenciály vnitřní energie entalie volná energie a Gibbsova energie a jejich názorný význam ři některých

Více

Cvičení z termodynamiky a statistické fyziky

Cvičení z termodynamiky a statistické fyziky Cvičení termodynamiky a statistické fyiky 1Nechť F(x, y=xe y Spočtěte F/ x, F/, 2 F/ x 2, 2 F/ x, 2 F/ x, 2 F/ x 2 2 Bud dω = A(x, ydx+b(x, ydy libovolná diferenciální forma(pfaffián Ukažte, ževpřípadě,žedωjeúplnýdiferenciál(existujefunkce

Více

E = 1,1872 V ( = E Cu. (γ ± = 0, ,001 < I < 0,1 rozšířený D-H vztah)

E = 1,1872 V ( = E Cu. (γ ± = 0, ,001 < I < 0,1 rozšířený D-H vztah) GALVANICKÉ ČLÁNKY E = E red,rvý E red,levý E D = E red,rvý E ox,levý E D G = z E E E S = z = z T E T T Q= T S [] G = z E rg E E rs = = z, r rg T rs z = = T E T T T E E T T ν i E = E ln i z i mimo rovnováhu

Více

Stabilita prutu, desky a válce vzpěr (osová síla)

Stabilita prutu, desky a válce vzpěr (osová síla) Stabilita rutu, deky a válce vzěr (oová íla) Průběh ro ideálně římý rut (teoretický tav) F δ F KRIT Průběh ro reálně římý rut (reálný tav) 1 - menší očáteční zakřivení - větší očáteční zakřivení F Obr.1

Více

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů.

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů. Vzth mezi reg. výrzy kon. utomty Automty grmtiky(bi-aag) 7. Převody mezi reg. grm., reg. výrzy kon. utomty Jn Holu Algoritmus (okrčování): 6. Zorzení δ: () δ(, x) oshuje x i, x i Z. () δ(x i, y) oshuje

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

x jsou všechna reálná čísla x, pro která platí: log(x + 5) D: x ( 5; 4) (4; ) + x+6

x jsou všechna reálná čísla x, pro která platí: log(x + 5) D: x ( 5; 4) (4; ) + x+6 Test studijních předpokldů Vrint A1 Příkld 1. Kolik přirozených čísel lze vytvořit z číslic 0, 1,, 4, 8, jestliže se žádná číslice neopkuje? A: 1 B: 3 C: 60 D: 40 E: 48 Příkld. Definičním oborem funkce

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

Integrální počet - III. část (určitý vlastní integrál)

Integrální počet - III. část (určitý vlastní integrál) Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)

Více

ZÁKLADY TEORIE PRAVDĚPODOBNOSTI

ZÁKLADY TEORIE PRAVDĚPODOBNOSTI ZÁKLDY TEORIE RVDĚODOBNOSTI 1 Vytvořeno s podporou projektu růřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10

Více

Řešení diferenciálních rovnic 1. řádu (lineárních, s konstantními koeficienty)

Řešení diferenciálních rovnic 1. řádu (lineárních, s konstantními koeficienty) Exonenciální funkce - jejic "vužití" ři řešení diferenciálníc rovnic (Tto dolňková omůck nemůže v žádném řídě nrdit sstemtickou mtemtickou řírvu.) Vlstností exonenciální funkce lze výodně oužít ři řešení

Více

Cvičení z termodynamiky a statistické fyziky

Cvičení z termodynamiky a statistické fyziky Cvičení z termodynamiky a statistické fyziky 1 Matematické základy 1 Parciální derivace Necht F(x,y = xe x2 +y 2 Sočtěte F x, F y, 2 Úlný diferenciál I Bud 2 F x 2, 2 F x y, dω = A(x,ydx + B(x,ydy 2 F

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

Osové namáhání osová síla N v prutu

Osové namáhání osová síla N v prutu Osové nmáhání osová síl v prutu 3 typy úloh:. Pruty příhrdové konstrukce, táhl Dvě podmínky rovnováhy v kždém styčníku: F ix 0 F iz 0. Táhl podporující pevnou ztíženou desku R z M ib 0 P R R b P 6 6 P

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvantová a statistická fyzika 2 (ermodynamika a statistická fyzika) ermodynamika ermodynamika se zabývá zkoumáním obecných vlastností makroskoických systémů v rovnováze, zákonitostmi makroskoických rocesů,

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Logaritmická funkce teorie

Logaritmická funkce teorie Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Vybrná spojitá rozdělení Zákldní soubor u spojité náhodné proměnné je nespočetná množin. Z je tedy podmnožin množiny reálných čísel (R). Distribuční funkce

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Stabilita atomového jádra. Radioaktivita

Stabilita atomového jádra. Radioaktivita Stbilit tomového jádr Rdioktivit Proton Kldný náboj.67 0-7 kg Stbilní Atomové jádro Protony & Neutrony Neutron Bez náboje.67 0-7 kg Dlouhodobě stbilní jen v jádře Struktur jádr A Z N A nukleonové číslo

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko ro odoru jakosti Konzultační středisko statistických metod ři NIS-PJ Analýza zůsobilosti Ing. Vratislav Horálek, DrSc. ředseda TNK 4: Alikace statistických metod Ing. Josef

Více

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x. VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální

Více

Diferenciální počet. Spojitost funkce

Diferenciální počet. Spojitost funkce Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti

Více

Univerzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ

Univerzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ Univerzita Pardubice FAKULA CHEMICKO ECHNOLOGICKÁ MEODY S LAENNÍMI PROMĚNNÝMI A KLASIFIKAČNÍ MEODY SEMINÁRNÍ PRÁCE LICENČNÍHO SUDIA Statistické zracování dat ři kontrole jakosti Ing. Karel Dráela, CSc.

Více

ř š ú š Č š ž ř š Š Š Í ú š ď ř š ú Š ů ú ř ř ř ř ů ř Ž š ů ú ů ř Š Š Š ř ů řň ň řň řň ů ř ř š Í ř ř ř ř ř ř ř ř Ž Ž ř ú ů ú ú š Ú ú ú Í Ž Ž ů Ž Ž Č ň Ú řš ř řš ú Ž ú ť ň Í ř ř ů ť š š ř Í řš ú Ý Í ť ú

Více

Řešené příklady k MAI III.

Řešené příklady k MAI III. Řešené příkldy k MAI III. Jkub Melk 28. říjn 2007 1 Obsh 1 Metrické prostory 2 1.1 Teoretickéotázky.... 2 1.2 Metriky..... 4 1.3 Anlýzmnožin... 4 1.3.1 Uzávěry... 4 1.3.2 Zkoumejtenásledujícímnožiny....

Více

6. Určitý integrál a jeho výpočet, aplikace

6. Určitý integrál a jeho výpočet, aplikace Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,

Více

PRAVDĚPODOBNOST A STATISTIKA. Metoda momentů Metoda maximální věrohodnosti

PRAVDĚPODOBNOST A STATISTIKA. Metoda momentů Metoda maximální věrohodnosti SP3 Odhady arametrů PRAVDĚPODOBNOST A STATISTIKA Metoda momentů Metoda maimální věrohodnosti SP3 Odhady arametrů Metoda momentů Vychází se z: - P - ravděodobnostní rostor - X je náhodná roměnná s hustotou

Více

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

Ac - +H 2 O HAc + OH -, naopak roztok soli silné kyseliny a slabé zásady (např. chlorid amonný NH 4 Cl) vykazuje kyselou reakci K A

Ac - +H 2 O HAc + OH -, naopak roztok soli silné kyseliny a slabé zásady (např. chlorid amonný NH 4 Cl) vykazuje kyselou reakci K A YDROLÝZ SOLÍ ydrolýze podléhjí soli, jejihž ktion přísluší slbé bázi /nebo nion slbé kyselině. ydrolýz soli je reke soli s vodou z vzniku neutrálníh molekul příslušného slbého elektrolytu. Důsledkem hydrolýzy

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t)

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t) MARKOVOVY PROCESY JAKO APARÁT PRO ŘEŠENÍ SPOLEHLIVOSTI VÍCESTAVOVÝCH SYSTÉMŮ Náhodné rocesy Náhodným (stochastckým) rocesem nazveme zobrazení, které každé hodnotě náhodnou velčnu X ( t). Proměnná t má

Více

4 Základní úlohy kvantové mechaniky

4 Základní úlohy kvantové mechaniky 4 Zákldní úlohy kvntové mechniky V této kpitole se podíváme n řešení Schrödingerovy rovnice pro některé jednoduché situce vedoucí k nlyticky řešitelným úlohám. Tkových situcí, které by byly zároveň fyzikálně

Více

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

3 NÁHODNÁ VELIČINA. Čas ke studiu kapitoly: 80 minut. Cíl: Po prostudování tohoto odstavce budete umět

3 NÁHODNÁ VELIČINA. Čas ke studiu kapitoly: 80 minut. Cíl: Po prostudování tohoto odstavce budete umět NÁHODNÁ VELIČINA Čs ke studiu kpitol: 8 minut Cíl: o studování tohoto odstvce udete umět oecně popst náhodnou veličinu pomocí distriuční funkce chrkterizovt diskrétní i spojitou náhodnou veličinu porozumět

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

Stavová rovnice. Ve stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní parametry Y i

Stavová rovnice. Ve stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní parametry Y i ermodynamický ostulát: Stavová rovnice e stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní arametry Y i určeny jako funkce všech vnějších arametrů X j a teloty Y i f

Více

Termodynamika a živé systémy. Helena Uhrová

Termodynamika a živé systémy. Helena Uhrová Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽOST A PLASTICITA Ing. Lenk Lusová LPH 407/1 Povinná litertur tel. 59 732 1326 lenk.lusov@vs.cz http://fst10.vs.cz/lusov http://mi21.vs.cz/modul/pruznost-plsticit Doporučená litertur Zákldní typy nmáhání

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Integrální počet - II. část (určitý integrál a jeho aplikace)

Integrální počet - II. část (určitý integrál a jeho aplikace) Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)

Více

můžeme toto číslo považovat za pravděpodobnost jevu A.

můžeme toto číslo považovat za pravděpodobnost jevu A. RAVDĚODOBNOST - matematická discilína, která se zabývá studiem zákonitostí, jimiž se řídí hromadné náhodné jevy - vytváří ravděodobnostní modely, omocí nichž se snaží ostihnout náhodné rocesy. Náhodné

Více

FYZIKÁLNÍ CHEMIE chemická termodynamika

FYZIKÁLNÍ CHEMIE chemická termodynamika FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

1 stupeň volnosti vynucené kmitání. Iva Petríková

1 stupeň volnosti vynucené kmitání. Iva Petríková Kmitání mechnicých soustv 1 stueň volnosti vynucené mitání Iv Petríová Ktedr mechniy, ružnosti evnosti Obsh Soustv s jedním stuněm volnosti vynucené mitání Vynucené mitání netlumené Vynucené mitání tlumené

Více

Zadání příkladů. Zadání:

Zadání příkladů. Zadání: Zdání příkldů Zdání: ) Popšte oblst vužtí plánovných expermentů ) Uveďte krtér optmlt plánů ) Co sou Hdmrdov mtce ké mí vlstnost? ) Co sou. fktorové plán k e lze vužít? 5) Blok čtverce - oblst ech vužtí

Více

Spojitost funkce v bodě, spojitost funkce v intervalu

Spojitost funkce v bodě, spojitost funkce v intervalu 10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí

Více

Laplaceova transformace

Laplaceova transformace Lalaceova transformace EO2 Přednáška 3 Pavel Máša ÚVODEM Víme, že Fourierova transformace díky řísným odmínkám existence neexistuje ro řadu běžných signálů dokonce i funkce sin musela být zatlumena Jak

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 6

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 6 PŘEDNÁŠKA 6 P l () l f ( l) dl = 1 f ( l) dl = 1 F( l) = l max 0 l Definice: Délka vlákna e definována ako vzdálenost konců napřímeného vlákna bez obloučků a bez napětí. Délka vlákna e zatížena vysokou

Více

Limity, derivace a integrály Tomáš Bárta, Radek Erban

Limity, derivace a integrály Tomáš Bárta, Radek Erban Limity, derivce integrály Tomáš Bárt, Rdek Erbn Úvod Definice. Zobrzení(téžfunkce) f M Njemnožinuspořádnýchdvojic(x, y) tková,žekekždému xexistujeprávějedno y,žedvojice(x,y) f.tj.kždývzor xmáprávějedenobrz

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.

Více

Cvičení z termodynamiky a statistické fyziky

Cvičení z termodynamiky a statistické fyziky Cvičení termodynamiky a statistické fyiky 1 Bud dω A(x, ydx+b(x, ydy libovolná diferenciální forma (Pfaffián Ukažte, že v říadě, že dω je úlný diferenciál (existuje funkce F (x, y tak, že dω df, musí latit

Více