Rhinoceros a matematika_ Ω
|
|
- Jakub Dušek
- před 6 lety
- Počet zobrazení:
Transkript
1 1 x sinx μ z ν α_matematika a Rhinoceros π Rhinoceros a matematika_ Ω cosx arcsinx 2 cotgx φ tgx 3 arctgx 5 y 4 6 arccosx zpracoval David Seidler vedoucí práce RNDr. Vladimíra Hájková, Ph.D. Fakulta architektury ČVUT v Praze 213
2 MOŽNOSTI MATH PLUGINU - zobrazení parametricky popsaných křivek - zobrazení parametricky popsaných ploch - vytváření knihovny vlastních tvarů - možnost dalšího rozvíjení křivek a ploch v prostředí Rhina MATH PLUGIN - ZPROVOZNĚNÍ Program Math Plugin je doplňková aplikace Rhina. Funguje ve verzích Rhino 4 a Rhino 5 na 32 a 64 bitovém systému Windows. Je třeba jej stáhnout a implementovat do Rhina dle následujících kroků: 1. Stáhnout plugin zde. 2. Rozbalit stažený soubor třeba do složky matematika. 3. Zapnout Rhino a přetáhnout soubor Math_3DE do prostředí Rhina. Implementuje plugin. 4. Přetáhnout soubor 3DE_Math.rui ( 3DE_Math.tb) do prostředí Rhina 5 (Rhina 4 SR9). Zobrazí ikony. Pro starší verze Rhina (jedná se o verze Rhino 4 Service Release 8 a nižní) je třeba stáhnout starší verzi pluginu a postupovat dle následujících kroků: 1. Stáhnout starší verzi pluginu zde. 2. Rozbalit stažený soubor třeba do složky matematika. 3. Zapnout Rhino a přetáhnout soubor Math_3DE do prostředí Rhina. Implementuje plugin. 4. Přetáhnout soubor 3DE_Math_V4.tb do prostředí Rhina. Přidá možnost zobrazení panelu s ikonami. 5. Pravým klikem myši na řádek s ikonama Rhina vyvolat nabídku panelů a zapnout panel s ikonami MathPluginu (Obr 1). Obr. 1 Řešení problémů se spuštěním pluginu je popsáno na další straně.
3 POTÍŽE SE SPUŠTĚNÍM V případě objevení chybové hlášky (Obr. 2) postupujte takto: 1. Stejnými kroky implementovat MathPlugin do Rhina. 2. Vyvolat jakýkoliv příkaz MathPluginu (např. mathcurve). 3. Po objevení chybové hlášky napsat do příkazového řádku Rhina příkaz Math_3DE. Obr. 2 V případě objevení chybové hlášky (Obr. 3) postupujte takto: 1. Zavřete Rhino. 2. Pravým klikem myši na soubor Math_3DE vyvolat kontextové menu a vybrat Vlastnosti. 3. Objeví se dialogové okno (Obr. 4), ve kterém kliknout na Odblokovat. 4. Zapnout Rhino a implementovat plugin. Obr. 3 Obr. 4
4 PRÁCE S MATH PLUGINEM V prostředí Rhina lze funkce MathPluginu spustit jak zadáním příkazu do příkazového řádku (Obr. 5), tak kliknutím na příslušnou ikonu pluginu (Obr. 6). Obr. 6 Obr. 5 Levé kliknutí vyvolá okno pro zadávání křivek. Pravé kliknutí vyvolá editaci předpisu již vykreslené křivky. Seznam příkazů: MathCurve Vložení parametricky popsané křivky MathSurface Vložení parametricky popsané plochy MathSaveObject Uložení tvaru a parametrického zápisu do knihovny tvarů MathLibrary Vyvolání knihovny tvarů MathEditObject Úprava parametrického zápisu objektu Levé kliknutí vyvolá okno pro zadávání ploch. Pravé kliknutí vyvolá okno pro editaci předpisu již vykreslené plochy. Levé kliknutí uloží vykreslený objekt. Pravé kliknutí vyvolá knihovnu tvarů.
5 Určete typ kuželosečky a napište její parametrický popis. Kuželosečka je dána rovnicí 4x 2 + 9y 2-4x + 36y + 1 =. 4x 2 + 9y 2-4x+ 36y+ 1 = ( x- 5) 2 ( y+ 2) 2 + = S 5, - 2, F 5-5,- 2, E 5+ 5,- 2, a= 3, b= 2 kt () = [ 5-3cos( t),-2-2sin( t)] t, 2π Příkaz MathCurve: Levý klik myší na ikonu: Prostředí MathPluginu pro křivky používá pro parametr písmeno t (pro plochy písmena u a v). V řádku PointCount se nastavuje počet bodů, pomocí kterých se křivka vykresluje. Větší číslo bude znamenat plynulejší vykreslení křivky. Vykreslená křivka s přidanou soustavou souřadnou: MathPlugin_Křivka Minimum t Maximum t PointCount Function X(t) Function Y(t) Function Z(t) 2*pi 6 5-3*cos(t) -2-2*sin(t)
6 MATEMATICKÉ ZÁPISY Konstanty π pi Používané znaky ^ Aritmetické operace umocňování odmocňování násobení dělení sčítání odčítání Logaritmické Přirozený logaritmus Exponenciální funce ctrl+alt+3 2^3 2^(1/3) 2*3 2/ log(t) exp(t) Goniometrické sin(t) cos(t) tg(t) cotg(t) Cyklometrické arcsin(t) arccos(t) arctg(t) arccotg(t) Hyperbolické sinh(t) cosh(t) sin(t) cos(t) tan(t) cotan(t) arcsin(t) arccos(t) atn(t) pi/2-atn(t) hsin(t), sinh(t) hcos(t) Pro názornost jsou k objektům dokresleny a popsány souřadnicové osy:
7 PRÁCE S KNIHOVNOU TVARŮ UKLÁDÁNÍ OBJEKTŮ Tvary a jejich zápisy v MathPluginu lze ukládat do knihovny tvarů. VYVOLÁNÍ OBJEKTŮ Z KNIHOVNY Objekty lze dále z knihovny vyvolávat a vkládat do prostředí Rhina. Příkaz MathSaveObject: Levý klik myší na ikonu: Příkaz MathLibrary: Pravý klik myší na ikonu: Nastavím pohled pro uložení a vyberu objekt: Zvolím typ objektu, který chci vyvolat (m-plocha, a-křivka): Pojmenuju objekt pro uložení: Objekty jsou uložené v knihovně s předem nastaveným pohledem a se svým parametrickým popisem. Kliknutím na obrázek vložím objekt do prostředí Rhina:
8 EDITACE OBJEKTŮ Rovnice zobrazených objektů můžeme později upravit nebo úplně přepsat. VARIABLES Příkaz MathEditObject: Pravý klik myší na ikonu: Vybereme objekt v Rhinu, jehož rovnici chceme editovat: Zobrazí se známá tabulka pro zadávání parametrických popisů: K parametrickému popisu objektu je možno přidat libovolnou proměnnou, která se specifikuje v řádku VARIABLES.
9 PŘÍKLAD POUŽITÍ VARIABLES Elipsa k() t = [cos( a t), bsin( t)] t 2π,, kde a, b jsou velikosti poloos, konktretizované v řádku variables (pro proměnou lze použít jakékoliv písmeno. Pro zpřehlednění se můžou místo proměnných psát celá slova (např. velikost). Elipsa se změněnou hodnotou vedlejší poloosy místo 4 na,5. Zvětšení elipsy změnou hodnoty proměnné velikost z 1 na 3.
10 ŠROUBOVICE Napište parametrické vyjádření dvou závitů (t <,4π>) šroubovice bodu A [-4,2,5]. Pravotočivý šroubový pohyb je určen osou o, o = z, redukovanou výškou závitu v = 3. VÝPOČET Půdorysem je kružnice: mt = -4cos t -2sin t,2cos t -4sin t,, t,2π lt () () () () () Kružnice procházející bodem A: () () () () () = -4cos t -2sin t,2cos t -4sin t,5, t,2π Dva závity šroubovice bodu A: kt () = -4cos() t -2sin() t,2cos() t -4sin() t,5+3t, t,4π MathPlugin_kružnice MathPlugin_šroubovice Minimum t Maximum t PointCount Function X(t) Function Y(t) Function Z(t) 2*pi -4*cos(t)-2*sin(t) 2*cos(t)-4*sin(t) 5 Minimum t Maximum t PointCount Function X(t) Function Y(t) Function Z(t) 4*pi -4*cos(t)-2*sin(t) 2*cos(t)-4*sin(t) 5+3*t
11
12 KŘIVKA, TEČNA, NORMÁLOVÁ ROVINA Je dána křivka k(t) = [t 2 + 2t, 3t, t 3 t], t R. Popište tečnu v bodě A=k(-1) a obecnou rovnici normálové roviny α v bodě A. VÝPOČET k( 1)= A 13,, [ ] ( ) + ( ) 2 k t = 2t 2, 33, t 1 k ( 1)= (, 32, ) Tečna v bodě A: lt () = 1, 3 3t, 2t, t R α : [ ] Obecná rovnice normálové roviny α: n = k 1 α ( ) -3y+ 2z+ 9= Libovolné lineárně nezávislé vektory roviny α kolmé k normálovému vektoru roviny (skalární součin je roven nule): ( 23,, ) a ( 123,, ) Parametrický popis normálové roviny α pro MathPlugin: α( uv, )= 1+ v, 3+ 2u+ 2v, 3u+ 3 v, u R, v R [ ] MathPlugin_křivka MathPlugin_tečna MathPlugin_normálová rovina Minimum t Maximum t PointCount Function X(t) Function Y(t) Function Z(t) -1 1 t^2+2*t -3*t t^3-t Minimum t Maximum t PointCount Function X(t) Function Y(t) Function Z(t) *t 2*t Minimum u Maximum u Minimum v Maximum v PointCount u PointCount v Funcion X(u,v) Function Y (u,v) Function Z (u,v) v 3+2*u+2*v 3*u+3*v Rovina α je pro větší názornost upravena v prostředí Rhina
13
14 PŘÍMKOVÉ PLOCHY Přímková plocha je určena těmito řídícími křivkami a) kružnice k v půdorysně π (x,y), x 2 +y 2 =, b) přímka q procházející bodem Q [,,8] a rovnoběžná s osou x, c) přímka l procházející bodem P [,,15] a rovnoběžná s osou y. Napište parametrické vyjádření části plochy mezi řídící křivkou k a řídící přímkou q. VÝPOČET ( ) = [ ] k u 5cos( u), 5sin( u),, u, 2π qt ()=[ t, 8, ], t R l( s) = [,, s 15], s R Minimum u K = k( u) = [ 5cos( u), 5sin( u ), ] Maximum u α( lk, ) Minimum v Maximum v l = ( 1,, ) PointCount u PK = PointCount v ( 5cos ( u), 5sin ( u), 15) ( cos ( u),sin( u), 3) Funcion X(u,v) l KP = ( 3,,cost ) Function Y (u,v) Function Z (u,v) α : 3x + cos( u) z 15cos( u) = 7 α q = L = cos( u ), 8, 3 8 KL = L K = cos ( u), 5sin ( u), puv (, ) = 5cos( u) ( ) ( ) ( ) vcos u, 5sin u 5vsin u, 8v u, 2π, v 1, 3 MathPlugin_kružnice přímka q přímka l Minimum t Maximum t PointCount Function X(t) Function Y(t) Function Z(t) 2*pi 5*cos(t) 5*sin(t) t t 15 MathPlugin_plocha 2*pi 1 (5*(cos(u))-((8/3)*(cos(u))*v)) (5*sin(u)-5*(sin(u)*v)) (8*v) Plocha se nazývá Štramberská trúba
15
16 plocha štramberské trúby KAMIL HILBERT - ZASTŘEŠENÍ ŠTRAMBERSKÉ TRÚBY doplnění plochy tzv. náběhy Obr. 7
17 Přímková plocha je určena těmito řídícími útvary a) křivka k, která je grafem funkce z=sin(x) v nárysně ν (x,z), b) přímka l rovnoběžná s x a procházející bodem A[,1,] c) řídící rovina φ: x =. Napište parametrický popis dané přímkové plochy. VÝPOČET ( )= ( ) ku u,,sin u, u 4π, 4π l( s)= s, 1,, s R K = k( u)= u,,sin( u ) αϕ K α α : x u = α l = L L u, 1, KL = L K = (, 1, sin( u )) ( )= ( ) puv, u, 1v,( 1 v)sin u, u 4π, 4π, v, 2 MathPlugin_plocha Minimum u Maximum u Minimum v Maximum v PointCount u PointCount v Funcion X(u,v) Function Y (u,v) Function Z (u,v) -4*pi 4*pi 2 u 1*v sin(u)-sin(u)*v MathPlugin_křivka k přímka l rovina φ Minimum t Maximum t PointCount Function X(t) Function Y(t) Function Z(t) -4*pi 4*pi 3 t sin(t) t 1 Minimum u Maximum u Minimum v Maximum v PointCount u PointCount v Funcion X(u,v) Function Y (u,v) Function Z (u,v) v u Plocha je vlnkový konoid
18
19 ANTONIO GAUDÍ - ŠKOLA V BARCELONĚ Obr. 8 Obr. 9 Obr. 1
20 TRANSLAČNÍ PLOCHY Translační plochy vznikají posunutím (translací) křivky k po křivce l nebo translací křivky l po křivce k. Na ploše jsou dva systémy křivek: 1. Křivky shodné s křivkou k v rovinách rovnoběžných s rovinou křivky k. 2. Křivky shodné s křivkou l v rovinách rovnoběžných s rovinou křivky l. Translační plocha je určena křivkami k a l se společným bodem V[,,5]. Křivka k je kružnice v bokorysně μ (y, z). Bod O[,,] je střed kružnice, kružnice prochází bodem V. Křivka l je část paraboly v nárysně ν (x,z), bod V je vrchol paraboly, osa paraboly je osa z a krajní body zvolené části paraboly jsou body P[6,,11] a Q[-6,,11]. Napište parametrické vyjádření této plochy a vymodelujte ji v Rhinu. VÝPOČET ( )= ( ) ( ) ku [ 5, cos u, 5sin u ], u, 2π 2 v lv ( )= v,, + 5 v 6, 6 6 K = ku ( )= 5, cos ( u), 5sin( u ) V K bod V se posune do bodu K vektor K V = 5, cos ( u ), 5sin( u ) 5 posunutá křivka l: ( ) ( ) ( )= + ( ) ( ) qv lv ( ) 5, cos u, 5sin u 5 2 v qv ( )= v, 5cos( u ), + 5sin( u ) 6 plocha: puv (, )= v, cos ( u), v sin ( u), u 2, π, v 66, 6 MathPlugin_plocha Minimum u Maximum u Minimum v Maximum v PointCount u PointCount v Funcion X(u,v) Function Y (u,v) Function Z (u,v) MathPlugin_křivka k Minimum t Maximum t PointCount Function X(t) Function Y(t) Function Z(t) 2*pi -6 6 v 5*cos(u) (v^2)/6+5*sin(u) 2*pi 5*cos(t) 5*sin(t) křivka l -6 6 t (t^2)/6+5
21
22 Seznam vyobrazení: Obr. 7: Hromadová, Jana. Deskriptivní geometrie na MFF UK [online]. Vystaveno [cit ]. Dostupné z: Obr. 8: Song, Miss. Miss Song s Biology Blog [online]. Vystaveno [cit ] Dostupné z: Obr.9, Obr.1: Seidler, David. Autorská fotografie. Použité programy: Rhinoceros 5 V-Ray 1.5 for Rhino Adobe Acrobat 3D Version 8 Adobe InDesign CS6 Užitečné odkazy:
Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,
Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží
ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce
1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé
Základy matematiky pracovní listy
Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky
Obsah a průběh zkoušky 1PG
Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem
Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................
Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu
ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice
8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:
8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy
Smysl otáčení. Aplikace. Pravotočivá
Šroubovice Definice Šroubovice je křivka generovaná bodem A, který se otáčí kolem dané přímky o a zároveň se posouvá podél této přímky, oboje rovnoměrnou rychlostí. Pohyb bodu A šroubový pohyb Přímka o
Zobecněné klínové plochy
Zobecněné klínové plochy Mgr. Jana Vecková Fakulta stavební, ČVUT v Praze Tato práce byla inspirována články Václava Havla [1] - [3] a prací studentů [4]. Moji snahou bylo zobecnit klasické pojetí klínových
GeoGebra známá i neznámá (pokročilí)
GeoGebra známá i neznámá (pokročilí) MODAM 2017 Mgr. Zuzana Morávková, Ph.D. MODAM 2017 GeoGebra známá i neznámá (pokročilí) Příklad 1: Cykloida Zadání: Kotálením kružnice vytvoříme cykloidu. 3. 2. 1.
obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].
Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY Zpracovala: Kristýna Rožánková FA ČVUT 2011 ZBORCENÉ PŘÍMKOVÉ PLOCHY Zborcené přímkové plochy jsou určeny třemi křivkami k, l, m, které neleží na jedné rozvinutelné
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.
Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,
5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
Opakovací kurs středoškolské matematiky podzim
. Opakovací kurs středoškolské matematiky podzim František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou
1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem
Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed
Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].
Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie
Michal Zamboj. January 4, 2018
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
17 Kuželosečky a přímky
17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
Michal Zamboj. December 23, 2016
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Další plochy technické praxe
Další plochy technické praxe Dosud studované plochy mají široké využití jak ve stavební tak ve strojnické praxi. Studovali jsme možnosti jejich konstrukcí, vlastností i využití v praxi. Kromě těchto ploch
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie
SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická
1. Kombinatorika 1.1. Faktoriál výrazy a rovnice
1. Kombinatorika 1.1. Faktoriál výrazy a rovnice 1.A) 210; B) 990; C) 29260; D) 1/5; E) 1/240; F) 157; G) 81/712; H) 1/100; I) 3,98*10 11 ; J) 86296950; K) 65824; L) 195878760; 2. A) x 3 +3x 2 +2x; x Z,
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
TEMATICKÝ PLÁN VÝUKY
STŘEDNÍ P RŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 22 TEMATICKÝ PLÁN VÝUKY Studijní 78 42 - M/01 Technické Zaměření: obor: lyceum Předmět: Matematika MAT Ročník: Počet hodin týdně: 4 3. Počet hodin celkem:
Linearní algebra příklady
Linearní algebra příklady 6. listopadu 008 9:56 Značení: E jednotková matice, E ij matice mající v pozici (i, j jedničku a jinak nuly. [...]... lineární obal dané soustavy vektorů. Popište pomocí maticového
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ07/500/34080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím ICT
1. Přímka a její části
. Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v
DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a
DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
MATEMATIKA II - vybrané úlohy ze zkoušek (2015)
MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz
Analytická geometrie v prostoru
Analytická geometrie v prostoru Jméno autora: Ivana Dvořáková Období vytvoření: prosinec 2012 Ročník: 4. ročník střední odborné školy Tematická oblast: Matematické vzdělávání Předmět: Matematika 4. ročník
Základní vlastnosti křivek
křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky
KŘIVKY A PLOCHY. Obrázky (popř. slajdy) převzaty od
KŘIVKY A PLOCHY JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah matematický popis křivek a ploch křivky v rovině implicitní tvar
soubor FUNKCÍ příručka pro studenty
soubor FUNKCÍ příručka pro studenty 1 Obsah Poznámky 6 lineární funkce mocninné funkce s přirozeným exponentem o sudým o lichým s celým záporným exponentem o sudým o lichým s racionálním exponentem o druhá
Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha.
Abstrakt Tento text je určen všem zájemcům z řad široké veřejnosti, především jako studijní materiál pro studenty Konstruktivní a počítačové geometrie. Práce pojednává o rotačních kvadratických plochách,
P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R
Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
Matematika 1 pro PEF PaE
Tečny a tečné roviny 1 / 16 Matematika 1 pro PEF PaE 7. Tečny a tečné roviny Přemysl Jedlička Katedra matematiky, TF ČZU Tečny a tečné roviny Tečny a normály grafů funkcí jedné proměnné / 16 Tečny a normály
Rys č. 1 Zobrazení objektu
Deskriptivní geometrie I zimní semestr 2018/19 Rys č. 1 Zobrazení objektu Pokyny pro vypracování platné pro všechny příklady Použijte čerchovanou čáru pro otočený půdorys v PA, KP. elips a parabol. Čerchovaná
Maturitní témata od 2013
1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy
ROTAČNÍ PLOCHY. 1) Základní pojmy
ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
11. Rotační a šroubové plochy
Rotační a šroubové plochy ÚM FSI VU v Brně Studijní text. Rotační a šroubové plochy. Rotační plochy Rotační plochy jsou plochy, které lze získat rotačním šablonováním křivky. Jejich rovnice je tedy tvaru
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
Základní topologické pojmy:
Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński
Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou
Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří
Kapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální
3.2. ANALYTICKÁ GEOMETRIE ROVINY
3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou
DESKRIPTIVNÍ GEOMETRIE ELEKTRONICKÁ SKRIPTA CYKLICKÉ KŘIVKY
DESKRIPTIVNÍ GEOMETRIE ELEKTRONICKÁ SKRIPTA CYKLICKÉ KŘIVKY Cyklické křivky patří především mezi technické křivky. Mají bohatou historii. První zmínku nacházíme dokonce už u Ptolemáia, konkrétnější studie
Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
Základní vlastnosti ploch
plocha zpravidla se definuje jako výsledek spojitého pohybu jisté tvořící křivky podél zadané trajektorie lze obohatit o možnost spojitých změn tvaru tvořící křivky x v průběhu pohybu podél trajektorie
MODAM Mgr. Zuzana Morávková, Ph.D.
GeoGebra známá i neznámá (začátečníci) MODAM 2015 Mgr. Zuzana Morávková, Ph.D. MODAM 2015 GeoGebra známá i neznámá (začátečníci) Příklad 1: Kružnice opsaná trojúhelníku Zadání: Vytvořte aplikaci na sestrojení
9.1 Definice a rovnice kuželoseček
9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
8.4. Shrnutí ke kapitolám 7 a 8
8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému
2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka
MODAM Popis okna. 2 Jana Bělohlávková, Katedra matematiky a deskriptivní geometrie, VŠB - TU Ostrava
GeoGebra známá i neznámá (začátečníci) MODAM 2016 Mgr. Jana Bělohlávková. MODAM 2016 GeoGebra známá i neznámá (začátečníci) Popis okna 2 Jana Bělohlávková, Katedra matematiky a deskriptivní geometrie,
MODAM Mgr. Zuzana Morávková, Ph.D.
GeoGebra známá i neznámá (pokročilí) MODAM 2016 Mgr. Zuzana Morávková, Ph.D. MODAM 2016 GeoGebra známá i neznámá (pokročilí) Příklad 1: Hod kostkou Zadání: Vytvoříme simulaci hodů hrací kostkou a budeme
10. Analytická geometrie kuželoseček 1 bod
10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
Deskriptivní geometrie 0A5
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie 0A5 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Veronika Roušarová Brno c 2003 Obsah
MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH
Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Matematika rozšířená úroveň Vážení vyučující! ředmětoví koordinátoři Centra pro zjišťování výsledků vzdělávání pro
Maturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Parametrický popis křivek
MATEMATIKA ŘÍKLADY NA RCVIČENÍ arametrický ois křivek 1 Jedánakřivka k(t)=[t t+ ; t 3 3t], t R. Nakresletečástkřivk kro t 3 ;3.Naišterovnicetečenkřivkvbodech k( 1), k(1) a k(). Dosazením několika hodnot
Základy matematiky pro FEK
Základy matematiky pro FEK 1. přednáška 22.9.2016 Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 19 Organizační pokyny přednášející:
Analytická geometrie. c ÚM FSI VUT v Brně
19. září 2007 Příklad 1. Příklad 2. Příklad 3. Příklad 1. Určete obecnou rovnici roviny, která prochází body A = [0, 1, 2], B = [ 1, 0, 3], C = [3, 1, 0]. Příklad 1. A = [0, 1, 2], B = [ 1, 0, 3], C =
Základy matematiky kombinované studium 714 0365/06
Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické
Elementární křivky a plochy
Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin
2. Kinematika bodu a tělesa
2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a
Opakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]
1 Parametricke vyjadreni primky Priklad 16 Priklad 17 Priklad 18 jestlize Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] Urci,