STATISTIKA. Základní pojmy



Podobné dokumenty
Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

Deskriptivní statistika 1

Doc. Ing. Dagmar Blatná, CSc.

P2: Statistické zpracování dat

NEPARAMETRICKÉ METODY

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

12. N á h o d n ý v ý b ě r

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

8. Základy statistiky. 8.1 Statistický soubor

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Mod(x) = 2, Med(x) = = 2

3. Charakteristiky a parametry náhodných veličin

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

8.1.2 Vzorec pro n-tý člen

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Odhady parametrů 1. Odhady parametrů

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

8.1.2 Vzorec pro n-tý člen

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Pravděpodobnost a aplikovaná statistika

10.3 GEOMERTICKÝ PRŮMĚR

Statistika Statistická jednotka, statistický soubor a statistické znaky Poznámka. (Rozd lení etností jednoho kvantitativního statistického znaku)

PRACOVNÍ SEŠIT KOMBINATORIKA, PRAVDĚPODOBNOST A STATISTIKA. 9. tematický okruh:

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

Lineární regrese ( ) 2

Digitální učební materiál

1.3. POLYNOMY. V této kapitole se dozvíte:

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

6. Posloupnosti a jejich limity, řady

Elementární zpracování statistického souboru

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).

6. KOMBINATORIKA Základní pojmy Počítání s faktoriály a kombinačními čísly Variace

Intervalové odhady parametrů některých rozdělení.

5. Lineární diferenciální rovnice n-tého řádu

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

13 Popisná statistika

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

Závislost slovních znaků

Náhodný výběr 1. Náhodný výběr

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených.

4.2 Elementární statistické zpracování Rozdělení četností

S k l á d á n í s i l

2 STEJNORODOST BETONU KONSTRUKCE

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

8.2.6 Geometrická posloupnost

3. cvičení 4ST201 - řešení

8.2.1 Aritmetická posloupnost

VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

3. cvičení 4ST201. Míry variability

Přednáška č. 2 náhodné veličiny

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

Základní požadavky a pravidla měření

1 ROVNOMĚRNOST BETONU KONSTRUKCE

Sekvenční logické obvody(lso)

Zhodnocení přesnosti měření

Statistické charakteristiky (míry)

vají statistické metody v biomedicíně

1. K o m b i n a t o r i k a

Národní informační středisko pro podporu kvality

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

8. cvičení 4ST201-řešení

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá

ZÁKLADY POPISNÉ STATISTIKY

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

Permutace s opakováním

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

2.4. INVERZNÍ MATICE

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

z možností, jak tuto veličinu charakterizovat, je určit součet

Intervalové odhady parametrů

8.2.7 Geometrická posloupnost

6. P o p i s n á s t a t i s t i k a

6. FUNKCE A POSLOUPNOSTI

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY

Permutace s opakováním

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

3.4.7 Můžeme ušetřit práci?

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Transkript:

Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci v úvahu přicházejících statisticých jedote výběrové statisticé soubory obsahují část jedote záladího statisticého souboru Poud sledujeme ějaé jevy a malém počtu objetů, mohou být zísaé údaje začě zreslující, s jejich rostoucím počtem tedy roste vypovídací schopost statisticých údajů Statisticé zjišťováí úplé (vyčerpávající) zaměřeé a všechy jedoty záladího souboru, výběrové používá se, poud je záladí soubor příliš rozsáhlý Při áhodém výběru pa můžeme použít teorii pravděpodobosti dostatečě spolehlivým a přesým úsudům o charateru záladího souboru Statisticé jedoty prvy statisticého souboru, prvy možiy M Rozsah statisticého souboru počet prvů možiy M, M = Statisticý za - ohodoceí statisticé jedoty (je předmětem zoumáí), začí se x - jedotlivé údaje zau se azývají hodoty zau, začí se x, x,, x zay vatitativí hodoty zaů jsou vyjádřey čísly, zay valitativí hodoty zau jsou vyjádřey zpravidla slovím popisem Vždy je uté dopředu staovit (byť pouze ituitivě), jaých hodot mohou tyto zay abývat (taé tím usadíme zpracováí zísaých údajů) Př : Uvažujme statisticý soubor žáů třídy, sledovaé zay jejich tělesou výšu, počet sourozeců a barvu očí Prví dva zay jsou vatitativí, posledí je valitativí K jedotlivým zaům musíme ejdříve staovit možiy přípustých hodot: tělesá výša v celých cm, tedy přirozeá čísla; počet sourozeců přirozeá čísla a ula; barva očí hědá (H), modrá (M), zeleá (Z), šedá (Š), ostatí (O) Za/jedota ( Petr) (Pavel) 3(Eva) (Mila) 5(Klára) Tělesá výša 7 86 67 7 75 Počet sourozeců 0 3 Barva očí H Z O H M Četosti a jejich rozděleí Uvažujme statisticý za, jež abývá hodot x, x,, x, de je rozsah uvažovaého statisticého souboru Nechť celový počet růzých hodot zau x je Absolutí četost hodoty zau x j počet statisticých jedote, jimž přísluší stejá hodota zau x j pro j =,,,, - ozačujeme ji j j= j = Relativí četost hodoty zau x j - podíl četosti j hodoty zau x j a rozsahu souboru, - ozačujeme ji ν j, - v praxi se vyjadřuje v procetech j= j =

Statistia /7 Př : Při zjišťováí počtu ezletilých dětí ve třiceti vybraých rodiách byly zísáy tyto výsledy:,, 0,, 3,,,, 3, 0,,,,, 3, 3, 0,,,,,, 0,,,,, 3, 3, Uspořádejte zísaé údaje do tabuly rozděleí četostí, vypočítejte relativí četosti a vyjádřete je v procetech Řešeí: Tabula rozděleí četostí a relativích četostí j 3 5 součet x j 0 3 -- sledovaý za - počet dětí j ν j ν j [%] abs četost hodoty zau x j relat četost hodoty zau x j relat četost hodoty zau x j v procetech Supiové rozděleí četostí - používá se, poud je počet zjištěých hodot vatitativího statisticého zau začý Proto se blízé hodoty zau sdružují do supi (tříd) tvořeých obvyle itervaly (třídími itervaly) Hodoty zau, jež se dostaly do téhož itervalu, lze potom reprezetovat jediou hodotou středem itervalu (třídím zaem) Poz: K určeí vhodého počtu itervalů se užívá apřílad tzv Sturgesův vzorec: 3,3 log, de je rozsah statisticého souboru Př 3: Byly aměřey výšy 300 osob v mezích od 53 do 97 cm Navrhěte jejich rozděleí do supi (itervalů) a sestavte tabulu supiového (itervalového) rozděleí četostí Řešeí: Tabula supiového rozděleí četostí Itervaly výšy x (v cm) 53-57 58-6 63-67 68-7 73-77 78-8 83-87 88-9 93-97 součet četostí Středy itervalů 55 60 65 70 75 80 85 90 95 -- Četost (absolutí) 7 0 35 9 8 60 7 300 Graficá zázorěí rozděleí četostí Pro velou ázorost a přehledost se pro zázorěí četostí používají ejrůzější grafy Uvedeme si ěoli ejběžějších typů (s dalšími se lze sezámit prostředictvím tabulových procesorů, apř MS Excel) Pro všechy uvedeé grafy budeme uvažovat ásledující datovou tabulu, ve teré je zazameáo rozložeí záme z matematiy: Záma z matematiy 3 5 Počet žáů 8 7 3 Výsečový graf 8 Paprsový graf 3 5 6 0 Počet žáů 5 3

Statistia 3/7 0 8 6 Histogram - sloupcový graf Počet žáů 0 8 6 Polygo - spojicový graf Počet žáů 0 3 5 0 3 5 Polygo četosti eboli spojicový diagram zísáme spojeím bodů, jejichž prví (x-ová) souřadice je hodota zau, resp středu itervalu a druhá (y-ová) souřadice odpovídající četost Histogram četosti eboli sloupový diagram tvoří možia obdélíů (se záladami a ose x), jejichž obsahy jsou přímo úměré zázorňovaým četostem Je vhodý zejméa pro zázorěí supiového (itervalového) rozděleí četostí V ruhovém diagramu růzým hodotám zau odpovídají ruhové výseče, jejichž plošé obsahy jsou úměré četostem Př : Sestroj histogram a polygo četosti pro údaje z př 3 Charateristiy statisticého souboru A Charateristiy polohy (úrově) hodot zau eboli jeho středí hodoty - čísla, terá určitým způsobem charaterizují průměrou hodotu sledovaého zau Představují hodotu, olem íž je v jistém smyslu ejvíce soustředěo rozděleí četostí hodot zau - patří mezi ě aritmeticý průměr, mediá, modus, harmoicý průměr a geometricý průměr Aritmeticý průměr x hodot vatitativího zau x, x,, x určujeme jao podíl součtu hodot zau a jejich počtu (rozsahu souboru) x= x x x = x i Zvláštím případem je vážeý aritmeticý průměr, terý aždé hodotě zau přiřazuje určitou váhu (výzam), terá je reprezetováa oeficietem, jímž aždou hodotu ásobíme Často touto vahou bývá počet výsytů příslušé hodoty x= x x x = i x i Př 5: V laboratoři měřili apětí v eletricém obvodu s těmito výsledy (V):,7;,8; 3,0;,7; 3,0;,6;,8;,7;,7;,9 Určete průměrou hodotu apětí v obvodu x=,6,7,8,9 3,0 =,79 V 0 Př 6: Studet zísal v prvím pololetí z matematiy ásledující zámy: z průběžých testů,, 3, ; ze zoušeí, 5; ze čtvrtletích písemých prací, a za ativitu,, 5, 3, 5 Vyučující považuje zámy z průběžých testů a ze zoušeí dvarát výzamější ež za ativitu, zámy za čtvrtlety dvarát výzamější ež z průběžých testů Určete studetův studijí průměr x= 5 3 5 3 5 =,76 5 Vlastosti aritmeticého průměru: přičteím, odečteím, vyásobeím ebo vyděleím všech hodot zau eulovým číslem se odpovídajícím způsobem změí taé aritmeticý průměr (apř zvětšíme-li všechy hodoty o, zvětší se aritmeticý průměr taé o ); rozdělíme-li soubor do supi, pa průměr celého souboru je vážeým průměrem supiových průměrů, přičemž jao váhy vystupují počty jedote v jedotlivých supiách

Statistia /7 Př 7: V 6 ročíu ZŠ jsou čtyři třídy; počty žáů a třídí průměry záme z matematiy jsou uvedey v tabulce Určete průměrou zámu z matematiy celého ročíu Třída 6A 6B 6C 6D Průměrá záma z matematiy,,8,33, Počet žáů 8 3 30 x=, 8,8,33 3, 30 = 3, 8 3 30 =, Geometricý průměr x G hodot vatitativího zau x, x,, x určíme jao -tou odmociu ze součiu hodot: x G = x x x Geometricý průměr se ve statistice užívá apř výpočtu oeficietů růstu ebo řetězových idexů V časových řadách, de data vyazují určitý tred, je zajímavějším uazatelem průměrý přírůste (úbyte) během sledovaého období Te bychom určovali jao aritmeticý průměr přírůstů jedotlivých úseů x i x i = x x 0 V praxi je vša výzamějším uazatelem průměré tempo růstu, tedy geometricý průměr podílů hodot za dvě po sobě jdoucí období: x G = x x x = x 0 x x x x 0 Př 8: Nezaměstaost se v Česé republice (resp v ČSFR) vyvíjela podle ásledující tabuly Určete průměré tempo růstu míry ezaměstaosti v ČR v letech 990 999 Ro 990 99 99 993 99 995 996 997 998 999 Míra ezaměstaosti 0,7%,07%,59% 3,5% 3,%,96% 3,58% 5,5% 7,39% 9,3% x G = 0 0,7,07,59 3,5 3,,96 3,58 5,5 7,39 9,3= 3,56 Harmoicý průměr x H hodot vatitativího zau x, x,, x určíme jao podíl rozsahu souboru a součtu převráceých hodot zau: x H = =: x x i, vážeý harmoicý průměr H = =: i x x x x x x i x Harmoicý průměr se používá pro měřeí úrově poměrých čísel, jao je rychost, výo, produtivita práce apod Vážeý harmoicý průměr pa použijeme vždy, dyž jao váha vystupuje veličia, terá v poměrém čísle figuruje v čitateli zlomu (uražeá dráha, objem produce, objem tržeb) Př 9: V určité dílě, v íž vyrábějí stejé výroby, byly aměřey šesti dělíům tyto časy potřebé e zhotoveí jedoho výrobu: 3,, 5, 6, 0, miut Určete dobu, teré je v průměru třeba e zhotoveí jedoho výrobu Řešeí: Výoy jedotlivých dělíů jsou velmi rozdílé, apřílad prví vyrobí za tutéž dobu čtyřirát více výrobů ež posledí, proto postrádá věcý smysl počítat aritmeticý průměr aměřeých časů Avša součet jejich převráceých hodot udává celovou část produce všech dělíů za miutu a tedy průměrá doba potřebá e zhotoveí jedoho výrobu je dáa harmoicým průměrem x H =6: 3 5 6 0 0 5 0 6 5 =6: = 6 60 60 68 = 5,3 mi Modus zau je hodota s ejvětší četostí Začíme Mod(x) Modus lze vhodě použít apřílad při určováí hodiy s dopraví špičou Mediá je prostředí hodota zau, jsou-li hodoty uspořádáy podle veliosti Při sudém počtu hodot se bere aritmeticý průměr dvou prostředích hodot Začíme Med(x) Mediá je užívá zejméa tehdy, dyž jsou v souboru zastoupey prvy s hodotami zau mimořádě odlišými oproti ostatím hodotám zau V těchto případech je mediá lepší charateristiou polohy hodot zau ež aritmeticý průměr Př 0: Družstvo má 0 čleů s ročími příjmy podle ásledující tabuly Ročí příjem v tisících Kč 30 0 50 60 70 80 Počet čleů družstva 6 6 5 Řešeí: Aritmeticým průměrem bychom určili průměrý ročí příjem 89 tis Kč Avša romě jediého člea mají všichi příjem mohem ižší, taže použití této veličiy asi eí příliš vhodé Vhodější charateristiou je mediá Med x = x 0 x =50 tis Kč

Statistia 5/7 B Charateristiy variability (mělivosti, rozptýleí) - čísla, terá charaterizují, ja se hodoty zau prvů souboru liší od zvoleé charateristiy polohy ( středí hodoty), resp od sebe avzájem - patří mezi ě variačí rozpětí, průměrá absolutí odchyla, rozptyl, směrodatá odchyla a variačí oeficiet Ja uazuje ásledující přílad, charateristiy polohy mohou ědy být zavádějící ebo alespoň zreslující Př : Mějme dvě řady čísel: 7, 7, 7, 8, 8, 8, 8, 9, 9, 9 a,,, 8, 8, 8, 8, 5, 5, 5 Obě mají aprosto stejý aritmeticý průměr, mediá i modus, avša prví má hodoty mohem vyrovaější Čím větší je variabilita hodot zau, tím méě reprezetativí je aritmeticý průměr či jiá charateristia polohy (Lze říci, že charateristiy variability určují spolehlivost charateristi polohy; čím jsou meší, tím charateristiy polohy výstižěji popisují celý soubor) Iformaci o rozptýleí hodot zau olem aritmeticého průměru podává průměrá absolutí odchyla ebo lépe rozptyl, resp směrodatá odchyla Rozdíl mezi hodotou zau x j a zvoleou středí hodotou, apř aritmeticým průměrem x, se azývá odchyla hodoty zau x j od středí hodoty Je-li charateristiou polohy aritmeticý průměr, pa za charateristiu variability volíme zpravidla rozptyl Rozptyl je aritmeticý průměr druhých moci odchyle hodot zau od aritmeticého průměru (průměrá čtvercová odchyla od aritmeticého průměru): s x = x i x = x i x Druhá mocia v uvedeém vzorci je utá, eboť součet odchyle od aritmeticého průměru je ulový: x i x =0 Resp pro supiové rozděleí četostí poz ve vážeém tvaru s x = i x i x = i x i x Nevýhodou rozptylu je, že jeho jedoty eodpovídají jedotám hodot zau, ale jsou jejich druhými mociami Teto edostate odstraňuje směrodatá odchyla Směrodatá odchyla s x je druhá odmocia z rozptylu Výhodou směrodaté odchyly je, že charaterizuje variabilitu hodot zau v měřicích jedotách zau s x = x i x = x i x, resp s x = i x i x = C Charateristiy variability relativí (poměré) i x i x Chceme-li porovávat ěoli statisticých souborů, vedou absolutí charateristiy jao rozptyl ebo směrodatá odchyla epřehledým závěrům Jao bezrozměrá charateristia se ejčastěji používá variačí oeficiet Variačí oeficiet x je defiová jao podíl směrodaté odchyly a aritmeticého průměru sledovaého zau x = s x x, respetive v procetech = s x x 00% má-li hodota x i četost i,, hodota x četost, i =

Statistia 6/7 Př : Deset opaovaých měřeí jedé fyziálí ostaty dalo tyto výsledy:,;,0;,09;,;,0;,03;,03;,0;,05;,05 Určete aritmeticý průměr, směrodatou odchylu a variačí oeficiet Řešeí: x=,06; s x =0,0036 s x =0,037 ;v x =,8% Př 3: Porovejte difereciaci (vaiabilitu) mezd pracovíů dvou podiů a záladě údajů o jejich příjmech v tabulce: podi podi Měsíčí příjem x i (v Kč) Počet pracovíů i Hodiová mzda x i (v Kč) Počet pracovíů i 000 0 0 30 500 30 5 30 3 000 30 0 5 3 500 5 5 0 000 5 30 5 Řešeí: Sledovaý statisticý za x (příjem pracovía) je vyjádře v obou podicích v růzých jedotách (měsíčí a hodiová mzda) K porováí variability mezd užijeme proto variačí oeficiety Postupě dostáváme pro podi x=775, s x = 558,6, =0,0, pro podi x=6,, s x = 5,9056, =0,367 Závěr: Difereciace (variabilita) mezd v podiu je ižší ež ve podiu D Koeficiet orelace Koeficiet orelace r popisuje míru závislosti dvou zaů x a y Nechť x, x,, x jsou hodoty zau x, y, y,, y hodoty zau y, pa oeficiet orelace r zaů x a y je r =, de = s x s y x i x y i y, s x= x i x, s y = y i y V defiici oeficietu orelace vystupují ve jmeovateli směrodaté odchyly s x, s y Aby defiice měla smysl, musí být s x 0, s y 0, což astává právě tehdy, dyž za x i za y ejsou ostatí Koeficiet orelace je bezrozměré číslo Vždy platí x Čím více se hodota r blíží, tím považujeme závislost x a y za větší ( V případě r = s rostoucími hodotami zau x rostou i hodoty zau y, v případě r = - aopa s rostoucími hodotami zau x lesají hodoty zau y) Př : Na oci a ročíu byli v matematice žáci lasifiovái zámami, jež jsou uvedey v tabulce Vypočtěte oeficiet orelace mezi těmito zámami Počty žáů Záma a oci ročíu 3 Záma a oci ročíu 3 6 5 3 7 8 Řešeí: Výpočtem podle uvedeého vzorce vychází r = 0,6

Statistia 7/7 Průměr, modus, mediá, grafy P 75/68 V testu při zoušce dostalo 5 studetů zámu, dalších 35 studetů dostalo zámu, zámu 3 dostalo 30 studetů, 5 studetů dostalo zámu a zbylých 5 studetů dostalo zámu 5 Vypočítejte průměrou zámu z testu, modus, mediá Výsledy testu zázorěte graficy [průměr,6, modus, mediá,5] P 75/66 Ve třídě A je 5 chlapců Údaje o výšce chlapců udává ásledující tabula: Výša (cm) 60-6 65-69 70-7 75-79 80-8 Počet žáů 5 3 Vypočítejte průměrou výšu žáa, určete modus, mediá [průměr 5/3 cm, modus 67 cm, mediá 7 cm] P 75/67 Pa Dvořá jel automobilem prvích 0 m rychlostí 80 m/h, dalších 30 m rychlostí 90 m/h Vypočítejte průměrou rychlost jeho jízdy [85,7 m/h] 7/33 Házíme micí, až pade poprvé líc; za x udává, v oliátém hodu se ta stalo Opaováí tohoto pousu 00 rát dalo ásledující rozděleí četostí: čeáí a líc 3 5 6 7 8 četost 53 3 8 3 0 a) Vypočítej aritmeticý průměr, modus a mediá [průměr,95, modus, mediá ] b) Porovej relativí četosti s příslušými pravděpodobostmi (Návod: Pravděpodobost, že líc pade hed v prvím hodu, je /, že pade až v druhém hodu, / atd) [relativí četosti: 0,53; 0,; 0,3; ; pravděpodobosti: 0,50; 0,5; 0,5; ] Pravděpodobost opaováí P 7/57 V tombole je 30 ce (vyhrává 30 losů) Bylo prodáo 500 losů Pa Nová si oupil 3 losy Jaá je pravděpodobost, že a) a všechy tři losy vyhraje, [0,0006] b) vyhraje alespoň jedu ceu? [0,7] P 70/ a) Jaá je pravděpodobost, že při třech hodech jedou micí pade alespoň dvarát líc? [/] b) Jaá je pravděpodobost, že při hodu třemi micemi ajedou pade alespoň a dvou micích líc? [/] P 7/0 S jaou pravděpodobostí pade při deseti hodech jedou ostou alespoň třirát šesta? [0,5] Průměr, modus, mediá, grafy P 75/68 V testu při zoušce dostalo 5 studetů zámu, dalších 35 studetů dostalo zámu, zámu 3 dostalo 30 studetů, 5 studetů dostalo zámu a zbylých 5 studetů dostalo zámu 5 Vypočítejte průměrou zámu z testu, modus, mediá Výsledy testu zázorěte graficy [průměr,6, modus, mediá,5] P 75/66 Ve třídě A je 5 chlapců Údaje o výšce chlapců udává ásledující tabula: Výša (cm) 60-6 65-69 70-7 75-79 80-8 Počet žáů 5 3 Vypočítejte průměrou výšu žáa, určete modus, mediá [průměr 5/3 cm, modus 67 cm, mediá 7 cm] P 75/67 Pa Dvořá jel automobilem prvích 0 m rychlostí 80 m/h, dalších 30 m rychlostí 90 m/h Vypočítejte průměrou rychlost jeho jízdy [85,7 m/h] 7/33 Házíme micí, až pade poprvé líc; za x udává, v oliátém hodu se ta stalo Opaováí tohoto pousu 00 rát dalo ásledující rozděleí četostí: čeáí a líc 3 5 6 7 8 četost 53 3 8 3 0 a) Vypočítej aritmeticý průměr, modus a mediá [průměr,95, modus, mediá ] b) Porovej relativí četosti s příslušými pravděpodobostmi (Návod: Pravděpodobost, že líc pade hed v prvím hodu, je /, že pade až v druhém hodu, / atd) [relativí četosti: 0,53; 0,; 0,3; ; pravděpodobosti: 0,50; 0,5; 0,5; ] Pravděpodobost opaováí P 7/57 V tombole je 30 ce (vyhrává 30 losů) Bylo prodáo 500 losů Pa Nová si oupil 3 losy Jaá je pravděpodobost, že a) a všechy tři losy vyhraje, [0,0006] b) vyhraje alespoň jedu ceu? [0,7] P 70/ a) Jaá je pravděpodobost, že při třech hodech jedou micí pade alespoň dvarát líc? [/] b) Jaá je pravděpodobost, že při hodu třemi micemi ajedou pade alespoň a dvou micích líc? [/] P 7/0 S jaou pravděpodobostí pade při deseti hodech jedou ostou alespoň třirát šesta? [0,5]