15. Goniometrické funkce



Podobné dokumenty
4.3.4 Základní goniometrické vzorce I

16. Goniometrické rovnice

4.3.3 Základní goniometrické vzorce I

M - Příprava na 3. čtvrtletní písemnou práci

GONIOMETRIE A TRIGONOMETRIE

( ) ( ) Vzorce pro dvojnásobný úhel. π z hodnot goniometrických funkcí. Předpoklady: Začneme příkladem.

Zadání. Goniometrie a trigonometrie

Radián je středový úhel, který přísluší na jednotkové kružnici oblouku délky 1.

Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá

4. GONIOMETRICKÉ A CYKLOMETRICKÉ FUNKCE, ROVNICE A NEROVNICE 4.1. GONIOMETRICKÉ FUNKCE

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Součtové vzorce. π π π π. π π π. Předpoklady: není možné jen tak roznásobit ani rozdělit:

4.3.7 Součtové vzorce. π π π π. π π π. Předpoklady: 4306

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Derivace goniometrických funkcí

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

M - Příprava na 4. čtvrtletku - třídy 1P, 1VK.

Funkce tangens. cotgα = = B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

sin 0 = sin 90 = sin 180 = sin 270 = sin 360 = sin 0 = cos 0 = cos 90 = cos 180 = cos 270 = cos 360 = cos 0 =

Požadavky k opravným zkouškám z matematiky školní rok

4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306

Řešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Funkce kotangens

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

( x) ( ) ( ) { } Vzorce pro dvojnásobný úhel II. Předpoklady: Urči definiční obor výrazů a zjednoduš je. 2. x x x

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Derivace goniometrických. Jakub Michálek,

Bakalářská matematika I

Požadavky k opravným zkouškám z matematiky školní rok

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář.

Goniometrické a hyperbolické funkce

Goniometrické rovnice

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

ELEMENTÁRNÍ GONIOMETRICKÉ A TRIGONOMETRICKÉ VĚTY

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

Kapitola 1: Reálné funkce 1/20

Úlohy krajského kola kategorie A

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

Definice funkce tangens na jednotkové kružnici :

Repetitorium z matematiky

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Funkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a

Funkce pro studijní obory

Funkce a lineární funkce pro studijní obory

CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj.

M - Goniometrie a trigonometrie

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.

Limita a spojitost funkce

Vzorce pro poloviční úhel

Funkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4.

V (c) = (30 2c)(50 2c)c = 1500c 160c 2 + 4c 3. V (c) = 24c 320.

Modelové úlohy přijímacího testu z matematiky

Základy matematické analýzy

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1

Cyklometrické funkce

Úlohy klauzurní části školního kola kategorie A

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

P ˇ REDNÁŠKA 3 FUNKCE

c jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.

Metody výpočtu limit funkcí a posloupností

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)

Modelové úlohy přijímacího testu z matematiky

MATURITNÍ TÉMATA Z MATEMATIKY

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

III Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Maturitní okruhy z matematiky - školní rok 2007/2008

Přednáška 1: Reálná funkce jedné reálné proměnné

Matematická analýza III.

Cvičné texty ke státní maturitě z matematiky

Řešené příklady ze starých zápočtových písemek

Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková

Kapitola 1: Reálné funkce 1/13

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

Funkce, elementární funkce.

1 Mnohočleny a algebraické rovnice

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem

Cyklometrické funkce

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

GONIOMETRICKÉ FUNKCE OBECNÉHO ÚHLU

Transkript:

@157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě.

@160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou nebo mírou obloukovou Stupňová míra - plný úhel rozdělíme na 360 dílků stupně každý stupeň rozdělíme na 60 dílků minuty každou minutu rozdělíme na 60 dílků vteřiny 1 o ~ jeden stupeň 1 ~ jedna minuta 1 ~ jedna vteřina Oblouková míra - je to délka oblouku jednotkové kružnice příslušné danému úhlu. Je to reálné číslo. Jednotkou je jeden radián. Plný úhel má radiánů. převodní tabulka, kterou byste měli znát více méně zpaměti (lze ji rychle odvodit) stupně 0 o 30 o 45 o 60 o 90 o 180 o 70 o 360 o radiány 0 /6 /4 /3 / 3/

@16

@164a

@164b Goniometrické funkce obecně

@164c

@167 Známe hodnoty sin x a cos x pro I. kvadrant (významné hodnoty zpaměti, tabulky, kalkulačka). Jak vypočteme hodnoty sin x a cos x pro úhly v II. kvadrantu? cos 150 o = - cos(180 o 150 o ) = - cos 30 o = - 3/

@170 Určete následující hodnoty a) sin 150 o = sin(180 o - 150 o ) = sin 30 o = 1/ b) cos 10 o = - cos(180 o - 10 o ) = - cos 60 o = - 1/ c) sin 300 o = - sin(360 o - 300 o ) = - sin 60 o = - / d) cos 315 o = cos(360 o - 315 o ) = cos 45 o = / e) sin 5 o = - sin(5 o - 180 o ) = - sin 45 o = / f) cos 40 o = - cos(40 o - 180 o ) = - cos 60 o = - 1/ Úkol: Znovu si připomeňte definici funkcí sin, cos, tg, cotg a určete definiční obory a obory hodnot. výsledek

@173 Určete následující funkční hodnoty cos(70 o ) = 0 cos(1575 o ) = - / sin(-385 o ) = / cotg(-3030 o ) = 3 sin(1380 o ) = - 3/ cos(-160 o ) = - 1 Úkol: Pokuste se určit u funkcí sin, cos, tg, cotg, zda jsou sudé, liché nebo ani jedno ani druhé. výsledek

@176 průběh funkce tg a cotg

@179 Mezi goniometrickými funkcemi existuje mnoho různých vztahů - identit, vzorců. Při nejrůznějších příležitostech je nutné si umět poradit a převádět jeden výraz v druhý. Příklad: Dokažte, že platí (cos x 0) 1 + tg x = cos - x Řešení: Identity se dokazují tak, že se vyjde z jedné strany a postupnými úpravami si dojde ke straně druhé. Nebo se vyjde z obou stran nezávisle a dojde se ke stejnému (třetímu) výrazu. sin L 1 tg x 1 cos x x cos x sin cos x x 1 cos x cos x P Příklad: Dokažte, že platí (cos t 0, sin t 1) cost 1 sin t 1 sin t cost Řešení: cost cost 1 sin t cost(1 sin t) L 1 sin t 1 sin t 1 sin t 1 sin t cost(1 sin t) 1 sin t P cos t cost Úkol: Dokažte, že platí (mají-li obě strany smysl) a) (sin x + cos x) + (sin x - cos x) = b) cos 4 x - sin 4 x = cos x - 1 cotg t 1 c) 1 sin t 1 cotg t d) 1 1 cos x 1 1 cos x sin x e) tg t. cos t + cos t = 1 výsledek

@18 Velmi důležité vztahy mezi goniometrickými funkcemi formuluje následující věta. Věta: Součtové vzorce Pro každé a platí: i) sin(+ ) = sin cos + sin cos ii) sin(- ) = sin cos - sin cos iii) cos(+ ) = cos cos - sin sin iv) cos(- ) = cos cos + sin sin důkaz

@185a Ověření podle iv) a známých hodnot cos(x - /) = cos x cos / + sin x sin / = = cos x. 0 + sin x. 1 = sin x Zaveďme substituci = x + / tj. x = / Z právě dokázaného plyne sin x = sin( - /) = cos(x - /) = cos( - / - /) = cos( - ) = = cos cos + sin sin = = cos. (-1) + sin. 0 = - cos Úkol: Z platnosti cos(x - /) = sin x a sin(x - /) = - cos x dokažte platnost i) sin(+ ) = sin cos + sin cos výsledek

@185b L = sin(+ ) = cos(+ - /) = cos(+ (- /)) = = cos cos(- /) - sin sin( - /) = = cos sin - sin (-cos ) = = cos sin + sin cos = P Tím je dokázána identita i) sin(+ ) = sin cos + sin cos Úkol: Zbývá dokázat poslední identitu. Dokažte identitu ii) sin(- ) = sin cos - sin cos výsledek

@189 Platí cos(x + /) = -sinx? Ano, platí! L = cos(x + /) = cosx cos(/) sinx sin(/) = cosx. 0 sinx. 1 = -sinx = P Věta: Vzorce pro poloviční úhel Pro každé platí sin cos 1 cos 1 cos Důkaz: Víme: pro každé x platí cos x + sin x = 1 a cos x sin x = cosx Použijeme substituci x = /, abychom do vzorců dostali poloviční úhel sečteme odečteme cos (/) + sin (/) = 1 cos (/) sin (/) = cos cos (/) = 1 + cos sin (/) = 1 - cos a nyní stačí vydělit a odmocnit Úkol: Proč je ve vzorcích absolutní hodnota? výsledek

@193 Důkaz se provede prostou aplikací součtových vzorců L = sin(+ ) + sin( ) = cos sin + sin cos + cos sin sin cos = = sin cos= P ATD. Zaveďme substituci x = + a y = součtem a rozdílem substitučních vzorců dostaneme = (x+y)/ a = (x-y)/ Tedy předchozí identitu lze také psát takto: x sin x sin y sin y x cos y Úkol: Přepište dle tohoto vzoru i zbývající identity a zformulujte do matematické věty. výsledek

@196 Víte, že platí (; 3/), (/; ), cotg = 1/5 a sin = 15/17. Určete tg( - ). Tedy úhel je ve III. kvadrantu a je ve II. kvadrantu (toto ovlivňuje znaménka). Máme určit tg tg tg ) tg( ( )) 1 tg tg ( (změna znamének, tg je lichá) Potřebujeme tedy určit tg a tg, k čemuž užijeme vztahy tg = 1/cotg = 5/1 a tg = sin /cos. sin b je zadáno a cos b musíme určit ze vztahu cos + sin = 1 cos = 1 sin = (1 - sin )(1 + sin ) = (1-15/17)(1 + 15/17) = 8 /17 Pro správné odmocnění musíme uvážit, že je ve II. kvadrantu a tam je cos záporný, tedy cos = -8/17 => tg = sin /cos = (15/17)/(-8/17) = -15/8 Nyní stačí jen dosadit to vzorce a zlomek upravit tg( ) = 0/1 Úkol: Víte, že platí (/; ), (0; /), sin = 3/5 a cotg = 8/15. Určete cos(- ). výsledek

@158 Úkol: Dokažte, že platí sin + cos = 1. výsledek

@160a Zde je ilustrace vztahu mezi obloukovou a stupňovou mírou v sadě obrázků, kružnice má, a musí mít, poloměr 1 (slovy jedna).

@160b

@160c

@160d

@160e

@160f

@160g

@160h Číselnou osu můžeme klidně natáčet dále

@163 Orientovaný úhel Až dosud jste chápali úhel jako průnik či sjednocení dvou polorovin. Takový úhel se nazývá neorinetovaný a jeho velikost může být pouze od 0 o do 360 o stupňů včetně. V matematice a aplikacích fyziky používáme ještě jiný mechanizmus vzniku úhlu. Vezmeme dvě polopřímky s počátkem ve stejném bodě. Jednu polopřímku zafixujeme - počáteční rameno, druhou polopřímkou pohybujeme - koncové rameno. Rozlišujeme i směr, jak úhel vznikne otáčením polopřímky, i dovolujeme otočit polopřímkou několikrát kolem dokola. Takový úhel se nazývá orientovaný. Otočit ramenem lze i několikrát kolem dokola

@165 V různých kvadrantech mají funkce sin, cos, tg, cotg různá znaménka. Je to dáno znaménky souřadnic u a v. Úkol: Doplňte znaménka do tabulky kvadrant I. II. III. IV. interval (0; /) (/; ) (3/) (3/; ) sin x cos x tg x cotg x výsledek

@168a Známe hodnoty sin x a cos x pro I. kvadrant. Jak vypočteme hodnoty sin x a cos x pro úhly v III. kvadrantu? sin 00 o = - sin(00 o 180 o ) = - sin 0 o

@168b Známe hodnoty sin x a cos x pro I. kvadrant. Jak vypočteme hodnoty sin x a cos x pro úhly v IV. kvadrantu? cos 300 o = cos(360 o 300 o ) = cos 60 o = - 1/

@171 Funkce sin: úhel může být libovolný => definiční obor R. souřadnice bodu na jednotkové kružnici může být od -1 do 1 => obor hodnot <-1,1> Funkce cos: úhel může být libovolný => definiční obor R 1. souřadnice bodu na jednotkové kružnici může být od -1 do 1 => obor hodnot <-1,1> Funkce tg: musíme vyloučit případy, kdy je cos roven 0, což je v lichých násobcích čísla / označme k zastupující libovolné celé číslo => definiční obor R\{(k+1)/, kc} podíl, kdy čitatel je omezen a jmenovatel může nabývat hodnoty libovolně blízké 0, může být jakékoli reálné číslo => obor hodnot R Funkce cotg: musíme vyloučit případy, kdy je sin roven 0, což je v sudých násobcích čísla / = celočíselné násobky čísla označme k zastupující libovolné celé číslo => definiční obor R\{k, kc} podíl, kdy čitatel je omezen a jmenovatel může nabývat hodnoty libovolně blízké 0, může být jakékoli reálné číslo => obor hodnot R Poznámka: Funkce periodická je taková, která se pravidelně opakuje. To platí i o funkcích sin, cos, tg, cotg. Jde jen o to, kolikrát otočíme číselnou osou kolem jednotkové kružnice. Úkol: Vyslovte přesnou definici periodické funkce a určete periodu funkcí sin, cos, tg, cotg. výsledek $ 17 0 0 170

@174

@177 Platí vztahy pro záměnu funkcí sin a cos mezi sebou cos x sin( x ) sin x cos( x )

@180 Dokažte, že platí a) (sin x + cos x) + (sin x - cos x) = L = (sin x + cos x) + (sin x - cos x) = = sin x +sinxcosx +cos x +sin x -sinxcosx +cos x = = (sin x + cos x) = = P b) cos 4 x - sin 4 x = cos x - 1 L = cos 4 x - sin 4 x = = (cos x + sin x)(cos x - sin x) = = 1.(cos x - (1 - cos x)) = cos x - 1 = P cotg t 1 c) 1 sin t 1 cotg t pro cotg t ±1, sin x 0 cotg t 1 L 1 cotg t 1 sin t P cos t sin t cos 1 sin 1 cos sin t t t sin t t cos t (1 sin t) sin t d) 1 1 cos x 1 1 cos x sin x pro cos x ±1, sin x 0 L 1 1 1 cos x 1 cos x 1 cos x 1 cos x 1 cos x sin x P e) tg t. cos t + cos t = 1 pro cos t 0 L tg t.cos sin t cos t cos t 1 P sin t cos t cos t t cos t

@183 Důkaz provedeme postupně v opačném pořadí. Je to tak snazší, text věty je zase zvykem uvádět tak, jak jsme to udělali i my. V důkazu iv) se vychází s porovnání vzdálenosti bodů A,B a C,D viz obrázek. Souřadnice bodů jsou A = [cos sin], B = [cos sin], C = [cos(- ); sin(- )], D = [1; 0] Je zřejmé, že vzdálenost bodů AB je stejná jako bodů CD. Abychom se nemuseli trápit s odmocninou ve vzorci o vzdálenosti bodů, budeme pracovat s její druhou mocninou. AB = CD AB = (cos - cos) + (sin - sin) = = cos - coscos + cos + sin - sinsin + sin = = (cos + sin ) + (cos + sin ) - (coscos + sinsin) = = [1 - (coscos + sinsin)] CD = (cos(- ) - 1) + sin (- ) = cos (- ) - cos(- ) + 1 + sin (- ) = = (cos (- ) + sin (- )) + 1 - cos(- ) = [1 - cos(- )] Porovnáním těchto dvou výrazů dostáváme platnost identity iv) iv) cos(- ) = cos cos + sin sin Úkol: Použijte právě dokázanou identitu iv) a znalost o sudosti, lichosti goniometrických funkcí a dokažte platnost iii) cos(+ ) = cos cos - sin sin výsledek

@186 L = sin(- ) = sin(+(-)) = sin cos(-) + sin(-) cos = = sin cos - sin cos = P Tím je dokázána identita ii) sin(- ) = sin cos - sin cos Zopakujme ještě jednou čtyři vzorce, které je žádoucí se naučit zpaměti: Součtové vzorce Pro každé a platí: i) sin(+ ) = sin cos + sin cos ii) sin(- ) = sin cos - sin cos iii) cos(+ ) = cos cos - sin sin iv) cos(- ) = cos cos + sin sin Úkol: Pomocí součtových vzorců vyjádřete sin a cos pomocí sin a cos. Výsledek zformulujte do matematické věty. výsledek

@191 Protože pro každé xr platí 0 x x a nikdy jinak. Úkol: Vypočtěte pomocí dokázaných vzorců následující výrazy a) cos(/6 x) cos(/6 + x) b) sin(/4 + x) sin(/4 x) c) sin 105 o d) cos (/1) výsledek

@194 Věta: Vzorce pro součty Pro každé x, y R platí x y x y i) sin x sin y sin cos x y x y ii) sin x sin y cos sin x y x y iii) cos x cos y cos cos x y x y iv) cos x cos y sin sin Úkol: Mají-li obě strany smysl, dokažte, že platí tgx tgy tg( x y) 1 tgx tgy výsledek

@159

@161 Ať se vám to líbí nebo nelíbí, ať máte kalkulačku nebo počítač vždy při ruce, některé hodnoty je nutné znát zpaměti. Následující tabulku se zpaměti naučte, nebudete litovat. stupně 0 o 30 o 45 o 60 o 90 o radiány 0 /6 /4 /3 / 1 sin 0 cos 1 3 3 1 1 0 K zapamatování je to celkem snadné. Všimněte si, že jde o posloupnost zlomků, kde je ve jmenovateli stále číslo a v čitateli druhá odmocnina z čísel postupně 0, 1,, 3, 4. sin 0 1 3 4 U funkce cos jsou to táž čísla jen čteno zprava doleva. Úkol: Dokažte z definice (tj. z pravoúhlého trojúhelníka), že platí výsledek cos /4 = sin /4 =

@164

@166 kvadrant I. II. III. IV. interval (0; /) (/; ) (3/) (3/; ) sin x + + - - cos x + - - + tg x + - + - cotg x + - + -

@169 Úkol: Určete následující hodnoty. Využijte právě získané vzorce. a) sin 150 o b) cos 10 o c) sin 300 o d) cos 315 o e) sin 5 o f) cos 40 o výsledek

@17 Definice: Mějme funkci f, pro kterou je splněno tvrzení (její funkční hodnoty stále stejně opakují) p>0 xd f : f(x+p) = f(x) Pokud lze ze všech takových čísel p nalézt minimum, tj. nalézt nejmenší kladné číslo p>0 splňující definiční vztah, funkce se nazývá periodická a číslo p se nazývá perioda. Funkce sin a cos mají periodu (360 o ) Funkce tg a cotg mají periodu (180 o ), sin = sin(+k) cos = cos(+k) tg = tg(+k) cotg = cotg(+k) Příklad: Určete hodnotu cos(1500 o ), tg(400 o ), cotg(-750 o ). Řešení: Nejprve se přesuneme do základního intervalu: přičítáním, odečítáním celočíselných násobků periody: pro sin a cos <0 o ; 360 o ) pro tg a cotg <0 o ; 180 o ) cos(1500 o ) = cos(1500 o 4.360 o ) = cos(60 o ) tg(400 o ) = tg(400 o 13.180 o ) = tg(60 o ) cotg(-750 o ) = cotg(-750 o + 5.180 o ) = cotg(150 o )

Pak případně převedeme úhel do I.kvadrantu, tj. <0 o ; 90 o >, musíme již sledovat znaménka cotg(150 o ) = - cotg(30 o ) Nakonec určíme hodnotu zpaměti, z tabulek, pomocí kalkulačky. Pomocí kalkulačky můžeme hodnoty získat přímo. Těžko však poznáme, jaký úhel to asi je, a pak mnoho úloh těží z přesných hodnot (viz tabulka), které z kalkulačky nedostaneme. cos(1500 o ) = cos(60 o ) = - 1/ tg(400 o ) = tg(60 o ) = sin(60 o )/ cos(60 o ) = (3/)/(1/) = 3 cotg(-750 o ) = - cotg(30 o ) = - cos(30 o )/sin(30 o ) = - (3/)/(1/) = -3 Úkol: Určete následující funkční hodnoty cos(70 o ) cos(1575 o ) sin(-385 o ) cotg(-3030 o ) sin(1380 o ) cos(-160 o ) výsledek

@175 průběh funkce sin a cos

@178 Vztahy (vzorce) mezi goniometrickými funkcemi Definice: Funkce sin, cos, tg, cotg se nazývají goniometrické funkce. Shrnutí: základní vztahy mezi goniometrickými funkcemi sin x tgx cos x cos x cotg x sin x sin x + cos x = 1 očividně platí cotg x = 1/tg x = tg -1 x => tgx. cotgx = 1 cos x sin( x ) sin x cos( x ) nebo ve stupních cos = sin( + 90 o ) sin = cos( - 90 o )

@181 Součtové vzorce Poznámka: Vzdálenost dvou bodů v soustavě souřadnic se vypočítá na základě Pythagorovy věty. 1 a1 ) ( b ) AB ( b a

@184 Máme dokázáno pro každé a platí cos(- ) = cos cos + sin sin a víme, že sinus je lichý sin(-x) = - sin x a cosinus je sudý cos(-x) = cos x L = cos(+ ) = cos(- (-)) = cos cos(-) + sin sin(-) = Tím je dokázána identita = cos cos - sin sin = P iii) cos(+ ) = cos cos - sin sin Úkol: Již víme, že platí sin(x - /) = - cos x cos(x - /) = sin x. Ověřte to podle iv) a dokažte, že také platí výsledek

@187 Věta: dvojnásobný úhel Pro každé a platí i) sin = sincos ii) cos = cos - sin Řešení: i) L = sin = sin(+ ) = sin cos + sin cos = sincos = P ii) L = cos = cos(+ ) = cos cos - sin sin = cos - sin = P Úkol: Dokázali jsme, že pro každé x platí sin( x ) cos x sin( x ) cos x Platí také cos( x ) sin x? cos( x ) sin x ano ne

@19 Vypočtěte pomocí dokázaných vzorců následující výrazy a) cos(/6 x) cos(/6 + x) = sin x - stačí použít součtové vzorce L = [cos(/6) cosx + sin(/6) sinx] [cos(/6) cosx - sin(/6) sinx] = = sin(/6) sin x = sinx = P b) sin(/4 + x) sin(/4 x) = sinx - stačí použít součtové vzorce c) sin 105 o = (6 + )/4 - rozložíme na známé hodnoty 105 o = 60 o + 45 o L = sin 105 o = sin(60 o + 45 o ) = sin 60 o cos 45 o + sin 45 o cos 60 o = = 3/. / + /. 1/ = (6 + )/4 d) cos (/1) = ( + 6)/4 - rozložíme na známé hodnoty /3 /4 = /1 L = cos (/1) = cos(/3 /4) = cos(/3) cos(/4) + sin(/3) sin(/4) = = 1/. / + 3/. / = ( + 6)/4 = P NEBO použijeme vzorce pro poloviční úhel, neboť /1 = (/6)/ a I. kvadrantu je cos(/1) > 0 a proto můžeme přidat absolutní hodnotu bez problémů L cos( ) 1 cos( ) 1 1 cos( 6) 1 3 4 3 3 Tím jsme mimoděk dokázali, že platí Úkol: Dokažte, že pro každé a platí 3 4 6 i) sin(+ ) + sin( ) = sin cos ii) sin(+ ) sin( ) = cos sin iii) cos(+ ) + cos( ) = cos cos iv) cos(+ ) cos( ) = - sin sin výsledek

@195 Máme dokázat, že platí tgx tgy tg x y) 1 tgx tgy (, pokud mají obě strany smysl (tzn. není-li ve jmenovateli zlomku nula a hodnoty funkce tg jsou konečné). Řešení: K úpravě použijeme součtové vzorce a vztahy mezi goniometrickými funkcemi sin( x y) sin xcos y sin ycos x L tg( x y) cos( x y) cos xcos y sin xsin y sin xcos y sin ycos x cos xcos y( ) cos xcos y cos xcos y tgx tgy P sin xsin y cos xcos y(1 ) 1 tgx tgy cos xcos y Úkol: Víte, že platí (; 3/), (/; ), cotg = 1/5 a sin = 15/17. Určete tg( - ). výsledek

@197 Víte, že platí (/; ), (0; /), sin = 3/5 a cotg = 8/15. Určete cos(- ). Tedy úhel je ve II. kvadrantu a je v I. kvadrantu (toto ovlivňuje znaménka). Máme určit cos( - ) = cos cos + sin sin. sin = 3/5 známe, zbývá určit cos sin a cos cos = 1 sin = (1 - sin )(1 + sin ) = (1-3/5)(1 + 3/5) = 4 /5 Pro správné odmocnění musíme uvážit, že je ve II. kvadrantu a tam je cos záporný, tedy cos = -4/5 Dále platí (na začátku této kapitoly jsme to dokázali) 1 + tg x = cos - x, tedy cos = 1/(1 + tg ) = 1/(1 + 1/cotg ) = 1/(1 + 15 /8 ) = 8 /17 a proto cos = 8/17 sin = 1 cos a je v I. kvadrantu => sin = 15/17 Už máme všechno a tak zbývá závěrečný výpočet cos( ) = 13/85 KONEC LEKCE