Stanovení optimální varianty rekultivace



Podobné dokumenty
Deskriptivní statistika 1

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

Závislost slovních znaků

Vzorový příklad na rozhodování BPH_ZMAN

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

Základní požadavky a pravidla měření

3. Lineární diferenciální rovnice úvod do teorie

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

IAJCE Přednáška č. 12

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

12. N á h o d n ý v ý b ě r

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

2. Náhodná veličina. je konečná nebo spočetná množina;

6. Posloupnosti a jejich limity, řady

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2011, ročník XI, řada stavební článek č.

Statistika pro metrologii

P2: Statistické zpracování dat

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

PE 301 Podniková ekonomika 2. Garant: Eva KISLINGEROVÁ. Téma Metody mezipodnikového srovnávání. Téma 12. Eva Kislingerová

1.3. POLYNOMY. V této kapitole se dozvíte:

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Iterační metody řešení soustav lineárních rovnic

2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II

Příloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb

I. Výpočet čisté současné hodnoty upravené

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

Náhodný výběr 1. Náhodný výběr

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Úloha II.S... odhadnutelná

Pravděpodobnostní modely

6. FUNKCE A POSLOUPNOSTI

1.2. NORMA A SKALÁRNÍ SOUČIN

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

Modelování jednostupňové extrakce. Grygar Vojtěch

523/2006 Sb. VYHLÁŠKA

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

Sekvenční logické obvody(lso)

MATICOVÉ HRY MATICOVÝCH HER

23. Mechanické vlnění

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje Rychlost pracovního mechanismu

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Téma: 11) Dynamika stavebních konstrukcí

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

2. Finanční rozhodování firmy (řízení investic a inovací)

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

1. Základy počtu pravděpodobnosti:

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Odhady parametrů 1. Odhady parametrů

Komplexní čísla. Definice komplexních čísel

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

Úloha III.S... limitní

1. Měření ve fyzice, soustava jednotek SI

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy

Pravděpodobnost a aplikovaná statistika

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti

Geometrická optika. Zákon odrazu a lomu světla

REGRESNÍ DIAGNOSTIKA. Regresní diagnostika

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

U klasifikace podle minimální vzdálenosti je nutno zvolit:

1 Základy Z-transformace. pro aplikace v oblasti

2 STEJNORODOST BETONU KONSTRUKCE

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 2

definované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12

MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ

1. Základy měření neelektrických veličin

Pojem času ve finančním rozhodování podniku

8.2.1 Aritmetická posloupnost I

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

3. DIFERENCIÁLNÍ ROVNICE

Matematika I, část II

1 ROVNOMĚRNOST BETONU KONSTRUKCE

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv

13 Popisná statistika

6. P o p i s n á s t a t i s t i k a

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

Předmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE

Zhodnocení přesnosti měření

Středoškolská technika 2015 ŘEŠENÍ DOKONALÉHO TVARU MOSTNÍHO NOSNÍKU Z HLEDISKA POTENCIÁLNÍ ENERGIE - ŘETĚZOVKA

Spojitost a limita funkcí jedné reálné proměnné

STATISTIKA PRO EKONOMY

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

UŽITÍ MATLABU V KOLORIMETRII. J.Novák, A.Mikš. Katedra fyziky, FSv ČVUT, Praha

Transkript:

Staoveí optimálí variaty rekultivace Použití multikriteriálí aalýzy pro hodoceí růzých rekultivačích postupů v krajiě staoveí optimálí variaty rekultivace Dokumetace Teoretický základ problematiky Pokyy pro uživatele Pavel Kovář, Jakub Štibiger, Mila Kasl Praha, 2011

Tato dokumetace včetě programového vybaveí byla zhotovea v rámci gratového projektu pro MZe ČR s ázvem: Optimalizace rekultivačích a saačích postupů pro těžbou devastovaé krajié celky s důrazem a ochrau vod a ekologickou stabilitu pod číslem QH 92091 Koordiátor: prof. Ig. Pavel Kovář, DrSc. Řešitelé: prof. Ig. Pavel Kovář, DrSc., doc. Ig. Jakub Štibiger, CSc., Ig. Jitka Pešková, Ig. Mila Kasl Česká zemědělská uiverzita v Praze Fakulta životího prostředí katedra biotechických úprav krajiy

Obsah 1 ÚVOD... 4 2 TEORETICKÝ ZÁKLAD... 4 2.1 ÚVOD DO PROBLEMATIKY... 4 2.2 MOŽNOSTI VZÁJEMNÉHO POSUZOVÁNÍ NAVRHOVANÝCH VARIANT ZPŮSOBŮ REKULTIVACE... 5 2.3 URČOVÁNÍ KVALITATIVNÍCH MULTIPLIKÁTORŮ (VYHODNOCOVACÍCH FUNKCÍ A KŘIVEK)... 10 2.4 URČOVÁNÍ KVANTITATIVNÍCH MULTIPLIKÁTORŮ FULLEROVA METODA PÁROVÉHO POROVNÁNÍ... 14 3 POUŽITÍ PROGRAMU A UKÁZKA APLIKACE NA PŘÍPADOVÉ STUDII... CHYBA! ZÁLOŽKA NENÍ DEFINOVÁNA. 4 LITERATURA... 20 3

1 Úvod Cílem tohoto programového vybaveí je vzájemé posuzováí a hodoceí růzých způsobů rekultivačích postupů variat rekultivace, se zaměřeím a staoveí optimálí variaty a se zaměřeím a ochrau vodího režimu v krajiě. Je vhodé všude tam, kde se abízejí růzé rekultivačí postupy a zájmové lokalitě. Má sloužit ižeýrské vodohospodářské praxi, projekci a avrhováí rekultivačích opatřeí v krajiě postižeé těžbou erostů. 2 Teoretický základ 2.1 Úvod do problematiky Použití multikriteriálí aalýzy je vhodé všude tam, kde se abízejí růzé rekultivačí postupy a zájmové lokalitě. V dalším textu je zpracová teoretický základ problematiky, která je založea a hodotícím procesu vzájemého posuzováí odlišých způsobů rekultivace avrhovaých variat. Jedotlivé avrhovaé variaty byly uvažováy v zájmové lokalitě Radovesické výsypky a byly posuzováy podle vybraých relevatích kritérií v souladu s pricipy multikriteriálí aalýzy. Jedá se zde o otevřeý dyamický systém, který může být v průběhu rozhodovacího procesu upravová a kalibrová tak, aby se a základě výsledků citlivostí aalýzy uvažovaly eje veškeré výzamé charakteristiky, ovlivňující proces hodoceí, ale také aby se odstraily v maximálí možé míře všechy subjektiví vlivy. Jsou dáy určité kokrétí ohraičeé oblasti v krajiě, které jsou devastovaé v důsledku povrchové těžby, jejíž dopady se pak egativě promítají do všech základích složek krajiy. Mezi priority jedotlivých avrhovaých rekultivačích a saačích postupů patří obova a tvorba ových zemědělských pozemků, dále pak lesích kultur, vodích ploch a toků, a také vytvářeí území pro rekreačí a komerčí účely. Velmi výzamou rekultivačí čiostí je vytvářeí podmíek pro zachováí a ové osidlováí rekultivovaých ploch typickými rostliými a živočišými společestvy. Hodoceí avrhovaých způsobů rekultivace variat a vodí režim krajiy a ochrau životího prostředí, představuje typickou stadardí úlohou multikriteriálí rozhodovací aalýzy s cílem určit ejvýhodější (optimálí) variatu (způsob rekultivace) pro vytvořeý soubor kritérií. Po metodické stráce může být tato úloha řešea do určité míry libovolě při růzé míře uplatěí subjektivího faktoru. Z hlediska požadavku dosažeí co ejvětší míry objektivizace podkladů pro rozhodovací proces, musí být vliv subjektu (jedotlivce) v maximálí možé míře elimiová. 4

Teto cíl je možé split uplatěím axiomatické teorie kardiálího užitku MUT s využitím vhodé formalizovaé metodiky, která umoží staovit a vyjádřit číselé hodoty souhré fukce užitku U. Souhrá fukce užitku je určováa jako moha rozměrý vektor v závislosti a počtu použitých kritérií (resp. ukazatelů kritérií, parametrů, idikátorů, charakteristik aj.), a tomu odpovídajícímu počtu dílčích trasformačích fukcí užitku. Společou zásadou pro uplatěí vícekriteriálích metod zůstává požadavek jedozačě, zřetelě a techicky popsat, defiovat a formulovat jedotlivé uvažovaé způsoby rekultivace, resp. variaty řešeí ve srovatelých parametrech. Z této obecé zásady vyplývá, že základím předpokladem pro vícekriteriálí aalýzu a rozhodováí je vypracováí (existece) avrhovaého záměru. V tomto případě se jedá o problém hodoceí avrhovaých způsobů rekultivace (resp. rekultivačích a saačích postupů) a vodí režim a ochrau životího prostředí ve více variatách, tj. v omezeých a ohraičeých oblastech v časovém období předprojektové studie (pre-project studies). Tyto variaty V i (pro i = 1, 2,...,m) se musí od sebe lišit v hodoceí celospolečeských dopadů v souladu s axiomatickou teorií kardiálího užitku MUT. Teorie MUT je založea a filozofickém předpokladu, že souhrá kvalita vodího režimu a životího prostředí (jež je ale charakterizováo odpovídajícími složkami krajiy) pro daý území regio je určea podstatými (kardiálími) vlastostmi jedotlivých složek vodího režimu a životího prostředí, jejichž kvalitu lze posoudit dostupými aalytickodiagostickými ukazateli. Soubor těchto dílčích ukazatelů bude vytvoře pomocí katalogu kritérií (ukazatelů, zaků), u kterých se hodoty staoví exaktě aalyticky (tz. apř.: výpočtem, změřeím), ebo s využitím vědeckých základů progostiky a expertím odhadem. Růzorodost vlastostí však běžě zemožňuje převedeí a společé hodotové měřítko, což aopak umožňuje formalizovaý pracoví postup s využitím vhodě zvoleých trasformačích fukcí. 2.2 Možosti vzájemého posuzováí avrhovaých variat způsobů rekultivace Předpokládá se, že základí kocepce metody Totálího Ukazatele Kvality Prostředí (Říha, 1987) bude uplatěa pro řešeí problematiky vlivu jedotlivých způsobů rekultivace a saačích postupů a vodí režim, ekologickou stabilitu krajiy a ochrau životího prostředí. Pro tuto metodiku v souvislosti s vodím režimem (ARCADIS 2004) a ochraou životího prostředí mají jedotlivé parametry ásledující výzam: 5

V i P y - variata řešeí pro i = 1, 2,..., m, kde m je celkový počet předem vypracovaých odlišých posuzovaých variat; - podstatý parametr, který lze použít jako kritérium pro kvalitativí posouzeí, když y = 1, 2,..., z, kde z je celkový počet vybraých kritérií; Pj (y) - ukazatel kritéria jako hodota aalyticky zjištěého popř. odhadutého parametru pro j = 1, 2,...,..., (y), kde je celkový počet ukazatelů v objektivích či subjektivích jedotkách jako j-tý dílčí důsledek variaty V i, ebo pro zjedodušeí zkráceě P j ; P - celkový důsledek Vi, pro který je P = [ P 1... P ]; wj - váhový či kvatitativí multiplikátor, tj. relativí výzam vyšetřovaého P j (y) celého souboru j = 1,2,..., (y); v rámci Uj- dílčí fukce užitku jako kvalitativí multiplikátor mající charakter trasformačí fukce (y) (vyhodocovací křivky) f j (P j ), abývající hodoty v itervalu 0 U j 1; U i - celková fukce užitku. Současě se předpokládá, že pro daý počet variat V (y) všechy hodoty P j a U j, pro které platí vztah: i a pro možiu idexů j lze staovit U j = f j P j (y) (1) Který vyjadřuje matematickou formu dílčí fukce užitku. Celková fukce užitku U je závislá a celkovém důsledku P a pro její kostrukci slouží možia dílčích fukcí užitku Uj. Předpokládá se dodržeí podmíek preferečí a užitkové ezávislosti ukazatelů kritérií f j (P (y) j ). Dále se vychází z předpokladu platosti podmíky, že pro celý soubor posuzovaých variat V j je: w j = kostata (2) Hodota souhré fukce pro určitou variatu je dáa hodotou moha rozměrého vektoru U i podle schéma a obr. 1 a vztahu: U i = U j j=1 w j (N) (3) Uvedeý tvar fukce lze použít pouze v tom případě, že pro možiu wj platí 6

0 w j (N) 1 (j = 1, 2,, ) (4) a zároveň také (N) w j = 1 j=1 (5) Obr. 1: Schéma pro kvatifikaci souhré fukce užitku U pomocí dílčích fukcí U j Protože je určeí potřebých parametrů metodou postupé iterace při velkém počtu P j (y) pracově áročé, doporučuje se dodržet podmíky defiovaé rovicemi (4) a (5) a omezit se a používáí výhodého aditivího tvaru podle rovice (3). V těchto případech je však třeba důsledě parametr w j kvatifikovat metodou ormovaé stupice. Metoda se opírá o katalog idividuálě vybraých ukazatelů kritérií P (y) j. Výsledá hierarchizace souboru V i (rakig) je určea sestupým pořadím podle vyčísleých umerických hodot vektoru U i podle zásady čím vyšší tím lepší!. Jiak řečeo celospolečesky maximálí prefereci získává takové řešeí (scéář, variata), pro které vektor U i abývá ejvyšší hodoty. Rovice (3) defiuje aditiví model, který lze použít pro řešeí výhradě za předpokladu platosti uvedeých podmíek. V opačém případě je uto použít multiplikativí model. Výraz w vyjadřuje tzv. váhu ormalizovaou. j (N) Za předpokladu, že ukazatelé kritérií P, P,..., P 1 2 (y) závislost, lze multiplikativí model vyjádřit vztahem: eprokazují vzájemou užitkovou 7

U i = U j w j + K U j j=1 kde j ++ > j + > j. j=1 j + >j U j + + w j w j + + K 2 U j j=1 j + >j j + >j ++ + w j w j + w j ++ + + K 1 U 1 U 2 U w 1 w 2 w U j + U j ++ (6) Jestliže se obě stray rovice vyásobí kostatou K a připočte se 1, je pro rovici (6) ekvivaletí vztah 1 + K U i = (1 + K U j w j ) Fukce U j abývá hodoty v itervalu <0;1> a kostata K je řešeím rovice j= 1 + K = (1 + Kw j ) j= Pozámka: Pricip disjukce je omezeí, že určité hledisko - dílčí aspekt - esmí být hodoceo vícekráte. Při sestavováí katalogu kritérií je třeba sledovat vzájemou preferečí a užitkovou ezávislost kritérií. Současě se obecě uzává požadavek, že prostor hodoceí musí být úplý a disjuktí. Striktí dodržeí tohoto požadavku je možé a žádoucí u homogeích techických (popř. ekoomických) úloh; aopak je obtížé a zpravidla jej elze dodržet u heterogeího komplexího systému životího prostředí a ekoomické aktivity. (y) Podmíka užitkové ezávislosti parametrů P j je splěa pouze tehdy, platí-li -1<K<0 pro případ w j > 1 a K > 0 pro případ w j < 1. Numerické řešeí rovice (8), tj. alezeí reálého kořee K * v itervalu (-1, 0) ebo (0, + ) se řeší iteračí metodou. Pracoví postup pro přesý výpočet hodoty K je uvede v odboré literatuře, viz R. L. Keeey a H. Raiffa (1976). V případě, že K = 0, přechází rovice (6) a rovici (3) a multiplikativí model se trasformuje a aditiví. Současě je třeba mít a zřeteli, že mezi jedotlivými kritérii mohou existovat čtyři zásadě odlišé druhy iterakcí (komplemetarita, kokurece, idiferece, variabilita). (7) (8) 8

Poteciálí vlastosti jedotlivých variat V i pro i = 1,2,..., m lze posoudit z hlediska (y) časového faktoru, tj. P j v průběhu moitorigu hodotícího procesu od času t = 0 do t = T. Připouští se aditiví vztah: P (y) j = P (y) j (0) + P (y) j (T) což se použije jako vstup do výchozí rovice. (9) Při aplikaci formalizovaé metody se využívá plá šíře zalostí a pomocých ástrojů z oblasti systémového ižeýrství, multikriteriálí aalýzy, rizikové aalýzy, citlivostí aalýzy, zvládáí ejistoty, prediktivích metod, teorie rozhodováí apod. Běžě se předpokládá zalost a aplikace růzých metod pro určováí relativí důležitosti kritérií vč. expertích systémů, orgaizováí a vyhodoceí akety respodetů. S výhodou se uplatňuje modifikovaá metoda DELFY. Plé využití výhod teorie MUT předpokládá defiováí hypotetických a reálých variat záměru, umožňující zavedeí referečí úrově pro proces rozhodováí. Náročější a origiálí (původí) část metody tvoří geerováí kvalitativích multiplikátorů (vyhodocovacích křivek), pro které existují tři růzé pracoví způsoby. Metoda TUKP byla od doby svého vziku použita mohoásobě pro výzamé meziárodí, celostátí a krajské úkoly, jak dokládají dostupé iformace a iteretu. Pozámka: Počátečím krokem aplikace metody TUKP pro aalýzu hodotícího procesu vlivu agrárích valů a vodí režim je sestaveí tabulky vstupích údajů, tj. pro posuzováí ohraičeých oblastí s agrárími valy variaty V i ). Variaty se číselě kvatifikují hodoty ukazatelů kritérií Pj. Tím se vytvoří katalog kritérií a ukazatelů, který se ěkdy ozačuje jako referečí katalog. V případech, kdy je použita verbálě-umerická stupice (relativí jedotky [RJ]), je kvatifikace prováděa formalizovaou verbálě umerickou stupicí, kterou řešitel předem závazě defiuje v tabulkové úpravě. Výsledkem prvího kroku řešeí je tzv. maticová tabulka vstupích údajů pro možiu V i a parametry P j. 9

2.3 Určováí kvalitativích multiplikátorů (vyhodocovacích fukcí a křivek) Plé využití výhod teorie MUT z hlediska hodoceí agrárích valů a vodí režim předpokládá defiováí hypotetických a reálých variat záměru, umožňující zavedeí referečí úrově pro proces rozhodováí. Náročější a origiálí (původí) část metody TUKP tvoří geerováí kvalitativích multiplikátorů (vyhodocovacích křivek), pro které jsou popsáy tři růzé pracoví způsoby. Obr. 2: Prostor možých trasformací vymezeých křivkami B a D pro přímou fukčí závislost a křivkami A a C pro epřímou fukčí závislost Praktická aplikace předcházejících pozatků spočívá v substituci veliči x j P j a f j(x j ) U j. Fukce U j plí v modelu úlohu kvalitativího multiplikátoru. V grafickém zobrazeí je tato fukce záma jako vyhodocovací křivka (ratig curve). Protože míra užitku je relativí, lze ke staoveému počátku stupice U j přiřadit libovolou hodotu ukazatele P j. Je možé ormovat dílčí fukce užitku vztahy: U i = f i (P 0 i ) = 0 U i = f i (P + (j = 1,2,, m) (10) i ) = 1 takže oborem kvalitativích multiplikátorů potom je iterval <0;1> a jejich defiičím oborem pro případ pozitiví závislosti je < P o + j ; P j > ; pro případ egativí závislosti < P + o j ; P j >. Ve většiě případů lze vystačit s jedoduchými typy trasformačích fukcí včetě trasformace lieárí. Možost volby a způsob dedukce trasformačích fukcí dílčího užitku je možý podle růzých (odlišých) postupů. Uplatěí reálé trasformačí fukce v souladu s předpokládaou užitostí (absolutě chápaými vlastostmi) posuzovaého parametru. Aplikace mootóí trasformačí fukce podle dříve zavedeé klasifikace. 10

Kostrukce trasformačí fukce ze zadaých porovávaých hodot, tj. z matice vstupích údajů pro celý soubor posuzovaých variat a daé kritérium. Pro úplost se připomíá, že v rámci kokrétí úlohy lze všechy uvedeé pracoví postupy kombiovat. Pro přímou závislost trasformace {+} je zvole vztah: U = P k prům P mi P max P mi (11a) kde středí hodota P prům je defiováa jako P prům = 0,5(P max - P mi). Pro epřímou závislost trasformace {-} je zvole vztah: U = 1 P k prům P mi P max P mi kde je P prům průměrá hodota možiy ukazatelů P j ; k expoet; U j = f j (P j ) (11b) V domácí praxi je ejrozšířeější třetí pracoví postup - odvozeí komparativí trasformačí fukce. Opírá se výhradě o zadaé vstupí údaje pro celý posuzovaý soubor variat. Z tohoto důvodu je zvláště vhodý pro ryze techicko-ekoomické problémy aalýzy a rozhodováí, kde eí možé ebo uté respektovat ekologická, hygieická a jiá podobá ormativí omezeí. Pro vyřešeí kokrétí úlohy musí být pro každý ukazatel realizová jedorozměrý trasformačí vztah k dosahovaé užitečosti. Aby mohl být vymeze trasformačí prostor podle obr. 3, je třeba obecě řešit tyto otázky: o zda jde o trasformaci přímou (viz typ kritéria výosového a zásadě pozitivích efektů), aebo o zda jde o trasformaci epřímou (viz typ kritéria ákladového a zásadě egativích efektů, apř. vlivem záboru území aj.), o v jakém itervalu < mi; max > se trasformace uskutečí, o v jakých jedotkách bude ukazatel kritéria měře (vyjádře), o jaký tvar bude mít trasformačí fukce. 11

Počátečí rozvaha má mít povahu braistormigu, viz tab. 1. Vlastí řešeí spočívá ve čtyřech postupých krocích. V rámci prvího kroku je ejdříve posouzea závislost fukčího vztahu U j = f j(p j ), podle čleěí jedak a přímou závislost (tj. zásada: čím vyšší tím lepší ), jedak pro epřímou závislost (tj. zásada: čím vyšší tím horší ). Druhý krok směřuje k přiřazeí okrajových bodů stupice (měřítka) pro jedotlivé ukazatele Pj. Na základě dříve provedeých testů citlivosti bylo ověřeo, že přiřazeí hodot pro počátek i koec a x-ové ose souřadic emůže být libovolé. Je uté zabráit vziku ulových hodot v průběhu trasformace podle obecého vztahu U j = f j(p j ), jiak by se částečě (esoustavě) vyulovaly ěkteré hodoty kvatitativích multiplikátorů. Teto případ astává vždy, když je zvole počátek stupice pro přímou závislost P j poč = P j mi, kde P j mi je ejižší hodota P j ze všech variat V i. Obdobě totéž platí pro volbu Pj ko = P j max u epřímé závislosti, kde P j max je ejvyšší hodota parametru P j ze všech variat V i. Z azačeého důvodu autor metody TUKP doporučuje určovat počátek (koec) a x-ové ose stadardě z desetiprocetí hodoty rozdílu P j max - P j mi azvaé jako okrajová diferece trasformačího prostoru D(P j ) a defiovaé vztahem: D P j = 0,10 (P j max P j mi ) (12) Pro počátečí bod stupice platí: P j poč = P j mi D(P j ) (13) a obdobě je urče kocový bod vztahem: P j ko = P j max + D(P j ) (14) Kde je P poč počátek trasformačího prostoru; Pko koec trasformačího prostoru. 12

Trasformace je prováděa v pravoúhlém souřadicovém systému při substituci veliči x j P j a f j (x j ) = y j U j. Trasformačí prostor je vymeze a x-ové ose pomocí extrémích hodot parametrů, tj. P j max - P j mi a pomocí okrajové diferece D(P j ). Tam, kde Obr. 3: Vymezeí počátečího a kocového bodu měřítka trasformačího prostoru stupice může začít ulou, tj. případ kardiálí poměrové stupice s absolutí ulou, tedy za předpokladu, že stupice bude v plém rozsahu využita, lze volit P j poč = 0. Výsledkem druhého kroku je určeí hodot D(P j ), P j poč a P j ko pro všechy parametry. Třetí krok spočívá v defiováí vlastího fukčího vztahu trasformace. Vychází ze zadaých vstupích (reálých) hodot ukazatelů P j pro všecha V i a vypočítaé průměré hodotě P j se přisoudí středí hodota dílčí fukce užitku tj.: prům U j = f j P j prum = 0,5 (15) Výsledkem třetího kroku je určeí třetího bodu trasformačí fukce. S využitím dříve staoveých okrajových bodů stupice lze přistoupit k závěrečému čtvrtému kroku, tj. defiováí dílčích trasformačích fukcí. Čtvrtý krok spočívá ve vhodé aproximaci trasformačího vztahu podle dříve uvedeých zásad, ejlépe pro mociý typ fukce. Je třeba soustavě věovat pozorost uvážlivé volbě (staoveí) počátku a koce stupice pro každý dílčí ukazatel P j a tím vymezeí trasformačího prostoru. Igorace okrajové diferece D(P j ) může vést k vyřazeí i takových ukazatelů, kterým byla přisouzea vysoká relativí důležitost. Existuje riziko, že avaturistickou volbou okrajových podmíek lze dospět k rozdílé hierarchizaci posuzovaých variat. 13

2.4 Určováí kvatitativích multiplikátorů Fullerova metoda párového porováí Druhým a zcela samostatým pracovím procesem je určováí kvatitativích multiplikátorů (váhy). V souboru ukazatelů kritérií emají všechy prvky možiy P j stejý relativí výzam ve vztahu ke kokrétímu posuzovaému problému. Teto relativí, vzájemě poměrý výzam - důležitost - se zjedodušeě ozačuje jako váha kritéria w j (parameter weights). Váha poskytuje iformaci o relativí důležitosti (vlivu) jedotlivých ukazatelů kritérií v rámci daé možiy P 1, P 2,, P. Existují růzé doporučovaé formalizovaé metody pro určeí váhy kritérií (weigted outcomes) včetě důvodů pro dodržeí pricipu rovoceosti kritérií (uweigted outcomes). U každé existující metody se epřízivě projevuje vliv subjektivího cítěí a růzý postoj experta k řešeému problému. Z tohoto důvodu se uzávají předosti metody párového hodoceí (The Paired Compariso Techique), kterou publikoval D. Fuller, zejméa ve spojeí s týmovou expertí metodou apod. Náročější metodou párového hodoceí je metoda Saatyho, která vyžaduje avíc jako vstupí iformaci od hodotícího subjektu ještě kvatifikaci itezity preferece jedotlivých kritérií, ejlépe pomocí zvoleého deskriptoru. Kromě uvedeých metod existuje i jiá skupia metod párového srováváí parametrů (variat) založeých a tzv. prazích citlivosti, viz metody AGREPREF, ELECTRA, APROXIMACE MLHAVÉ RELACE. Tyto metody obvykle evedou k jedozačému uspořádáí pořadí variat pro rozhodovací proces, ale pouze k rozkladu souboru variat a ěkolik idiferetích tříd. Dalším výzamým obohaceím kategorie DSS byl vývoj aalytického hierarchického procesu AHP, který autorizoval Thomas Saaty (1977; 1990). Metodu párového porováváí kritérií obohatil o subjektiví měřeí vzájemé vzdáleosti kritérií. Bez ohledu a určité výhrady se teto kocept stal zásadím přístupem pro hodoceí parametru relativí důležitosti, tj. váhy kritéria. Saatyho metodu lze rozdělit do dvou kroků. Prví krok je aalogický metodě párového srováváí, kdy se zjišťují preferečí vztahy dvojic kritérií uspořádaých v tabulce. Zde se však kromě směru preferece dvojic kritérií určuje také velikost této preferece, která se vyjadřuje určitým počtem bodů ze zvoleé bodové stupice. Ta se určuje a základě bodovací stupice, která obsahuje deskriptory. Saaty přiděluje počet bodů jedotlivým kritériím ásledově: 14

o 1 (kritéria jsou svým výzamem rovoceá), o 3 (prví kritérium je slabě výzamější ež druhé), o 5 (prví kritérium je dosti výzamější ež druhé), o 7 (prví kritérium je evidetě výzamější ež druhé), o 9 (prví kritérium je absolutě výzamější ež druhé. Vyčísleím se obdrží pravá horí trojúhelíková část matice velikostí preferecí (Saatyho matice relativích důležitostí). Vstupy do rozhodovacího procesu tvoří reálé variaty V i a hledisko hodoceí, tj. deklarace cílů ve smyslu dodržeí souhrého kritéria. Současě je třeba kostatovat, že všem metodám je společé úsilí přetrasformovat čistě kvalitativí uspořádáí důležitosti parametrů a uspořádáí kvatitativí. Současé pozáí však dosud takovou trasformaci v plé míře eumožňuje. Z tohoto důvodu ve všech případech výstupů jde výhradě o přibližě kvatitativí veličiy. Metody pro určováí parametru skupi, tj. a o metody pro ezávislé staoveí vah, kdy hodoceí provádí jediec ebo čleové týmu ezávisle a sobě; o metody pro závislé (okolím ovlivěé) staoveí vah, kdy hodoceí provádí čleové týmu při současém kotaktu mezi sebou (viz braistormig, Delfská metoda). V oblasti aplikace podpůrých systémů rozhodováí DSS se doporučuje věovat hlubší pozorost ejméě šesti metodám, tj. metodě o pořadí; o alokačí; o zámkovací; o párového hodoceí; o duálí; o týmového expertího posouzeí. U prvích pěti metod lze pracovat idividuálě ebo v kolektivu expertů. Podrobý popis uvedeých metod je podrobě uvede v dostupé literatuře. Pro staoveí relativí důležitosti parametrů ŽP se v domácí praxi postupě uplatňuje metoda párového hodoceí (porováí), kterou publikoval D. Fuller (1967). Jestliže přichází do w j lze rozdělit v zásadě do dvou 15

úvahy parametrů, potom lze sestavit jejich kombiaci 2. třídy. Celkový počet dvojic je /2 ( 1), který se sestavuje ejčastěji do tabulky tzv. Fullerova trojúhelíku podle ásledujícího schématu: 1 1 1... 1 1 2 3 4... (-1) 2 2... 2 2 3 4... (-1) 3... 3 3 4... (-1).................. (-1) Formálí úpravy mohou být růzé; při velkém počtu se z úsporých důvodů pracuje v jedořádkovém trojúhelíku, ebo se volí tabelárí forma. Mechaismus pracovího postupu spočívá ve vzájemém porováí všech dvojic, kde lze zpravidla sado posoudit ve vztahu k deklarovaému cíli, který parametr je více ebo méě výzamý. Preferovaý parametr se ozačí podtržeím ebo kroužkem a zjišťuje se celkový počet získaých předostí, teto počet určuje váhu kritéria w j.výpočet ormovaé váhy (N) kritéria w j je shodý s metodou pořadí jak pro idividuálí výpočet, tak při práci v kolektivu expertů. Kotrola správosti výpočtu vychází ze skutečosti, že celkový úhr získaých preferecí je dá shora uvedeým vztahem /2(-1). Průměr posouzeých vah od většího počtu expertů vyhovuje Gaussovu ormálímu rozděleí. Za výhodu metody párového porováváí se pokládá sadé porováváí dvojic parametrů a možost připuštěí staoviska, že oba parametry jsou rovoceé, popř. esrovatelé. Mechaismus výpočtu evyžaduje předcházející trazitivitu pořadí a s výhodou lze řešeí spojovat s jiými metodami (alokace, bodováí aj.). V oblasti rozhodováí tvoří model představu využíváí ryze demokratických zásad, kde výzam parametrů (ukazatelů kritérií) je hodoce podle pricipu každého s každým". Z tohoto důvodu má své odpůrce mezi igoraty formalizovaého hodoceí a zastáci ituitivího zamlžeého způsobu rozhodováí tuto metodu odmítají. 16

Pozámka: Pricip trazitivity je defiová požadavkem, aby základí struktura preferecí byla kozistetí. Lze jej formulovat ásledově: Nechť A, B a C jsou tři rozhodovací alterativy. Jestliže si posuzovatel vytvořil ějaké preferece v těchto alterativách, pak tyto preferece by měly být kozistetí v tomto smyslu: (i) Považuje-li posuzovatel alterativy A a B za idiferetí a stejě tak považuje za avzájem idiferetí alterativy B a C, pak by měl považovat za idiferetí i alterativy A a C; Symbolicky to lze vyjádřit A B A C B C (ii) (iii) Dává-li předost A před B a také B před C, pak by měl dávat také předost A před C; symbolicky A B A C B C Dává-li předost A před B a alterativy B a C považuje za idiferetí, pak by měl také dát předost A před C; symbolicky A B A C B C Neí-li možo v uvedeém kotextu ajít pohodlý kompromis, který zabezpečuje kozisteci preferecí, pak je lépe užívat při rozhodováí méě formalizovaých metod. Na základě dlouholetých praktických zkušeostí s realizací multikriteriálí aalýzy řešitel doporučuje aplikovat kombiovaý pracoví postup pro staoveí (kostrukci) relativí důležitosti kritérií duálí metodou ALO-FUL. Podstata duálí metody ALO-FUL spočívá ve dvou krocích řešeí, tj. v geerováí dvousložkové váhy ejdříve metodou alokace (1. krok) pro vymezeé hlaví skupiy kritérií w[kat] j (viz tzv. kategorie či hledisko) a ásledě ve skórováí výzamu kritérií (ukazatelů kritérií) jiou běžou metodou, apř. metodou pořadí, lépe metodou párového hodoceí (2.krok), uvitř těchto skupi kritérií. Název ALO-FUL je odvoze z obou použitých dílčích pracovích postupů stadardích řešeí (tj. ALO-kace a FUL-lerovy metody). Základím předpokladem pro použití tohoto formalizovaého postupu však je předem defiovaá soustava hledisek (kategorií), kde eí možá pozdější změa v zařazeí kritérií přemístěí do jié skupiy, a práce s týmem odboríků (ve smyslu využití týmové expertí metody a uskutečěí akety). 17

Podrobý popis metody uvedl a autorizoval J. Říha (2001). Výsledá ormovaá váha kritéria je defiovaá vztahem: w[kat] (N) j = w[kat](n) w[kat] j w[kat] j j kde w [KAT] j (N) je ormovaá váha kategorie a w [KAT]j V případě, kdy se stadardě provádí alokace sumy jedoho sta bodů mezi všechy defiovaé kategorie, je ormovaá váha kategorie w [KAT] (16) je eupraveá či surová váha (apř. počet bodů či získaých předostí podle D.Fullera) ukazatele kritéria j, v rámci uvažovaé kategorie (hlediska) KAT. (N) určea vztahem w[kat] (N) = w[kat] 100 (17) Zhodoceí výhod a evýhod duálí metody ALO-FUL se opírá o základí hodoceí obou mateřských metod, tj. o základí rysy metody alokace a metody párového hodoceí. Především to je možost explicitího staoveí relativí důležitosti kategorií (hledisek) avzájem mezi sebou, dále vyloučeí ežádoucího vlivu růzého počtu kritérií (ukazatelů) v jedotlivých kategoriích tím, že o váhu kategorie se vždy dělí rovým dílem odpovídající možia ukazatelů kritérií; párové hodoceí výzamu uvitř kategorie se týká podobých a tím (do určité míry) vzájemě logicky dobře porovatelých ukazatelů (parametrů) kritérií. Saději lze respektovat požadavky systémové teorie pro multikriteriálí aalýzu komplexích soustav, tj. pricip disjukce pro kategorie (viz 1. krok řešeí) a pricip trazitivity pro párové hodoceí ukazatelů kritérií (viz 2. krok řešeí). Pro přehledost, průhledost a v zájmu zachováí aditivosti úlohy je třeba pracovat s ormovaými vahami (uitized weigtig value), které se staoví ze vztahu: w j (N) = w j w j j (18) (N) kde podle rovice (5) musí platit Σ j w j = 1. Normováí obecě umožňuje ázorě posoudit těsost vztahu (odchylku) mezi vahami přisouzeými růzým ukazatelům. Jestliže úlohu řeší kolektiv expertů týmovým způsobem, je třeba staovit celkovou (průměrou) ormovaou váhu podle vztahu: 18

w (N) j = s k=1 w jk s w jk j=1 k=1 (19) kde w jk je celková váha j-tého parametru přisouzeá k-tým expertem, udává celkový počet parametrů, s začí celkový počet expertů. Na obr. 4 je zobrazeo sestupé pořadí diferecovaé váhy parametrů. Obr. 5 je vytvoře postupým vyášeím úhru předostí od mediáu střídavě a levou a pravou strau od ejvyšší do ejižší hodoty. Vrcholy sloupkového diagramu azačují obalovou (frekvečí) křivku pro tzv. ormálí rozděleí áhodých chyb, která musí mít charakteristický zvoovitý tvar (Gaussova křivka). Tím se prokazuje objektiví reprezetativost výsledku bez rušivého vějšího (cíleého) vlivu. Normalizovaá váha w(n) 0,12 0,1 0,08 0,06 0,04 0,02 0 Normalizovaá váha w(n) 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0 Obr. 4: Sloupkový diagram hierarchického uspořádáí relativí důležitosti kritérií Obr. 5: Symetrický sloupkový diagram rozděleí priorit relativí důležitosti kritérií Výsledé hodoceí a staoveé preferece jedotlivých, avrhovaých a posuzovaých způsobů rekultivace a saačích postupů, resp. variat, je vhodé prezetovat graficky pomocí přehledých diagramů se stručým kometářem. Kometář a avrhovaá doporučeí pro optimálí variatu (způsob rekultivace) by měla formou diskuse hodotit také ostatí variaty (způsoby rekultivace) v souvislosti s použitými kritérii a se získaými celkovými výsledky výše popsaého hodotícího procesu. 19

LITERATURA 3 Literatura Fuller D. 1967. Vést, ebo být vede. Naše vojsko, Praha, ČR Kovář P. Štibiger J. a kol. 2008. Metodika ávrhu a výstavby optimálí variaty protipovodňových a protierozích opatřeí (PPPO) pro zmírěí extrémích hydrologických jevů povodí a sucha v krajiě. Číslo gratu: NPV-Mze 2005. VRK1/TP3-DP6 (1G 577040). Výročí zpráva za r. 2008. ISBN 978-80-213-1600-3. Vydavatel: ČZU Praha, FŽP, KBÚK, ČR. Nijkamp P. 1980. Evirometal Policy Aalysis. Operatioal Methods ad Models. Chichester, Joh Wiley. Rektorys K. 1995. Přehled užité matematiky. ČSAV Praha, ČR Říha J. 1987. Multikriteriálí posuzováí ivestičích záměrů. SNTL Praha, 336 stra. Říha J. 1987. Voda a společost. SNTL/ALFA Praha (340 stra). Říha J. 2001. Posuzováí vlivů a životí prostředí. Metody pro předběžou rozhodovací aalýzu EIA. Vydavatelství ČVUT, 477 stra. ISBN 80-01-02353-2. Saaty L. T. 1977. A Scalig Method for Priorities i Hierarchical Structures. I: Joural of Mathematical Psychology 15, 1977, No.3, p. 234. Saaty L. T. 1990. The Aalytic Hierarchy Process. New York, Mc Graw-Hill. Štibiger J. 1990. Použití statisticko-grafického programového vybaveí pro vyhodocováí aměřeých hromadých dat v hydrologii a hydropedologii, jejich umerická a grafická iterpretace. Hydropedologický semiář, Praha 1990 Locus spol. s r.o., České Budějovice. 20