Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění: přímka reálných čísel (reálná osa); zápis ve formě intervalu: R = (, + ). rozšíření: R = R, + hodnoty, + nevlastní body. Otázka: Jaká je velikost nekonečna?? ( spočetná, nespočetná množina ) Definujeme: (a) velikost: = + = + ; (b) uspořádání: x R: < x, x < +.
Početní operace v R Sčítání: definujeme pro x R: x + + = +, x + = ; + + + = +, + = ; + + ( ) není definováno. Odčítání = přičítání hodnoty s opačným znaménkem; + =, = + ; + (+ ) a ( ) není definováno. Násobení: definujeme pro x > 0: x + = +, x = ; pro x < 0: x + =, x = + ; 0 (+ ) a 0 ( ) není definováno.
Dělení = násobení převrácenou hodnotou nelze dělit nulou výraz 1 není definován (nemá smysl); 0 1 definujeme = 1 = 0 ; + výraz ± ± není definován. Úloha: Určete hodnotu výrazů Neurčité výrazy: x, x, + + x pro x R. výrazy (zkráceně) typu, 0, nejsou definovány; vyskytují se při výpočtu limit; mohou vést na libovolnou hodnotu z R ; další typy: např. 1, 0 0, 0 0.
Okolí bodu v R Pro a R a δ > 0 definujeme: U δ a = (a δ, a + δ) okolí bodu a o poloměru δ; P δ a = U δ a a prstencové okolí; značíme též krátce U a, P(a); P + a = a, a + δ, P a = (a δ, a) levé a pravé okolí. Pro hodnoty +, definujeme: U + = P + = (c, + ) pro c R; U = P = (, d) pro d R. Užití: x U(a) vyjadřuje, že hodnota x je blízká hodnotě a; x P(a) hodnota x je blízká hodnotě a, ale x a.
IV.2. Extrémy množin v R Def: Řekneme, že číslo a R je maximum [minimum] množiny M R, jestliže a M a platí x M x a x M x a. Značíme a = max M a = min M. Příklad: M 1 = 0, 1 : max M 1 = 1, min M 1 = 0; M 2 = 0, 1): min M 2 = 0, max M 2 neexistuje (není definováno); M 3 = 1 n ; n = 1, 2, 3, : max M 3 = 1, min M 3 neexistuje. Zobecnění: supremum a infimum množiny M; značíme sup M, inf M.
Supremum a infimum množiny Def: Řekneme, že číslo K R je supremum množiny M R (značíme K = sup M), jestliže platí: (a) x M x K; (b) K 1 < K x M: x > K 1. (Hodnota K je nejmenší horní závora množiny M.) Řekneme, že číslo L R je infimum množiny M R (značíme L = inf M), jestliže platí: (c) x M x L; (d) L 1 > L x M: x < L 1. (Hodnota L je největší dolní závora množiny M.)
Supremum a infimum - vlastnosti Věta: Nechť M R je neprázdná množina. Pak platí: (a) Existují jednoznačně určené hodnoty K = sup M, L = inf M, přičemž L K. (b) Jestliže existuje max M, pak sup M = max M. (c) Jestliže existuje min M, pak inf M = min M. Úloha: Určete supremum a infimum množin: M 1, M 2, M 3 z výše uvedeného příkladu; M 4 = n 2 + 1; n = 1, 2, 3, ; M 5 = y = sin x ; x (0, π 2 ; M 6 = x R; x 2 + 4 < 8.
V. Posloupnosti reálných čísel V.1. Základní pojmy Def: Posloupností reálných čísel (krátce: posloupností) nazýváme zobrazení množiny N do R. Každému číslu n N je přiřazena jediná hodnota a n R. Posloupnost zapisujeme ve tvaru a 1, a 2, a 3, nebo jen a n, číslo a n je tzv. n-tý člen posloupnosti. Příklady: aritmetická posloupnost: a n+1 = a n + d pro n 1, a 1 (počáteční člen) a d (diference) jsou dány; geometrická posloupnost: a n+1 = a n q pro n 1, hodnoty a 1 a q (kvocient) jsou dány; Fibonacciova posloupnost: a 1 = a 2 = 1, a n+2 = a n + a n+1 pro n 1.
Vlastnosti posloupností Def: Řekneme, že posloupnost a n je omezená shora, jestliže existuje takové K R, že platí a n K pro všechna n N; omezená zdola, jestliže existuje takové L R, že platí a n L pro všechna n N; omezená (ohraničená), je-li omezená shora i zdola. Def: Řekneme, že posloupnost a n je rostoucí, jestliže pro každé n N platí a n < a n+1 ; neklesající, jestliže a n a n+1 ; nerostoucí, jestliže a n a n+1 ; klesající, jestliže a n > a n+1.
V.2. Limita posloupnosti Def: Řekneme, že posloupnost a n má limitu a R, jestliže platí: U a n 0 N: n n 0 a n U(a). Zapisujeme Poznámky: lim a n = a (nebo jen lim a n = a). n + Členy a n jsou pro dostatečně velká n (n + ) blízké hodnotě a. Existence ani hodnota limity nezávisí na konečném počtu členů posloupnosti (na určité počáteční části ). Každá posloupnost může mít nejvýše jednu limitu.
Konvergentní, divergentní a vybraná posloupnost Posloupnost a n nazveme konvergentní, jestliže lim a n = a R; divergentní, jestliže není konvergentní. Poznámka: Je-li posloupnost a n divergentní, pak buď nemá žádnou limitu, nebo má nevlastní limitu (lim a n = + nebo lim a n = ). Def: Nechť a n je daná posloupnost, n k je rostoucí posloupnost přirozených čísel. Pak posloupnost a nk = a n1, a n2, a n3, se nazývá vybraná z a n. Věta: Má-li posloupnost a n limitu a R, pak také každá posloupnost vybraná z a n má tutéž limitu.
Určování limity posloupnosti Poznámky: V jednoduchých případech lze limitu určit z definice (např. posloupnosti tvaru a n = 1 n, a n = n, a n = n 2, ). Jestliže z posloupnosti a n lze vybrat dvě posloupnosti, které nemají stejnou limitu, pak lim a n neexistuje. Věta: Nechť lim a n = a, lim b n = b. Pak platí: (i) lim a n ± b n = a ± b, (ii) lim a n b n = ab, (iii) lim a n b n = a b, mají-li výrazy vpravo smysl a v případě (iii) je b n 0 pro všechna n N dostatečně velká.
Určování limity - pokračování Poznámka: Při výpočtu limity užitím předchozí věty musí obě posloupnosti mít limitu, vpravo jsou vyloučeny neurčité výrazy. Další možnosti výpočtu limity: Nechť lim a n = a > 0, lim b n = 0 a b n > 0 od jistého n 0 N počínaje. Pak lim a n b n = +. Úloha: Rozmyslete znění obdobného tvrzení při a < 0, resp. b n < 0. Nechť platí a n b n c n od jistého n 0 N počínaje, lim a n = lim c n = a. Pak rovněž lim b n = a. Poznámka: Tzv. věta o sevřené posloupnosti. Jejím důsledkem jsou další tvrzení o limitách.
Další tvrzení o limitách Je-li posloupnost a n omezená, lim b n = 0, pak lim a n b n = 0. sin n arctg n Příklady: lim = 0, lim = 0. n+5 n 2 Jestliže existuje c > 0 a n 0 N takové, že a n c pro všechna n n 0, lim b n = +, pak lim a n b n = +. Úloha: Zformulujte obdobné tvrzení pro c < 0, a n c, resp. lim b n =. Příklady: lim 3 + cos n n 2 + 1 = +. lim n(1 + cos n π ) neexistuje (proč??) 2
Některá doplňková tvrzení T1: Je-li posloupnost a n monotónní, pak má limitu. Je-li a n neklesající, pak lim a n = sup a n. Je-li a n nerostoucí, pak lim a n = inf a n. T2: Nechť platí a n K od jistého n 0 N počínaje, lim a n = a. Pak platí a K. (Platí rovněž pro nerovnost, neplatí pro ostrou nerovnost!) Úloha: Lze toto tvrzení obrátit? Rozmyslete! T3: Jestliže platí lim a n = a, pak lim a n = a.
Vybrané posloupnosti a jejich limity aritmetická posloupnost: a n = a 1 + n 1 d; a 1, d R lim a n závisí na diferenci d; geometrická posloupnost: a n = a 1 q n 1 ; a 1, q R lim a n závisí na kvocientu q; n posloupnost a n tvaru a n = n lim a n = 1; posloupnost a n tvaru a n = (1 + 1 n )n lim a n = e (základ přirozených logaritmů, e = 2,718 ); posloupnost a n tvaru a n = (1 + x n )n, x R lim a n = exp x (hodnota exponenciální funkce).