1. Funkce Deinice 1.1. Zobrazení nazýváme reálná unkce, jestliže H() R. Další speciikaci můžeme provést podle deiničního oboru zobrazení. Deinice 1.2. Reálná unkce se nazývá (1) unkce jedné reálné proměnné, jestliže ) R, tedy : R R, 1 (2) posloupnost 2, jestliže ) = N, tedy : N R, (3) unkce n reálných proměnných, jestliže ) R n, kde n N, tedy : R n R. (1) analyticky předpisem y = (x), (2) graem, (3) tabulkou hodnot. Deinice 1.3. Nechť : R R a g : R R. Pak (1) součet unkcí + g znamená: (2) rozdíl unkcí g znamená: (3) součin unkcí.g znamená: (4) podíl unkcí g znamená: (5) absolutní hodnota unkce znamená: (6) mocnina unkce g znamená: 1.1. Globální vlastnosti. x () g)) : ( + g)(x) = (x) + g(x), x () g)) : ( g)(x) = (x) g(x), x () g)) : (.g)(x) = (x).g(x), x () {x g) g(x) 0}) : ( (x) )(x) = g g(x), x () : (x) = (x), x (g) {x ) (x) > 0}) : ( g )(x) = (x) g(x). Deinice 1.4. Nechť : R R a M R. Říkáme, že unkce je na množině M (1) rostoucí, právě když x 1, x 2 M : (x 1 < x 2 (x 1 ) < (x 2 )), (2) neklesající, právě když (3) klesající, právě když (4) nerostoucí, právě když x 1, x 2 M : (x 1 < x 2 (x 1 ) (x 2 )), x 1, x 2 M : (x 1 < x 2 (x 1 ) > (x 2 )), x 1, x 2 M : (x 1 < x 2 (x 1 ) (x 2 )). Pokud má unkce některou z těchto vlastností, říkáme, že je monotonní na M. Je-li unkce rostoucí nebo klesající, říkáme také, že je ryze monotonní na M. Pokud je M = ), budeme krátce říkat, že unkce je rostoucí, klesající, neklesající, nerostoucí, monotonní nebo ryze monotonní. Věta 1.1. Nechť : R R a M ). Je-li ryze monotonní na množině M R, je na množině M prostá. Věta 1.2. Nechť : R R je rostoucí (klesající), pak existuje 1 je také rostoucí (klesající). 1 Budeme používat tento zápis, i když bychom správně měli psát : ) R. 2 Posloupnost se obvykle zapisuje, jako množina {a n } n=1. V souladu s tímto značením budeme pro posloupnost raději používat zápis {} : N R nebo {} : n a n, n N. 1
2 Deinice 1.5. Nechť : R R a M ). Říkáme, že unkce je (1) sudá na množině M, právě když (2) lichá na na množině M, právě když x M : ( x) M (x) = ( x), x M : ( x) M (x) = ( x), (3) p-periodická na množině M s periodou p R, právě když x M : x + p M x p M (x + p) = (x p) = (x). Pokud M = ), říkáme krátce, že unkce je sudá, lichá nebo p-periodická. Deinice 1.6. Nechť : R R a M R. Obraz množiny M při unkci nazýváme množinu (M) = {y R y = (x) x M}. Deinice 1.7. Nechť : R R, M ). Říkáme, že je na množině M (1) omezená shora, právě když (2) omezená zdola, právě když K R x M : x K, k R x M : x k. Pokud je unkce omezená zdola i shora, říkáme, že je na množině M omezená. Dále říkáme, že má v bodě a M (3) maximum na množině M, právě když (4) minimum na množině M, právě když 1.2. Funkce absolutní hodnota. x M : (x) (a) a píšeme (a) = max x M (x), x M : (x) (a) a píšeme (a) = min x M (x). : y = x, x R. ) = R, H() = 0, ). Je to sudá unkce, klesající na (, 0 a rostoucí na 0, ). Je zdola omezená. 1.3. Funkce signum. 1 x < 0, : y = sign x = 0 x = 0, 1 x > 0. ) = R, H() = { 1, 0, 1}. Je to lichá unkce a pro každé x R platí x = x.sign x a x = x.sign x. Je omezená. Tato unkce vlastně poskytuje znaménko reálného čísla. Pro kladné hodnoty se znaménkem + dává číslo 1. Pro nulu, která nemá znaménko, dává hodnotu 0. Nakonec pro záporná čísla se znaménkem dává hodnotu 1. 1.4. Funkce celá část čísla. : y = [x], x R. Přičemž symbol celá část reálného čísla [x] je pro libovolné x R deinován takto: pro p Z, p x < p+1 je [x] = p. Pokud bychom chtěli tento zápis ormulovat populárně slovy, mohli bychom např. říci, že [x] zaokrouhluje dolů na celá čísla. Je ) = R, H() = Z. 1.5. Dirichletova unkce. : y = x) = Platí ) = R, H() = {0, 1}. Je to sudá unkce. { 0 x R \ Q, 1 x Q.
Lineární unkce : y=ax+b graem je přímka a>0, je rostoucí a<0, je klesající a=0, je konstantní unkce y=b.
Mocninné unkce Funkce kvadratická : y = x ) = R, H ( ) =< 0, ). Sudá mocnina Sudá unkce 2,
Mocninné unkce Funkce třetí mocnina : y = x 3 ) = R, H ( ) = R Lichá mocnina Lichá unkce,
Mocninné unkce Funkce třetí mocnina : y = ( x ) = R; H ( ) = R. 2) 3 + 1; S posunutím do bodu [2, 1]
Mocninné unkce Funkce odmocnina : y = x, ) =< 0, ), H ( ) =< 0, ).
Srovnání graů mocninných unkcí Červená je druhá mocnina Modrá je třetí mocnina Zelená je druhá odmocnina Žlutá je třetí odmocnina
Mocninná unkce se záporným exponentem n=2k+1, k=1, 2,... Nepřímá úměrnost : y H ( 1 = x ) ) {} 0, {}. 0 Lichá unkce, = R = R
Mocninná unkce se záporným exponentem n=2k, k=1, 2, 3, : y 2 = x ) = R {} 0 H ( ) =< 0, ). Sudá unkce,,
Polynomická unkce Je dána předpisem: n + n 1 +... + + n n 1 1 : y = P( x) = a x a x a x a 0 n 0 N 0 Kde. Je-li, nazývá se P(x) a n polynomem stupně n.
Exponenciální unkce Modrý gra R, H ( ) =< 0, ). Rostoucí unkce Červený gra : y 1 g : y =, 2 Klesající unkce ) = = 2 x, x
Eulerovo číslo e=2,718281828459 Modrý gra : y = 2 x, Červený gra g : y = x e.
Logaritmická unkce Modrý gra : y = log2 x, ) = (0, ), H ( R. Rostoucí unkce Červený gra Klesající unkce ) = g : y = log x 1 2.
Oblíbené základy logaritmických unkcí Modrý gra-unkce přirozený logaritmus o základu e: : y = ln x, Červený gra-unkce dekadický logaritmus o základu 10: g : y = log x.
Goniometrické unkce
unkce sinus : y = sin x, ) = R, H ( ) =< 1,1 >.
unkce kosinus : y = cos x; ) = R, H ( ) =< 1,1 >.
unkce tangens : y = tgx, ) = U H ( ) = R k Z π ( + 2 π kπ, + 2 kπ ),
unkce kotangens : y = cot gx, ) = H ( ) = U R k Z (0 + kπ, π + kπ ),
Cyklometrické unkce Inverzní unkce k unkcím goniometrickým na intervalech, kde jsou tyto unkce prosté.
unkce arkussinus Modrý gra je gra unkce sinus Červený gra : H ( y = arcsin x, ) =< 1,1 >, π π ) =<, >. 2 2 Rostoucí unkce
unkce arkuskosinus Modrý gra je gra unkce kosinus Červený gra : H ( y = arccos x, ) =< 1,1 >, ) =< 0, π >. Klesající unkce
unkce arkustangens Modrý gra je gra unkce tangens Červený gra : y ) = = arctgx, R, π π H ( ) = (, ). 2 2 Rostoucí unkce
unkce arkukotangens Modrý gra je graem unkce kotangens Červený gra : y H ( ) = ) = arc cot gx, R, = (0, π ). Klesající unkce